Mathematics

Chapterwise Practise Problems (CPP) for JEE (Main & Advanced)

Chapter - Conic Sections

Level-1

SECTION - A Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

The locus of a point divides a chord of slope 2 of the 1. parabola $y^2 = 4x$ internally in the ratio 1 : 2 is

(A)
$$\left(y + \frac{8}{9}\right)^2 = \frac{4}{9}\left(x + \frac{2}{9}\right)$$

(B) $\left(y - \frac{8}{9}\right)^2 = \frac{4}{9}\left(x - \frac{2}{9}\right)$
(C) $\left(y - \frac{8}{9}\right)^2 = \frac{4}{9}\left(x + \frac{2}{9}\right)$
(D) $\left(y + \frac{8}{9}\right)^2 = \frac{4}{9}\left(x + \frac{2}{9}\right)$

- If 't₁' and 't₂' are two points on the parabola $y^2 = 4ax$. 2. If the focal chord joining them coincides with the normal chord, then
 - (A) $t_1(t_1 + t_2) + 2 = 0$ (B) $t_1 + t_2 = 0$ (C) $t_1 t_2 = -1$ (D) none of these
- Tangent to the curve $y = x^2 + 6$ at a point P (1, 7) 3. touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ at a point Q. The the coordinates of Q are

4. The locus of mid point of chords of an ellipse $\frac{x^2}{4} + y^2 = 1$ the tangents at the extremities of which intersect at right angle is

(A)
$$16(x^2 + y^2)^2 = 5(x^2 + 4y^2)$$

(B)
$$16(x^2 + y^2)^2 = 5(x^2 + 4y^2)^2$$

(C)
$$5(x^2 + y^2)^2 = 16(x^2 + 4y^2)^2$$

(D)
$$16(x^2 + y^2) = 5(x^2 + 4y^2)^2$$

If α , β are the eccentric angles of the extremities of 5. a focal chord of an elipse, then eccentricity of the ellipse is

(A)
$$\frac{\sin \alpha + \sin \beta}{\sin(\alpha + \beta)}$$
 (B) $\frac{\cos \alpha + \cos \beta}{\cos(\alpha + \beta)}$
(C) $\frac{\sin(\alpha + \beta)}{\sin(\alpha + \beta)}$ (D) none of these

The eccentricity of ellipse $ax^2 + by^2 + 2fx + 2gy + c$ 6. = 0, if major axis is parallel to x-axis, is

(A)
$$\sqrt{\frac{b-a}{b}}$$
 (B) $\sqrt{\frac{a-b}{b}}$
(C) $\sqrt{\frac{a}{a+b}}$ (D) $\sqrt{\frac{b}{a+b}}$

If P is any point on ellipse with foci S₁ & S₂ and 7. eccentricity is $\frac{1}{2}$ such that $\angle PS_1S_2 = \alpha$, $\angle PS_2S_1$ = β , $\angle S_1 P S_2 = \gamma$, then $\cot \frac{\alpha}{2}$, $\cot \frac{\gamma}{2}$, $\cot \frac{\beta}{2}$ are in (B) G.P. (A) A.P. (D) NOT A.P., G.P. & H.P. (C) H.P. Locus of the feet of the perpendiculars drawn from 8.

either foci on a variable tangent to the hyperbola $16y^2 - 9x^2 = 1$ is (A) $x^2 + y^2 = 9$

(A)
$$x^2 + y^2 = 9$$
 (B) $x^2 + y^2 = 1/9$
(C) $x^2 + y^2 = 7/144$ (D) $x^2 + y^2 = 1/16$

If x,{x} and 2[x] represent the segments of a focal 9. chord and length of latus rectum of an ellipse respectively, then length of major axis of ellipse is always greater than (where $x \notin Z$)

(A) 7	(B) 5
(C) 8	(D) 0

(C) 8

10. The equation of the line of latus rectum of the rectangular hyperbola $xy = c^2$ is

(A)
$$x - y = \sqrt{2}c$$
 (B) $x + y = 2\sqrt{2}c$
(C) $x + y = \sqrt{2}c$ (D) $x + y = 0$

11. If the line $y = \frac{x}{\sqrt{3}}$ cuts the curve $x^4 - 2x^2y - pxy + qx + ry + 10 = 0$ at *P*,*Q*,*R*,*S*, then the value of (*OP*.OQ.OR.OS), where *O* is the origin, equals

(A) 36 (B)
$$\frac{39}{2}$$

(C) $\frac{160}{9}$ (D) 90

12. A ray of light incident at the point (-2, -1) gets reflected from the tangent at (0, -1) to the circle $x^2 + y^2 = 1$. The reflected ray touches the circle. The equation of the line along which the incident ray moves is

(A)
$$4x - 3y + 11 = 0$$
 (B) $4x + 3y + 11 = 0$
(C) $3x + 4y + 11 = 0$ (D) None of these

13. Consider a curve $ax^2 + 2hxy + by^2 = 1$. A line drawn from origin 'O' cuts the given curve at point *A* and *B* such that *OA*. *OB* is independent of slope of the line then eccentricity of the conic obtained will be

(A) 0 < e < 1	(B) 1 < e < ∞
(C) $e = 0$	(D) e = 1

14. Locus of point of contact of the parabolas $y^2 = 8x + c_1$ and $x^2 = 3y + c_2$, where c_1 and c_2 are parameters is

(A) A straight line	(B) A circle
(C) A hyperbola	(D) An ellipse

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

15. If the orthocentre of the triangle formed by the points

 t_1, t_2, t_3 on the parabola $y^2 = 4ax$ is the focus, then

(A)
$$t_1 + t_2 + t_3 = 0$$

(B) $t_1t_2 + t_2t_3 + t_3t_1 = -5$

(C) $t_1 + t_2 + t_3 + t_1 t_2 t_3 = 0$

(D) $t_1t_2t_3 = t_1t_2 + t_2t_3 + t_3t_1$

16. The range of α such that tangents can be drawn to different branches of hyperbola $\frac{x^2}{4} - \frac{y^2}{1} = 1$ from the point (α , α^2)

(A)
$$\left(-\infty, -\frac{1}{2}\right)$$
 (B) $\left(\frac{1}{2}, \infty\right)$
(C) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (D) $\left(-\frac{1}{2}, \frac{1}{2}\right) - \{0\}$

- 17. If the equation $\left|\sqrt{(x-1)^2 + y^2} \sqrt{(x+1)^2 + y^2}\right| = k$
 - represents a hyperbola, then k belongs to the set
 - (A) $(1, \infty)$ (B) (0, 1)(C) (0, 2)(D) $(0, \infty)$
- 18. If there exist a double ordinate PQ of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ with centre at O such that Δ OPQ is an equilateral triangle, then the eccentricity e of the

hyperbola satisfies (A) $1 < e < \frac{2}{\sqrt{3}}$ (B) $e > \frac{2}{\sqrt{3}}$

(C)
$$e > \sqrt{3}$$
 (D) $e > 2$

19. The points on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ from where mutually perpendicular tangents can be drawn to

circle
$$x^2 + y^2 = \frac{a^2}{2}$$
 is /are.

20. A circle which touches the axes, and whose centre is at distance $2\sqrt{2}$ from the origin, has the equation.

(A)
$$x^2 + y^2 - 4x + 4y + 4 = 0$$

(B)
$$x^2 + y^2 + 4x - 4y + 4 = 0$$

- (C) $x^2 + y^2 + 4x + 4y + 4 = 0$
- (D) $x^2 + y^2 + 8x + 8y + 8 = 0$

21. Let \triangle PQR be formed by the common tangents to the circle x² + y² + 6x = 0 and x² + y² - 2x = 0,

then which of the following is (are) true?

- (A) Centroid of ΔPQR is (1, 0)
- (B) Radius of circle inscribed in ΔPQR is 1.
- (C) Area of \triangle PQR is $3\sqrt{3}$.
- (D) The y-intercept of common tangent having negative slope is 3
- 22. PQ is a double ordinate of the parabola y² = 8x. If the normal at P intersect the line passing through Q and parallel to axis of x at G, then the locus of G is a parabola with
 - (A) vertex at (8, 0)
 - (B) focus at (10, 0)
 - (C) length of latus rectum equals 8
 - (D) equation of directrix is x = 6
- 23. The circle $x^2 + y^2 + 2\lambda y = 0$ touches $x^2 = -4ay$, a > 0 externally, then λ may be
 - (A) -1 (B) -2 (C) 3 (D) 10
- 24. Let L_1 be x + y = 1 and L_2 be the line y = mx + 1. If the intercepts made by the circle $x^2 + y^2 - x + 3y = 0$ on L_1 and L_2 are equal and m_1 and m_2 be two possible slopes of y = mx + 1, then

(A)
$$m_1 + m_2 = \frac{10}{7}$$
 (B) $m_1 m_2 = -\frac{17}{7}$
(C) $m_1 m_2 = -\frac{10}{7}$ (D) $|(m_1 - m_2)| = \frac{24}{7}$

- 25. If the two chords of a circle each of length $a^2 1$ and 3(a + 1) respectively bisect each other, then the radius of the circle is
 - (A) Greater than 12
 - (B) Greater than or equal to $\frac{15}{2}$
 - (C) Greater than 9
 - (D) Less than or equal to 12
- 26. From (3, 5) secants are drawn to $x^2 + y^2 = 16$. Locus of midpoints of the secants intercepted by the given circle is

- (A) 3x + 5y = 15(B) $3x + 5y = x^2 + y^2$ (C) $5x + 3y = x^2 + y^2$ (D) 5x + 3y = 15
- 27. Consider a branch of hyperbola $x^2 2y^2 2\sqrt{2}x 2\sqrt{2}x$
 - $4\sqrt{2}y 6 = 0$ with vertex at the point *A*. Let *P* be one of the end points of its latus rectum. If *S* is the focus of the hyperbola nearest to the point *A*, then area of triangle *APS* is

(A)
$$\frac{\sqrt{3}}{2} + 1$$
 (B) $\sqrt{\frac{3}{2}} + 1$
(C) $\sqrt{\frac{3}{2}} - 1$ (D) $1 - \sqrt{\frac{3}{2}}$

SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **MORE THAN ONE CORRECT** is correct.

Paragraph for Q Nos. 28 to 30

 $x^{2} + y^{2} - 2x - 2ay - 8 = 0$, a is variable

28. The equation represents a family of circles passing through two fixed points whose co-ordinates are :

29. Equation of a circle C of this family tangents to which at these fixed points intersects on the line x + 2y + 5 = 0 is :

(A)
$$x^2 + y^2 - 2x - 8y - 8 = 0$$

- (B) $x^2 + y^2 2x + 6y 8 = 0$
- (C) $x^2 + y^2 2x + 8y 8 = 0$
- (D) $x^2 + y^2 2x 6y 8 = 0$
- 30. If the chord joining the fixed points subtents an angle θ at the center of the circle C, then θ is :
 - (A) π/6 (B) π/4
 - (C) π/3 (D) π/2

Paragraph for question nos. 31 and 32

Consider the parabola y² = 8x

31. Area of the figure formed by the tangents and normals drawn at the extremities of its latus rectum is

(A) 8		(B)	16
	-	<i>.</i>	

- (C) 32 (D) 64
- 32. Distance between the tangent to the parabola and a parallel normal inclined at 30° with the x-axis, is

(A)
$$\frac{16}{3}$$
 (B) $\frac{16\sqrt{3}}{9}$
(C) $\frac{2}{3}$ (D) $\frac{16}{\sqrt{3}}$

Paragraph for Question Nos. 33 and 34

Consider C_1 : $x^2 + y^2 + 2ax = 0$ and $S_1 = y^2 - 4ax = 0$. L_1 and L_2 are tangents to S_1 and pass through centre of C_1

- 33. Locus of centre of circle touching C_1 (externally) and the line L_1 is
 - (A) Circle (B) Straight line
 - (C) Pair of line (D) Parabola
- 34. If L_1 and L_2 touch S_1 at P and Q respectively, then area of triangle CPQ, where C is the centre of C_1 is

(A) <i>a</i> ²	(B) 2 <i>a</i> ²
(C) 4 <i>a</i> ²	(D) 8 <i>a</i> ²

SECTION-D

Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in **Column I** are labelled 1, 2, 3 and 4, while the statements in **Column II** are labelled p, q, r, s and t. Four options 1,2,3 and 4 are given below. Out of which, only one shows the right matching

35.	Match	the	following	
-----	-------	-----	-----------	--

Column I Column II

(A) The product of length of (p) 0 perpendicular from any point of hyperbola $x^2 - y^2 = 10$ to its asymptotes is (B) The number of points on

$$\frac{x^2}{4} + \frac{y^2}{3} = 1 \text{ from which}$$

mutually perpendicular tengents can be drawn to

hyperbola
$$\frac{x^2}{4} - \frac{y^2}{1} = 1$$
 is

- (C) The distance between (r) 16 directrices of the ellipse $(4x - 8)^2 + 16y^2 =$ $(x + \sqrt{3}y + 10)^2$ is
- (D) Tangents are drawn from any (s) 2 point on the line y - x + 2 = 0parabola $y^2 = 4x$ such that chords of contact pass through the fixed point then the sum of whose abscissa and ordinates is
- 36. Match the following

Column I

Column II

(q) 5

- (A) The normal chord at a point 't' (p) 4 on the parabola $y^2 = 4x$ subtends a right angle at the vertex then t² is
- (B) The area of the triangle (q) 2 inscribed in the curve y² = 4x, the parameter of coordinates whose vertices are 1, 2 and 4 is
- (C) The number of distinct normals (r) 3

possible from $\left(\frac{11}{4}, \frac{1}{4}\right)$ to the parabola $y^2 = 4x$ is

(D) The normal at (a, 2a) on y^2 (s) 6 = 4ax meets the curve again at (at², 2at), then the value of |t - 1| is

(t) 1

	Column-I	Со	lumn-ll
(A)	The value of 'k' for which $x^2 + y^2$	(p)	2√5
	= 4 and $x^2 + y^2 - 2x + 2ky = k$		
	cut orthogonally is		
(B)	Length of the chord cut by 4y =	(q)	8
	3x + 1 on the circle		
	$x^2 + y^2 - 6x = 0$ is		
(C)	The value of 'k' for which lines	(r)	4.5
	2x - ky + 3 = 0, 4x + y + 5 = 0		
	cut axes in concyclic points is		
(D)	If any triangle, the maximum	(s)	-4
	value of $\frac{r_1 + r_2 + r_3}{R}$ must be		
		(t)	1
Ma	tch the following :		
Со	lumn - l	Co	lumn - ll
(A)	The point (2, 4) is one extremity	(p)	1
	of focal chord of parabola $y^2 = 8x$		
	The length of this focal chord is		
(B)	The equation $(13x - 1)^2$ +	(q)	4/3
	$(13y - 1)^2 = k (5x - 12y + 1)^2$ will represent a parabola if k is		
(C)	The length of the common	(r)	8
	chord of the curves $y^2 - 4x - 4$		
	= 0 and $4x^2$ + $9y^2 - 36 = 0$ is		
(D)	A focal chord of the parabola	(s)	4
	y² = 4ax is of length 4a.		
	The angle subtended by it at		
	 (A) (B) (C) (D) (A) (A) (B) (C) (C) (D) 	Column-I (A) The value of 'k' for which $x^2 + y^2$ = 4 and $x^2 + y^2 - 2x + 2ky = k$ cut orthogonally is (B) Length of the chord cut by $4y =$ 3x + 1 on the circle $x^2 + y^2 - 6x = 0$ is (C) The value of 'k' for which lines 2x - ky + 3 = 0, $4x + y + 5 = 0cut axes in concyclic points is(D) If any triangle, the maximumvalue of \frac{r_1 + r_2 + r_3}{R} must beMatch the following :Column - I(A) The point (2, 4) is one extremityof focal chord of parabola y^2 = 8xThe length of this focal chord is(B) The equation (13x - 1)^2 +(13y - 1)^2 = k (5x - 12y + 1)^2will represent a parabola if k is(C) The length of the commonchord of the curves y^2 - 4x - 4= 0 and 4x^2 + 9y^2 - 36 = 0 is(D) A focal chord of the parabolay^2 = 4ax is of length 4a.The angle subtended by it at$	Column-ICo(A) The value of 'k' for which $x^2 + y^2$ (p)= 4 and $x^2 + y^2 - 2x + 2ky = k$ (q)aut orthogonally is(G)(B) Length of the chord cut by $4y = (q)$ $3x + 1$ on the circle $x^2 + y^2 - 6x = 0$ is(C) The value of 'k' for which lines(r) $2x - ky + 3 = 0, 4x + y + 5 = 0$ cut axes in concyclic points is(D) If any triangle, the maximum(s)value of $\frac{r_1 + r_2 + r_3}{R}$ must be(t)Match the following :(t)Column - ICo(A) The point (2, 4) is one extremity(p)of focal chord of parabola $y^2 = 8x$.The length of this focal chord is(B) The equation $(13x - 1)^2 + (q)$ $(13y - 1)^2 = k (5x - 12y + 1)^2$ will represent a parabola if k is(C) The length of the common(r)chord of the curves $y^2 - 4x - 4$ $= 0$ and $4x^2 + 9y^2 - 36 = 0$ is(D) A focal chord of the parabola(s) $y^2 = 4ax$ is of length 4a.The angle subtended by it at

39. Match the following :

Column - I

Column - II

(P) $\frac{4}{5}$ (A) If P is point on the ellipse $\frac{x^2}{16} + \frac{y^2}{20} = 1$ whose foci are S and S', then PS + PS' is (B) The eccentricity of the ellipse (Q) $4\sqrt{5}$ $2x^{2}+3y^{2}-4x-12y+13=0$ is (C) Tangents are drawn from the (R) 8 points on the line x - y - 5 = 0to $x^2 + 4y^2 = 4$. Then all the chords of contact pass through a fixed point, whose abscissa is (D) The sum of the distance of any (S) $\frac{1}{\sqrt{3}}$ point on the ellipse $3x^2 + 4y^2 = 12$ from is directrix is 40. Match the following : Column - I Column - II (A) The focus of $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is (p) $(\sqrt{2}, \sqrt{2})$ (B) The focus of xy = 1 is (q) (2,0) (C) The line 5x + 2y = 9 touches (r) (5,0) the hyperbola $x^2-9y^2 = 9$ at the point

(D) The focus of
$$21x^2 - 4y^2 = 84$$
 is (s) $\left(5, \frac{-2}{9}\right)$

SECTION-E

Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :

- 41. If circles $x^2 + y^2 = c$ with radius $\sqrt{3}$ and $x^2 + y^2 + ax$ + by + c = 0 with radius $\sqrt{6}$ intersect at two points A and B, If length of AB = $\sqrt{\ell}$. Find ℓ
- 42. Normals are drawn from the point P with slopes m_1 , m_2 , m_3 to the parabola $y^2 = 4x$. If locus of P under

the condition that $m_{_1}m_{_2}$ = α is a part of the parabola itself then find the value of α .

- 43. If the tangents drawn from the point (0, 2) to the parabola $y^2 = 4ax$ are inclined at an angle $\frac{3\pi}{4}$ then the number of values of a is / are.
- 44. Maximum length of perpendicular from centre of el-

lipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ on any normal to this ellipse is equal to a + 5, then value of |a| is _____

45. Equation of an ellipse is $9x^2 + 16y^2 = 144$ and *P* is any point on it. *PM* is ordinate of the ellipse and meets the auxilary circle in *Q*. If equation of normal

at point *P* where x = 2, is $8x - 2\sqrt{3}y = \lambda$, then the value of λ is

- 46. The equation of mirror image of parabola $y^2=4x$ in line x-y+2=0 is obtained. Let its vertex be (m,n) and its latus rectum be ℓ . The value of 5(m+n). ℓ is
- 47. Normal at a point P(am², 2am) intersects the parabola y² = 4ax at point Q. If the tangent at P and Q meet at point R, then the area of triangle PQR is $\frac{ka^2(1+m^2)^3}{m^3}$. Find the numerical value of k
- 48. The equation of the chord of the hyperbola $25x^2 16y^2 = 400$ which is bisected at (5, 3) is $125x 48y = \lambda + 480$, then the value of λ is_____

Level-2

SECTION - A

Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

- 1. A rectangular hyperbola has one of the asymptotes x y + 2 = 0 and tangent at P(0, 1) is x = 0. Then the length of the latusrectum is
 - (A) $\sqrt{2}$ (B) $\sqrt{3}$

(C) 2 (D) None of these

2. From any point R, two normals, which are at right angles to one another, are drawn to the hyperbola

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, (a > b). If the feet of the normals are P

and Q then the locus of the circumcentre of the triangle PQR is

(A)
$$\frac{x^2 + y^2}{a^2 - b^2} = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2$$

(B) $\frac{x^2 - y^2}{a^2 - b^2} = \left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2$
(C) $\frac{x^2 + y^2}{a^2 - b^2} = \left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2$
(D) $\frac{x^2 + y^2}{a^2 + b^2} = \left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2$

From any point P on the circle x² + y² = 9 two tangents are drawn to circle x² + y² = 4 which cut x² + y² = 9 at A and B then locus of point of intersection of tangents drawn to x² + y² = 9 at A and B is the curve

(A) $x^2 + y^2 = 27$	(B) $x^2 + y^2 = 27^2$
(C) $x^2 + 2y^2 = 27^2$	(D) $x^2 + y^2 = 8$

4. Two tangents are drawn from point P (1,8) to the circle x² + y² - 6x - 4y - 11 = 0 touching the circle at A and B. A circle passes through the point of intersection of circles x² + y² - 2x - 6y + 6 = 0 and x² + y² + 2x - 6y

+ 6 = 0 and intersects the circumcircle of the \triangle PAB orthogonally. If r is the radius of the circle ; then [r] is (where [.] denotes the greatest integer function)

(A) 1	(B) 2

(C) 3 (D) 4

5. If the normals drawn at the end points of a variable chord PQ of the parabola $y^2 = 4ax$ intersect at parabola, then the locus of the point of intersection of the tangent drawn at the points P and Q is

(A)
$$x + a = 0$$
 (B) $x - 2a = 0$
(C) $y^2 - 4x + 6 = 0$ (D) $x = +a$

6. The normal at the point P (ap^2 , 2ap) meets the parabola y^2 = 4ax again at Q (aq^2 , 2aq) such that the lines joining the origin to P and Q are at right angle. Then

(A) p ² = 2	(B) q ² = 2
(C) p = 2q	(D) q = 4p

7. Locus of mid-point of the focal chord of ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 with eccentricity e is

(A)
$$x^{2} + y^{2} = \left(\frac{a+b}{2}\right)^{2}$$
 (B) $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \frac{ex}{a}$
(C) $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \frac{ey}{b}$ (D) $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \frac{ex}{a} + \frac{ey}{b}$

- 8. From a point P chords are drawn to the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$, to cut it at R and S. If tangents at R and S always meets the line 2x + 4y = 1, then coordinates of the point P are
 - (A) (8, 6) (B) (6, 8)
 - (C) (-6, 8) (D) (8, 12)

9. If normal at any point P to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ (a > b) meet the axes at M and N so}$

that
$$\frac{PM}{PN} = \frac{2}{3}$$
, then the value of eccentricity is

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{\sqrt{2}}{\sqrt{3}}$
(C) $\frac{1}{\sqrt{3}}$ (D) $\sqrt{\frac{3}{5}}$

- 10. A ray emanating from the point (-4,0) is incident on the ellipse $9x^2 + 25y^2 = 225$ at the point P with ordinate 3. The equation of the reflected ray after first reflection is
 - (A) 3x + 4y = 10 (B) 3x + 4y = 12
 - (C) 4x + 3y = 12 (D) x + 2y = 4
- 11. If tangent at a point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ cuts the axis at A and B and rectangle OAPB is

completed, then locus of point P is given by (when O is the centre of the hyperbola)

(A)
$$\frac{a^2}{x^2} - \frac{b^2}{y^2} = 1$$

(B) $\frac{a^2}{x^2} + \frac{b^2}{y^2} = 1$
(C) $\frac{a^2}{y^2} - \frac{b^2}{x^2} = 1$
(D) $\frac{x^2}{a\sqrt{1-b^2}} + \frac{y^2}{b\sqrt{1-a^2}} = 1$

 PQ is a chord of parabola x² = 4y which subtends right angle at vertex. Then locus of centroid of triangle PSQ, where S is the focus of given parabola, is

(A)
$$x^2 = 4 (y + 3)$$
 (B) $x^2 = \frac{4}{3} (y - 3)$
(C) $x^2 = \frac{-4}{3} (y + 3)$ (C) $x^2 = \frac{4}{3} (y + 3)$

13. Normal to the parabola $y^2 = 8x$ at the point P (2, 4) meets the parabola again at the point Q. If C is the centre of the circle described on PQ as diameter then the coordinates of the image of the point C in the line y = x are

(A) ((_4	10)	(R) (-3	8)	١
v	¬, (-4,	10,)	(D	, ,	_J,	0)	,

- (C) (4, -10) (D) (-3, 10)
- 14. Normals are concurrent drawn at points A, B and C on the parabola $y^2 = 4x$ at P (h, k). The locus of the point P if the slope of the line joining the feet of two of them is 2, is

(A)
$$x + y = 1$$
 (B) $x - y = 3$
(C) $y^2 = 2(x - 1)$ (D) $y^2 = 2\left(x - \frac{1}{2}\right)$

15. If the locus of the middle points of the chords of the parabola $y^2 = 2x$ which touches the circle $x^2 + y^2 - 2x - 4 = 0$ is given by $(y^2 + 1 - x)^2 = \lambda (1 + y^2)$, then the value of λ is equal to

(A) 3	(B) 4
(C) 5	(D) 6

- 16. Locus of the point (h, k) if $(\sqrt{3h}, \sqrt{3k+2})$ lies on the line x y 1 = 0 is a
 - (A) Straight line (B) Circle
 - (C) Parabola (D) Eclipse
- 17. A rectangular hyperbola passes through the points A(1,1), B(1,5) and C(3,1). The equation of normal to the hyperbola at A(1,1) is
 - (A) 2x + y = 3(B) 2x y = 1(C) x + y = 2(D) none of these
- 18. If two tangents can be drawn to the different branches of hyperbola $\frac{x^2}{1} - \frac{y^2}{4} = 1$ from the point (α, α^2) then (A) $\alpha \in (-2, 0)$ (B) $\alpha \in (0, 2)$ (C) $\alpha \in (-\infty, -2)$ (D) $\alpha \in (2, \infty)$
- 19. Two chords are drawn from the point P(h, k) on the circle $x^2 + y^2 = hx + ky$. If the *y*-axis divides both chords in the ratio 2 : 3, then

(A)
$$k^2 > 15h^2$$
 (B) $15k^2 > h^2$

(C) $h^2 = 15k^2$ (D) $k^2 < 5h^2$

20. The locus of the centre of a circle which cuts the parabola $y^2 = 4x$ orthogonally at (1, 2) will pass through the point

(A) (3, 4)	(B) (4, 3)
(C) (5, 3)	(D) (2, 4)

21. The conic represented of the equation

$$\sqrt{px} + \sqrt{qy} = 1$$
 where $p > 0, q > 0$, is

(A) An ellipse (B) A circle

- (C) A parabola (D) A hyperbola
- 22. Two circles of radii R and r(R > r) touch each other externally. Then the radius of circle which touches both of them externally and also their direct common tangent is

(A)
$$\sqrt{Rr}$$
 (B) $\frac{Rr}{R+r}$

(C)
$$\frac{Rr}{\left(\sqrt{R}+\sqrt{r}\right)^2}$$
 (D) $\frac{R+r}{2}$

- 23. Let P be a point on parabola $y^2 = 4ax$. Tangent at P meets the axis of parabola at T and normal at P meets the axis at G, then
 - (A) Circumcentre of triangle *PGT* is vertex of parabola
 - (B) Circumcentre of triangle PGT lies on directrix
 - (C) Circumcentre of triangle PGT lies on focus
 - (D) Circumcentre lies on the tangent at vertex
- 24. A triangle *ABC* of area \triangle is inscribed in the parabola $y^2 = 4ax$ such that the vertex *A* lies at the vertex of the parabola and *BC* is a focal chord. The difference of the distances of *B* and *C* from the axis of the parabola is

(A)
$$\frac{2\Delta}{a^2}$$
 (B) $\frac{a}{2\Delta}$
(C) $\frac{2\Delta}{a}$ (D) $\frac{\Delta}{a^2}$

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer,

out of which ONE OR MORE is/are correct.

 Let A, B and C are three distinct points on y² = 8x such that normals at these points are concurrent at P. The slope of AB is 2 and abscissa of centroid of

 $\triangle ABC$ is $\frac{4}{3}$. Which of the following is (are) correct

- (A) area of $\triangle ABC = 8$
- (B) coordinate of P is (6, 0)
- (C) angle between normals are $45^\circ,\,45^\circ,\,90^\circ$
- (D) angle between normals are 30°, 30°, 60°
- Tangent drawn at point P (1,3) of a parabola intersects its tangent at vertex at V(-1,5). If R (-5,5) is a point on SP ; where S is focus of the parabola then
 - (A) Slope of directrix is $\frac{1}{3}$
 - (B) Radius of circumcircle of \triangle SVO is $\sqrt{10}$ units ('O' being origin)
 - (C) Tangent cuts the axis of parabola at (-3, 7)
 - (D) Focus is (-2, 4)
- 27. If a parabola touches the lines y = x and y = -x at A(3,3) and B(1, -1) respectively, then
 - (A) Equation of directrix is 2x y = 0
 - (B) Equation of line through origin and focus is x + 2y = 0
 - (C) Equation of line through origin and focus is x + 2y = 4

(D) Focus is
$$\left(-\frac{3}{5},\frac{6}{5}\right)$$

- 28. If T(3, 2) is the foot of perpendicular drawn from focus S(2, -1) on a tangent to a parabola and directrix passes through P(0,9), then
 - (A) Length of latus rectum of parabola is $8\sqrt{2}$
 - (B) Equation of tangent at the vertex is x+y-5=0
 - (C) Equation of axis of the parabola is x y 3 = 0
 - (D) Directrix is at a distance $2\sqrt{2}$ from focus
- 29. Let P be any point on the curve S = 0 such that tangents from P to $x^2 + y^2 2x 4y 4 = 0$ make 60° with each other and from point Q perpendicular tangents are drawn to S then

- (A) Locus of P is circle of radius $2\sqrt{3}$
- (B) Locus of P is circle of radius 6
- (C) Locus of Q is a circle of radius $3\sqrt{2}$
- (D) Locus of Q is a circle of radius $6\sqrt{2}$
- 30. A(1, 2) and B(7, 10) are two fixed points. If P(x, y) is such a point where $\angle APB = 60^{\circ}$ and the area of triangle APB is maximum, then the point P
 - (A) is on the line 3x + 4y = 36
 - (B) is on a line perpendicular to AB
 - (C) is on the perpendicular bisector of AB
 - (D) is on the circle passing through the points (1,2), (7,10) and having radius 10
- 31. P is a point on the parabola $y^2 = 4x$ and Q is a point on the line 2x + y + 4 = 0. If the line x - y + 1 = 0is the perpendicular bisector of PQ, then the coordinates of P can be
 - (A) (1, -2) (B) (4, 4)
 - (C) (9, -6) (D) (16, 8)
- 32. A point P moves in the x-y plane such that the point P remains at equidistant from the centre of a square and its sides. If the coordinates of four vertices of the square are $(\pm a, \pm a)$, then the point P lies on t h e

curve whose equation is given by

- (A) $y^2 = a^2 + 2ax$ (B) $x^2 = a^2 + 2ay$
- (C) $y^2 + 2ax = a^2$ (D) $x^2 + 2ay = a^2$
- 33. A variable chord PQ of the parabola $y^2 = 4ax$ is drawn parallel to the line y = x. If the parameter of the points P and Q on the parabola be t_1 and t_2 respectively, then
 - (A) $t_1 + t_2 = 2$ (B) $t_1 t_2 = \frac{2}{a}$
 - (C) locus of point of intersection of tangents at P and Q is y = 2a
 - (D) locus of point of interesection of normals at P

and Q is 2x - y = 12a

34. A chord AB of circle $x^2 + y^2 = a^2$ touches the circle $x^2 + y^2 - 2ax = 0$ locus of the point of intersections of tangents at A and B is

(A)
$$x^2 + y^2 = (x - a)^2$$
 (B) $x^2 + y^2 = (y - a)^2$

(C) $x^2 = a(a - 2y)$ (D) $y^2 = a(a - 2x)$

- 35. The focus of the parabola is (1, 1) and the tangent at the vertex has the equation x + y = 1. Then
 - (A) equation of the parabola is $(x y)^2 = 2$ (x + y - 1)
 - (B) equation of the parabola is $(x y)^2 = 4$ (x + y - 1)
 - (C) the co-ordinates of the vertex are $\left(\frac{1}{2}, \frac{1}{2}\right)$
 - (D) length of the latus rectum is $2\sqrt{2}$
- 36. Tangents *PA* and *PB* are drawn to the circle $x^2 + y^2 2y 3 = 0$ from the point *P*(3, 4). Then which of the following is/are correct ?
 - (A) The length of tangent from *P* to the circle is $\sqrt{14}$
 - (B) The equation of circumcircle of $\triangle PAB$ is $x^2 + y^2 - 3x - 5y + 4 = 0$
 - (C) The equation of circumcircle of $\triangle PAB$ is $x^2 + y^2 3x 5y + 1 = 0$
 - (D) The angle between tangents from *P*(3, 4) to the circle is $\frac{\pi}{3}$
- 37. Points on the curve $5x^2 + 5y^2 = 4 + 6xy$ which are nearest to the origin are

(A)
$$\left(\frac{1}{2}, \frac{-1}{2}\right)$$
 (B) $\left(0, \frac{2}{\sqrt{5}}\right)$
(C) $\left(\frac{2}{\sqrt{5}}, 0\right)$ (D) $\left(\frac{-1}{2}, \frac{1}{2}\right)$

- 38. An ellipse intersects the hyperbola $2x^2-2y^2 = 1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinates axes, then
 - (A) Equation of the ellipse is $x^2 + 2y^2 = 2$
 - (B) The foci of ellipse are $(\pm 1, 0)$
 - (C) Equation of ellipse is $x^2 + 2y^2 = 4$
 - (D) The foci of ellipse are $(\pm\sqrt{2}, 0)$
- 39. If the normal at any point $\mathsf{P}(\theta)$ on ellipse

 $\frac{x^2}{a^2} + \frac{y^2}{b^2}$ = 1 meets its auxilary circle at Q and R such that ∠QOR = 90° where O is centre of ellipse then

- (A) $2(a^2-b^2)^2 = a^4 \sec^2\theta + a^2b^2 \csc^2\theta$
- (B) $a^4+5a^2b^2 + 2b^4 = a^4 \tan^2\theta + a^2b^2\cot^2\theta$
- (C) $a^4+5a^2b^2+2b^4 \ge 2a^3b$
- (D) $a^4 + 2b^4 \ge 5a^2b^2 + 2a^3b$

SECTION - C

Linked Comprehension Type

This section contains paragraphs. Based upon each paragraph, some multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

Paragraph for Q. Nos. 40 to 42

Locus of centre of circle touching the circle $x^2 + y^2 - 4y - y^2 - 4y - 4y - y^2 - 4$

 $2x = \frac{7}{4}$ internally and tangents on which from (1, 2) is

making an angle 60° with each other is director circle (C) of a variable ellipse E.

40. Equation of director circle (C) is

(A)
$$(x-2)^2+(y-1)^2=\sqrt{3}$$
 (B) $(x-1)^2+(y-2)^2=3$

- (C) $(x+1)^2+(y-2)^2=\sqrt{3}$ (D) $(x-1)^2+(y+2)^2=3$
- 41. Locus of focus of variable ellipse (E) when major axis

is parallel to x-axis is

(A)
$$\left\{ (x, y) / \frac{\sqrt{3}}{2} < |x - 1| < \sqrt{3} \text{ and } y = 2 \right\}$$

(B)
$$\left\{ (x, y) / 0 < |x| < \sqrt{3} \text{ and } y = 2 \right\}$$

(C)
$$\left\{ (x, y) / 0 < |x + 1| < \sqrt{3} \text{ and } y = 2 \right\}$$

(D)
$$\left\{ (x, y) / 0 < |x - 1| < \sqrt{3} \text{ and } y = 2 \right\}$$

42. Locus of focus of variable ellipse (E)

(A)
$$1 < (x-1)^2 + (y-2)^2 < 3$$

(B) $\frac{2}{3} < (x-1)^2 + (y-2)^2 < 3$
(C) $\frac{3}{2} < x^2 + y^2 < 3$

Paragraph for question nos. 43 to 45

From a point P (h, k), in general, three normals can be drawn to the parabola $y^2 = 4ax$. If t_1 , t_2 , t_3 are the parameters associated with the feet of these normals, then t_1 , t_2 , t_3 are the roots of the equation $at^3 + (2a - h)t - k = 0$. Moreover, from the line x = -a, two perpendiclar tangents can be drawn to the parabola.

43. If the tangents at the feet Q $(at_1^2, 2at_1)$ and R $(at_2^2, 2at_2)$ to the parabola meet on the line x = a, then t₁, t₂, are the roots of the equation

(A)
$$t^2 - t_3 t + 1 = 0$$
 (B) $t^2 + t_3 t + 1 = 0$

(C)
$$t^2 - t_3 t - 1 = 0$$
 (D) $t^2 + t_3 t - 1 = 0$

44. If the feet Q $(at_1^2, 2at_1)$ and R $(at_2^2, 2at_2)$ are the ends of a focal chord of the parabola, then the locus of P (h, k) is

(A) $y^2 = a(x-2a)$ (B) $y^2 = a(x-a)$

(C)
$$y^2 = a(x - 3a)$$
 (D) $y^2 = 3a(x - a)$

- 45. If P (h, k) is a vertex of the square comprising normals to the parabola from P and tangents from the directrix, then (h, k) is the same as
 - (A) (a, 0) (B) (2a, 0)

(C) (3a, 0) (D) (4a, 0)

Paragraph for question nos. 46 to 48

An ellipse whose distance between foci S and S' is 4 units is inscribed in the triangle ABC touching the sides AB, AC and BC at P, Q and R. If centre of ellipse is at origin and major axis along x-axis, SP + S'P = 6, then answer the following questions.

46. Equation of ellipse is

(A)
$$\frac{x^2}{5} + \frac{y^2}{9} = 1$$
 (B) $\frac{x^2}{9} + \frac{y^2}{4} = 1$
(C) $\frac{x^2}{9} + \frac{y^2}{5} = 1$ (D) $\frac{x^2}{4} + \frac{y^2}{9} = 1$

- 47. If \angle BAC = 90°, then locus of points A is
 - (A) $x^2 + y^2 = 12$ (B) $x^2 + y^2 = 4$
 - (C) $x^2 + y^2 = 14$ (D) $x^2 + y^2 = 5$
- 48. If chord PQ subtends 90° angle at centre of ellipse, then locus of A is
 - (A) $25x^2 + 81y^2 = 620$ (B) $25x^2 + 81y^2 = 630$
 - (C) $9x^2 + 16y^2 = 25$ (D) $9x^2 + 16y^2 = 125$

Paragraph for question nos. 49 to 51

Let two circles $S_1 = 0$ and $S_2 = 0$ intersect at point A and B. L₁= 0 is the line joining A and B where .

$$\begin{split} S_1 &= x^2 + y^2 + 2ax + 2by - 5 = 0 \text{ and} \\ S_2 &\equiv x^2 + y^2 + 2x + 4y - 4 = 0. \end{split}$$

Let AB subtend an angle θ at (0, 0) and angle subtended by S₁= 0 and S₂= 0 at P (3, 4) is α and β respectively.

49. If equation $L_1 \equiv 3x + 4y = 7$ of , then the value of 4a + b is equal to

(A)
$$\frac{48}{7}$$
 (B) $\frac{50}{7}$

(C)
$$\frac{60}{7}$$
 (D) $\frac{55}{7}$

50. If AB passes through (1, 1) and parallel to a line which touches $S_2 = 0$ at (2, -2), then 4a + 2b is equal to

	(-) -
(A) 4	(B) 6
	(-) -

- (C) 8 (D) 10
- 51. If α = 60°, then (a, b) lies on a circle whose radius is

(A)
$$\frac{\sqrt{10}}{3}$$
 (B) $\frac{4\sqrt{10}}{3}$

(C)
$$\frac{2\sqrt{10}}{3}$$
 (D) $\sqrt{\frac{10}{3}}$

Paragraph for question nos. 52 and 53

The line y = x - 2 cuts the parabola $y^2 = 8x$ in the points A and B. The normals drawn to the parabola at A and B intersect at G. A line passing through G intersects the parabola at right angles at the point C, and the tangents at A and B intersect at the point T.

52. The sum of the co-ordinates of possible point C is

(A) 0	(B) — 1

- (C) 1 (D) -2
- 53. Minimum radius of the circle passing through A and B is

(B) 4√5

(C) 3√6 (D) 10

Paragraph for question nos. 54 to 57

Let the two foci of an ellipse be (-1, 0) and (3, 4) and the foot of perpendicular from the focus (3, 4) upon a tangent to the ellipse be (4, 6)

54. The foot of perpendicular from the focus (-1, 0) upon the same tangent to the ellipse is

(A)
$$\left(\frac{12}{5}, \frac{34}{5}\right)$$
 (B) $\left(\frac{7}{3}, \frac{11}{3}\right)$
(C) $\left(2, \frac{17}{4}\right)$ (D) $(-1, 2)$

- 55. The equation of auxiliary circle of the ellipse is
 - (A) $x^{2} + y^{2} 2x 4y 5 = 0$ (B) $x^{2} + y^{2} - 2x - 4y - 20 = 0$ (C) $x^{2} + y^{2} + 2x + 4y - 20 = 0$ (D) $x^{2} + y^{2} + 2x + 4y - 5 = 0$
- 56. The length of semi-minor axis of the ellipse is
 - (A) 1 (B) $2\sqrt{2}$ (C) $\sqrt{17}$ (D) $\sqrt{19}$
- 57. The equation of directrices of the ellipse are
 - (A) x y + 2 = 0, x y 5 = 0
 - (B) $x + y \frac{21}{2} = 0, x + y + \frac{17}{2} = 0$
 - (C) $x y + \frac{3}{2} = 0, x y \frac{5}{2} = 0$

(D)
$$x + y - \frac{31}{2} = 0$$
, $x + y + \frac{19}{2} = 0$

Paragraph for question nos. 58 to 60

Tangents are drawn to the parabola $y^2 = 4x$ from the point P (5, 6) to touch the parabola at Q and R. C_1 is a circle which touches the parabola at Q and C_2 is a circle which touches the parabola at R. Both the circles C_1 and C_2 pass through the focus the parabola.

58. Area of the Δ PQR eauals

(A) $\frac{1}{2}$	(B) 1
(C) 32	(D) 1/4

- 59. Radius of the circle C_2 is
 - (A) $5\sqrt{5}$ (B) $\sqrt{4394}$
 - (C) $10\sqrt{2}$ (D) $\sqrt{210}$
- 60. The common chord of the circles C_1 and C_2 passes through the
 - (A) incentre of the Δ PQR
 - (B) circumcentre of the Δ PQR
 - (C) centroid of the Δ PQR
 - (D) othocentre of the ΔPQR

Paragraph for Question Nos. 61 and 62

In the given figure vertices of $\triangle ABC$ lie on $y = f(x) = ax^2 + bx + c$. The triangle *ABC* is equilateral and $AC = 4\sqrt{3}$ units, then

61. y = f(x) is given by

(A)
$$12 - x^2$$
 (B) $12 + x^2$

(C)
$$\frac{1}{2}(12-x^2)$$
 (D) $\frac{1}{2\sqrt{3}}(12-x^2)$

62. Maximum value of y = f(x) is

(A) 6	(B) 12
(C) 8√3	(D) 12√3

SECTION-D

Matrix-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in **Column I** are labelled A, B, C and D, while the statements in **Column II** are labelled p,q,r,s. Four options A, B, C and D are given below. Out of which, only one shows the right matching

63. Consider the parabola $y^2 = 12x$

, ,						
Column - I	Column - II					
(A) Tangent and normal	(P) (0,0)					
at the extremities of the						
latus rectum intersect the x axis at T and G respectively.						
The coordinates of the middle						
point of T and G are.						
(B) Variable chords of the parabola	a (Q) (3,0)					
passing through a fixed point						
K on the axis, such that sum	ı					
of the squares of the receipro	ocals					
of the two parts of the chords	3					
through K, is a constant. The	e					
coordinate of the point K are						
(C) All variable chords of the parabola subtending a right angle at the origin are concurrent at the point	(R) (6,0)					
(D) AB and CD are the chords of the parabola which interse at a point E on the axis. The radical axis of the two circles described on AB and CD as diameter always passes thro	(S) (12,0) act s ugh					
There are 2 circles C_1 an $C_1 : x^2 + y^2 = 4$ and $C_2 : x^2 + y^2 = 4$	d C_2 such that = 8. Two tangents					
PQ and PR are drawn from po	int $P(\sqrt{6},\sqrt{2})$ on					

circle $\rm C_{_2}$ to the circle $\rm C_{_1}$ and a. New circle $\rm C_{_3}$ is drawn assuming QR as a diameter

64.

Column - IColumn - II(A) The length of the largest(p) 2chord of C_3

(B) The length of tangent PQ (q) $2\sqrt{2}$

(C) The perimeter of Δ PQR (r) 1

(D) The area of $\Delta\,\mathrm{PQR}$

(s)

4+2√2

SECTION-E

Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :

- 65. If the locus of the focus of the variable parabola C_1 , which always touch the curve $C_2 \equiv x^2 = -y$ at the origin, is $x^2 + y^2 = 2ay^4$, (given that C_1 and C_2 have the same latus rectum and they have no other point of intersection). Then the value of a is
- 66. A parabola which have directrix x + y + 2 = 0 and touches a line 2x + y 5 = 0 at (2, 1). If m is the

latus rectum of the parabola, then the value of $\frac{m}{\sqrt{2}}$

67. Let circle $C_1 : x^2 + (y-4)^2 = 12$ intersects circle $C_2 : (x-3)^2 + y^2 = 13$ at A and B. A quadrilateral ACBD is formed by tangents at A and B to both circles. The diameter of circum circle of quadrilateral ACBD is

is

68. If the minimum value of

$$(x_1 - x_2)^2 + \left(\frac{x_1^2}{20} - \sqrt{(17 - x_2)(x_2 - 13)}\right)^{2}$$
,

where $x_1 \in R^+$, $x_2 \in (13, 17)$ is $(a\sqrt{b} - b)^2$ where a and b are coprime number then a + b =

- 69. Let A(0, 1), B(1, 1), C(1, -1), D(-1, 0) be four points. If P be any other point, then PA + PB + PC + PD \ge d, then [d] = (where [.] denotes greatest integer function).
- 70. If the normals at the four points (x_r, y_r) (where r = 1, 2, 3, 4) on the ellipse $4x^2 + 9y^2 = 36$ are concurrent,

then the value of
$$\sum_{r=1}^{4} x_r \cdot \sum_{r=1}^{4} \frac{1}{x_r}$$
 is

- 71. Number of possible values of α^2 such that there exists a tangent of slope 1 to the ellipse $x^2 + \alpha^2 y^2 = \alpha^2$ such that the portion of the tangent intercepted by the hyperbola $\alpha^2 x^2 y^2 = 1$ subtends a right angle at the centre of the curve is _____.
- 72. A parabola with latus rectum 4a (a > 0) slides such that it touches the positive co-ordinate axes. The locus of its focus is $x^{-2} + y^{-2} = \lambda a^{-2}$ where x > 0, y > 0. Then the value of λ is _____

 ANSWERS

LEVEL-1

1.	(B)	2.	(D)	3.	(D)	4.	(D)	5.	(A)	6.	(A)
7.	(A)	8.	(D)	9.	(D)	10.	(B)	11.	(C)	12.	(B)
13.	(C)	14.	(C)	15.	(B, C)	16.	(A, B)	17.	(B, C)	18.	(B, C, D)
19.	(A, B)	20.	(A, B, C)	21.	(A, B, C)	22.	(A, B, C, D)	23.	(A, B)	24.	(A, B, D)
25.	(B, D)	26.	(B)	27.	(C)	28.	(A, C)	29.	(D)	30.	(D)
31.	(C)	32.	(A)	33.	(D)	34.	(C)	35.	(A-q B-s C-r D-p)	
36.	(A-q B-s C-q D-	p)		37.	(A-s B-p C-q D-r))		38.	(A-r, B-p, C-s, D-	·q)	
39.	(A-Q B-S C-P D-F	R)		40.	(A-r B-p C-s D-r)			41.	(8)	42.	(2)
43.	(2)	44.	(4)	45.	(7)			46.	(0)	47.	(4)
48. (1)											
1.	(C)	2.	(C)	3.	(B)	4.	(B)	5.	(B)	6.	(A)
7.	(B)	8.	(D)	9.	(C)	10.	(B)	11.	(A)	12.	(B)
13.	(A)	14.	(B)	15.	(C)	16.	(C)	17.	(A)	18.	(D)
19.	(A)	20.	(A)	21.	(C)	22.	(C)	23.	(C)	24.	(C)
25.	(A, B, C)	26.	(A, C, D)	27.	(A, B, D)	28.	(A, B, C)	29.	(B, D)	30.	(A, B, C)
31.	(A, C)	32.	(A, B, C, D)	33.	(A, C, D)	34.	(A, D)	35.	(B, C, D)	36.	(A, B)
37.	(A, D)	38.	(A, B)	30.	(A, D)	40.	(B)	41.	(D)	42.	(D)
43.	(B)	44.	(C)	45.	(C)	46.	(C)	47.	(C)	48.	(B)
49.	(B)	50.	(D)	51.	(C)	52.	(A)	53.	(A)	54.	(A)
55.	(B)	56.	(C)	57.	(D)	58.	(C)	59.	(B)	60.	(C)
61.	(C)	62.	(A)	63.	(A-Q B-R C-S D-I	>)	64. (A-q B-p C	-s D-	p)	65.	(8)
66.	(9)	67.	(5)	68.	(7)	69.	(4)	70.	(4)	71.	(1)
72. (1)											

(16)