CLASS TEST

PHYSICS CLASS TEST # 13

SECTION-I

Multiple Correct Answer Type

5 Q. [Marks 4 (0)]

- 1. Equation of path of a particle moving in x-y plane is given by $y = 10x 2x^2$ for the given particle select correct statement. Assume acceleration of gravity as 10 m/s² in negative y-direction:
 - (A) Maximum height of the particle is 12.5 m.
 - (B) Range of the particle shown is x = 5.
 - (C) At x = 2.25 particle is moving at an angle of 45° with x-axis.
 - (D) Initially particle is projected at an angle of 53°.
- 2. A particle is moving in x-y plane and equation of its path is given by $y = x^3 + 2x^2 + 5x + 3$. At t = 0 particle is located at x = 0. Consider the case for $x \ge 0$, $y \ge 0$. Choose the **CORRECT** option(s):-
 - (A) Angle made by velocity vector of the particle at t = 0 is tan^{-1} (5) with x-axis.
 - (B) Particle will never cross the origin.
 - (C) Angle made by its velocity at x = 1m is tan^{-1} (4) with x-axis.
 - (D) If velocity of particle makes an angle θ with x-axis at point of projection, it will never make the same angle with x-axis during its motion.
- 3. A stone is projected with speed 'u' on an inclined plane inclined at an angle α with horizontal. It was found the stone strikes the incline perpendicularly. Initial velocity of projection was at an angle β with incline. Choose the **CORRECT** statement(s):
 - (A) If u is doubled, angle at which stone strikes the incline remains same.
 - (B) The stone was projected up the incline.
 - (C) If angle of projection is changed keeping angle of incline same, still the stone can strike the incline perpendicularly by adjusting speed of projection
 - (D) Range of stone on the incline is $\frac{2u^2 \sin \beta}{g \cos^2 \alpha} \cos(\alpha + \beta)$.
- **4.** A particle is projected with a speed of 50 m/s at an angle of 37° with the horizontal from the top of a tower. Then select the **CORRECT** statement(s):-
 - (A) Equation of trajectory of a particle is $y = \frac{3}{4}x \frac{x^2}{320}$, if origin is taken at the point of projection.
 - (B) Paticle moves perpendicular to initial direction at $\frac{25}{3}$ sec
 - (C) Minimum speed of particle in subsequent motion is zero
 - (D) Maximum height attained by the particle from the point of projection is 45 m
- 5. Two shells are fired by guns facing each other from points A and B simultaneously in the same vertical plane with velocities 60 m/s at 30° above the horizontal and 50 m/s respectively. The points A and B are 100 m apart on horizontal ground. If both the shells hit each other, find the angel of projection at point B and time when they collide.
 - (A) 37°

(B) 53°

- $(C)\left(\frac{20}{2-3\sqrt{3}}\right)s$
- (D) $\left(\frac{10}{4+3\sqrt{3}}\right)$ s

Linked Comprehension Type $(1 \text{ Para} \times 50.) (2 \text{ Para} \times 3 \text{ Q.}) [\text{Marks } 3 (-1)]$ Paragraph for Question No. 6 to 10

A projectile is observed moving with velocity $\vec{v} = (30\hat{i} - 10\hat{j})$ m/s after 5 s of its projection from the ground. On the basis of above information find the following.

- 6. The velocity of projection is
 - (A) $(30\hat{i} 40\hat{j})$ m/s
- (B) $(30\hat{i} + 40\hat{j})$ m/s
- (C) $(30\hat{i} + 10\hat{i})$ m/s
- (D) None of these

- 7. The time of flight of the projectile is
 - (A) 8 sec

- (C) 2 sec
- (D) 1 sec

- 8. The maximum height attained by the projectile is
 - (A) 40 m
- (B) 100 m
- (C) 20 m
- (D) $80 \, \text{m}$

- 9. The horizontal range of the projectile is
 - (A) 100 m
- (B) 180 m
- (C)120

(D) 240m

The equation of trajectory of the projectile is **10.**

(A)
$$y = \frac{4}{8}x \left(1 - \frac{x}{240}\right)$$
 (B) $y = \frac{4}{3}x \left(1 - \frac{x}{240}\right)$ (C) $y = \frac{4}{3}x \left(1 - \frac{x^2}{120}\right)$ (D) $y = \frac{16}{3}x \left(1 - \frac{x^2}{120}\right)$

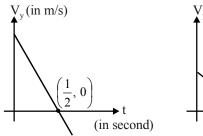
(B)
$$y = \frac{4}{3}x \left(1 - \frac{x}{240}\right)$$

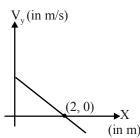
(C)
$$y = \frac{4}{3}x \left(1 - \frac{x^2}{120}\right)$$

(D)y=
$$\frac{16}{3}$$
x $\left(1-\frac{x^2}{120}\right)$

Paragraph for Question No. 11 to 13

Two projectiles following the same trajectory are found to be 8 m apart at the same horizontal level 2 s after the second was projected. If both projectiles were projected with the same initial horizontal velocity of 4 m/s from the same point.


- 11. The time of flight will be:
 - (A) 5 sec
- (B) 4 sec
- (C) 6 sec
- (D) 8 sec


- **12.** What will be the range of the path
 - (A) 24 m
- (B) 10 m
- (C) 12 m
- (D) 45 m

- **13.** The maximum height will be
 - (A) 80m
- (B) 24 m
- (C) 45 m
- (D) 10 m

Paragraph for Question No. 14 to 16

Two graphs of the same projectile motion (in the xy-plane) projected from origin are shown, x-axis is along horizontal direction and y-axis is vertically upwards. Take $g = 10 \text{ m/s}^2$.

- **14.** The projection speed is:
 - (A) $\sqrt{37}$ m/sec
- (B) $\sqrt{41}$ m/sec
- (C) $\sqrt{14}$ m/sec
- (D) $\sqrt{40}$ m/sec

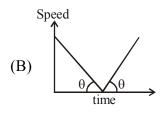
- Projection angle with the horizontal is: **15.**
 - (A) $\tan^{-1}\left(\frac{4}{5}\right)$ (B) $\tan^{-1}\left(\frac{2}{3}\right)$
- (C) $\tan^{-1}\left(\frac{5}{4}\right)$ (D) $\tan^{-1}\left(\frac{1}{2}\right)$

- Maximum height attained from point of projection is:
 - (A) 1.25 m
- (B) 12.5 m
- (C) 2.25 m
- (D) None of these

SECTION-IV

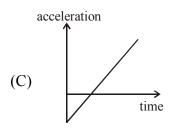
Matrix Match Type (4×5)

2 Q. [8 M (for each entry +2(0)]Column-II

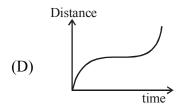

1. Column-I

Position Parabolic

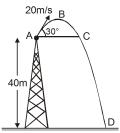
time


(P) Particle must change its direction during the subsequent

motion


Particle may return to its initial position during

subsequent motion



(R) Acceleration vector of a particle must be constant

throughout the motion

- (S) Particle come to rest at least once during its motion
- (T) Initial velocity of particle is zero.
- A projectile is fired from top of a 40 m high tower with velocity 20 m/s at an angle of 30° with the 2. horizontal (see figure). $g = 10 \text{ m/s}^2$.

C 1 T	
Column I	Column II

(A) Ratio of time taken from A to D with time taken from A to C is equal to

- (P) 1
- Ratio of vertical distance travelled from A to D with the (B) maximum height from ground is less than.
- 2 (Q)
- Ratio of final speed at D with the initial speed at A is less than (C)
- 3 (R)
- Ratio of horizontal displacement from A to D with height of
- (S) 4
- tower is greater than
- 5 (T)

	,		MINDWER RET		
		SECTION-I			
Multiple Correct Answer Type			5 Q. [Marks 4 (0)]		
1. Ans. (A,B,C)	2. Ans. (A,B,D)	3. Ans. (A,B,D)	4. Ans. (A,B,D)		
5. Ans. (A,D)					
Linked Comprehension Type		$(1 \text{ Para} \times 5Q.) (2 \text{ Pa})$	$ara \times 3 Q.)$ [Marks 3 (-1)]		
6. Ans. (B)	7. Ans. (A)	8. Ans. (D)	9. Ans. (D)		
10. Ans. (B)	11. Ans. (C)	12. Ans. (A)	13. Ans. (C)		
14. Ans. (B)	15. Ans. (C)	16. Ans. (A)			
SECTION-IV					
Matrix Match Type (4×5)		2 Q. $[8 \text{ M (for each entry } +2(0)]$			
1. Ans. A - P,Q,R,S	S; B - Q,S; C - Q; D	- Q,S 2. Ans. (A)-Q, (Q,S 2. Ans. (A)-Q, (B)-Q,R,S,T (C)-Q,R,S,T (D)-P		

ANSWER KEY

CLASS TEST # 13