Arithmetic Progressions

Assertion & Reason Type Questions

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option:

- a. Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)
- b. Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A)
- c. Assertion (A) is true but Reason (R) is false
- d. Assertion (A) is false but Reason (R) is true

Q 1.

Assertion (A):
$$-5, \frac{-5}{2}, 0, \frac{5}{2}, ...$$
 is in Arithmetic

Progression.

Reason (R): The terms of an Arithmetic Progression cannot have both positive and negative rational numbers.

Answer:

(c) **Assertion (A):** Given sequence:
$$-5$$
, $-\frac{5}{2}$, 0 , $\frac{5}{2}$,...

Here,
$$a_1 = -5$$
, $a_2 = -\frac{5}{2}$, $a_3 = 0$, $a_4 = \frac{5}{2}$

Difference of two consecutive terms

$$a_2 - a_1 = \frac{-5}{2} - (-5) = -\frac{5}{2} + 5 = \frac{5}{2}$$

$$a_3 - a_2 = 0 - \left(-\frac{5}{2}\right) = \frac{5}{2}$$

$$a_4 - a_3 = \frac{5}{2} - 0 = \frac{5}{2}$$

Since, the difference of two consecutive terms is constant *i.e.*, $\frac{5}{2}$.

Therefore, given sequence is an AP.

So, Assertion (A) is true.

Reason (R): The terms of an AP. can have both positive and negative rational numbers. So, Reason (R) is false.

Hence, Assertion (A) is true but Reason (R) is false.

Q 2. Assertion (A): The nth term of the sequence -8,- 4,0,4,... is 4n- 12. **Reason (R):** The nth term of an AP is determined by $T_1 = a + (n-1)d$.

Answer: (a) Assertion (A): Given sequence is -8,-4, 0, 4,...

 a_2 -a--4-(-8)=4.

 $a_3-a_2-0-(-4)=4$,

 a_4 - a_3 -4-0-4

Here, we see that difference of two consecutive terms is same constant. So, given sequence is an AP.

First term, a=-8

and common difference, d=4

 $T_n = -8 + (n-1)(4)$

=-8+4n-4-4n-12

So, Assertion (A) is true.

Reason (R): It is also true that nth term of an AP is determined by Tn = a+ (n-1)d.

Hence, both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

Q 3. Assertion (A): The common difference of an AP in which 4_{20} - a_{16} =20 is 5

Reason (R): The nth term of the sequence $\sqrt{2}$, $\sqrt{4}$, $\sqrt{18}$,... is $\sqrt{2}$ n.

Answer : (b) **Assertion (A):** Let a and d be the first term and common difference of an AP. Then, nth term of an AP is

an=a+ (n-1)d

Given, a20-a16=20

:- [a+(20-1)d) - (a + (16 - 1)d) = 20

19d-15d=20

= 4d=20

= d=5

So, Assertion (A) is true.

Reason (R): Given sequence is

√2.√4.√18...

or √2, 2√2.3√2......

Here $a=\sqrt{2}, d=2\sqrt{2}-\sqrt{2}=3\sqrt{2}-2\sqrt{2}=\sqrt{2}$

 $T_n = a + (n-1)d$

 $T_n = \sqrt{2} + (n-1)\sqrt{2} = \sqrt{2}n$

So, Reason (R) is also true.

Hence, both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

Q4. Assertion (A): a, b, c are in AP if and only if 2b = a + c. Reason (R): The sum of first n odd natural numbers is n^2 .

Answer: (b) Assertion (A):

If part: Given a, b, c are in AP.

Then b-a-c-b

= b+b=a+c = 2b=a+c

Only part: Given, 2b=a+c

= b+b=a+c b-a-c-b

= a_2 - a_1 - a_3 - a_2 (let a1 a, a_2 -band a3 = c)

Since, each term differs from its preceding term are equal.

:- The sequence a_1 , a_2 , a_3 or a_1 , b_2 , c are in AP.

Therefore, a, b, c are in AP if and only if 2b=a+c.

So, Assertion (A) is true.

Reason (R): First n odd natural numbers are:

1, 3, 5, 7...

Here, first term (a)=1

and common difference (d)-3-1-5-3-2

Since, the difference between each consecutive terms

is constant i.e., 2.

So, the sequence forms an AP.

:- Sum of first n terms of an AP,

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} [2 \times 1 + (n-1) \times 2]$$
$$= \frac{n}{2} \times 2(1+n-1) = n \cdot n = n^2$$

So, Reason (R) is true.

Hence, both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

Q 5. Assertion (A): If sum of first n terms of an AP is $S_n = 6n^2-2n$, then nth term of an AP is 12n-8.

Reason (R): Suppose S_n be the sum of n terms of an AP, then nth term of an AP is $T_n = S_n - 1 - S_n$

Answer: (c) Assertion (A): Given, $S_n = 6n^2 - 2n$.

Using formula,

$$T_n-5_n-5_{n-1}-(6n^2-2n)-(6(n-1)^2-2(n-1))$$

$$=6n^2-2n-[6(n^2+1-2n)-2n+2)$$

$$-6n^2-2n-(6n^2-14n+8)$$

So, Assertion (A) is true.

Reason (R): It is not true that

$$T_n = 5_{n-1} - 5$$

Thus, the correct relation is

$$Tn=5_n-5_{n-1}$$

Hence, Assertion (A) is true but Reason (R) is false.

Q.6. Assertion (A): Let the positive numbers a,b,c be in A.P., then $\frac{1}{bc}$, $\frac{1}{ac}$, $\frac{1}{ab}$ are also in A.P.

Reason (R): If each term of an A.P. is divided by abc, then the resulting sequence is also in A.P.

Answer: (a)

Q.7. Assertion (A): Common difference of the AP -5, -1, 3, 7, is 4.

Reason (R): Common difference of the AP a, a + d, a + 2d,.....is given by d = 2nd term-1st term.

Answer: (a) Common difference, d = -1 - 1 (-5) = 4 So, both A and R are correct and R explains A.

Q.8. Assertion (A): Sum of first 10 terms of the arithmetic progression -0.5, -1.0, -1.5, is 27.5

Reason (R): Sum of n terms of an A.P. is given as $S_n = \frac{n}{2}[2a + (n-1)d]$ where a = first term, d = common difference.

Answer: (a) Both are correct. Reason is the correct reasoning for Assertion. Assertion,

$$S_{10} = \frac{10}{2} [2(-0.5) + (10 - 1)(-0.5)]$$
$$= 5[-1 - 4.5]$$
$$= 5(-5.5) = 27.5$$

Q.9. Assertion (A): $a_n - a_{n-1}$ is not independent of n then the given sequence is an AP.

Reason (R): Common difference $d=a_n-a_{n-1}$ is constant or independent of n.

Answer: (d) Assertion is incorrect.

We have, common difference of an AP $d=a_n-a_{n-1}$ is independent of n or constant. So, A is correct but R is incorrect.

Q.10. Assertion (A): The sum of the series with the nth term. $t_n = (9-5n)$ is (465), when no. of terms n = 15.

Reason (R): Given series is in A.P. and sum of n terms of an A.P. is

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Answer: (d)

Q.11. Assertion (A) : Three consecutive terms 2k + 1, 3k + 3 and 5k - 1 form an AP than k is equal to 6.

Reason (R): In an AP a, a + d, a + 2d,...., the sum to n terms of the AP be

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Answer: (b)

For
$$2k+1, 3k+3$$
 and $5k-1$ to form an AP
 $(3k+3)-(2k+1)=(5k-1)-(3k+3)$
 $k+2=2k-4$
 $2+4=2k-k=k$
 $k=6$

So, both A and R are correct but R does not explain A

Q.12. Assertion (A): If nth term of an A.P. is 7 – 4n, then its common differences is -4.

Reason (R): Common difference of an A.P. is given by $d=a_{n+1}-a_n$.

Answer: (a) Both are correct. Reason is the correct explanation.

Assertion,

$$a_n = 7 - 4n$$

$$d = a_{n+1} - a_n$$

$$= 7 - 4(n+1) - (7 - 4n)$$

$$= 7 - 4n - 4 - 7 + 4n = -4$$

Q.13. Assertion (A): The sum of the first n terms of an AP is given by

$$S_n = 3n^2 - 4n$$
. Then its n th term $a_n = 6n - 7$.

Reason (R): n th term of an AP, whose sum to n terms is S_n , is given by $a_n = S_n - S_{n-1}$.

Answer: (a) n th term of an AP be

$$a_n = S_n - S_{n-1}$$

 $a_n = 3n^2 - 4n - 3(n-1)^2 + 4(n-1)$

$$a_n = 6n - 7$$

So, both A and R are correct and R explains A.

Q.14. Assertion (A): If S_n is the sum of the first n terms of an A.P., then its n^{th} term a_n is given by $a_n = S_n - S_{n-1}$.

Reason (R): The 10th term of the A.P. 5, 8, 11, 14, is 35.

Answer: (c)
$$a_{10} = a + 9d$$

= $5 + 9(3) = 5 + 27 = 32$

Q.15. Assertion (A): Common difference of an AP in which a_{21} – a_7 = 84 is 14.

Reason (R): n th term of AP is given by $a_n = a + (n-1)d$

Answer: (d) Assertion is incorrect.

We have,
$$a_n = a + (n-1)d$$

$$a_{21} - a_7 = \{a + (21-1)d\}$$

$$-\{a + (7-1)d\} = 84$$

$$a + 20d - a - 6d = 84$$

$$14d = 84$$

$$d = \frac{18}{14} = 6$$

$$d = 6$$

So, A is incorrect but R is correct.

Q.16. Assertion (A): Sum of first hundred even natural numbers divisible by 5 is 500.

Reason (R): Sum of first n-terms of an A.P. is given by $S_n = \frac{n}{2}[a+\ell]$ where l = last term.

Answer: (d) Assertion is incorrect.

Assertion: Even natural numbers divisible by 5 are 10, 20, 30, 40,

They form an A.P. with,

$$a = 10, d = 10$$

$$S_{100} = \frac{100}{2} [2(10) + 99(10)] = 50500$$

Reason is correct.

Q.17. Assertion (A): Arithmetic between 8 and 12 is 10.

Reason (R): Arithmetic between two numbers 'a ' and 'b' is given as $\frac{a+b}{2}$.

Answer: (a) Both are correct and Reason is the correct explanation for the Assertion.