

Some Basic Concepts of Chemistry

Learning & Revision for the Day

- Matter and its Nature
- Physical Quantities and their Measurements
- Laws of Chemical combinations
- Dalton's Atomic Theory
- Equivalent Weight
- Mole Concept and Molar Mass
- Chemical Equations and Stoichiometry
- Various Concentration Terms

Chemistry is the branch of science which deals with the composition, properties and interaction of all kinds of matter such as air, water, rocks, plants, earth etc.

Matter and Its Nature

Anything that occupies space and possesses mass is called **matter**. On the basis of physical state of substance, matter is divided into three types:

- 1. Solids have definite volume and definite shape.
- 2. **Liquid** have definite volume but not the definite shape.
- 3. Gases have neither definite volume nor definite shape.

On the basis of chemical composition of substance. It is of three types:

- (i) **Elements** These are the substances that cannot be decomposed into simpler substances by chemical change.
- (ii) **Compounds** These can be decomposed into simpler substances by chemical changes. Compound is always homogeneous.
- (iii) Mixtures These have variable composition and variable properties due to the fact that components retain their characteristic properties. Components of a mixture can be separated by applying physical methods.

Every substance has unique property and these can be measured qualitatively and quantitatively.

Physical Quantities and Their Measurements

- Mass, length, time and temperature are physical quantities. These are expressed in numerals with suitable units. Units may be basic (fundamental) or derived.
- The **SI system** has seven base units. These units pertain to the seven fundamental scientific quantities. The units of mass (kg), length (m), time (s), electric current (A),

temperature (K), luminous intensity (cd), and amount of substance (mol) are fundamental units.

- The lowest temperature permitted in nature is -273.15°C (0 K). This temperature is known as absolute zero.
- Relationship between Celsius and Kelvin scale is $K = {}^{\circ}C + 273.15$.
- Relationship between the Celsius and Fahrenheit scales are related as $^{\circ}$ C = $\frac{5}{9}$ ($^{\circ}$ F -32)
- A number of quantities must be derived from measured value of the SI base quantities. These are called **derived** units. e.g. Units of density (kg m⁻³) is derived from the units of mass (kg) and volume (m³).

NOTE

- The term precision refers for the closeness of the set of values obtained from identical measurements of a quantity. Precision is simply a measure of reproducibility of an experiment.
- Accuracy, a related term, refers to the closeness of a single measurement to its true value.

Significant Figures

Significant figures are meaningful digits which are known with certainty. These are the total number of digits in a number including last digit whose value is uncertain. The uncertainty is indicated by writing the certain digits and the last uncertain digit.

Certain rules for determining the number of significant figures are as follows

- Read the number from left to right and count all the digits, starting with the first digit that is non-zero.
- In addition or subtraction, the number of decimal places in the answer should not exceed the number of decimal places in either of the numbers.
- In multiplication and division, the result should be reported to the same number of significant figures as that in the quantity with least number of significant figures.
- When a number is rounded off, the number of significant figures is reduced. The last digit retained is increased by 1 only if the following digit is ≥ 5 and is left as such if the following digit is ≤ 4.

Dimensional Analysis

In calculations, many of the times it become necessary to convert units from one system to another. This is achieved by factor label method or unit factor method or dimensional analysis. The dimensions of a derived quantity are the powers to which the basic quantities have to be raised in a product defining the quantity. Dimensional analysis involves calculations based on the fact that if two quantities have to be equated, they must have the same dimensions or the same units.

Laws of Chemical Combinations

The combination of elements to form compounds is governed by the following basic laws:

- Law of conservation of mass (Lavoisier, 1789)
 Total mass of reactants = total mass of products.
- 2. Law of constant composition/Definite proportions
 (Proust, 1799) For the same compound, obtained by
 different methods, the percentage of each element should
 be same in each case.
- 3. Law of multiple proportions (Dalton, 1803) An element may form more than one compound with another element. For a given mass of an element, the masses of other elements (in two or more compounds) are in the ratio of small whole numbers. For example, in NH_3 and N_2H_4 , fixed mass of nitrogen requires hydrogen in the ratio 3:2.
- 4. Law of equivalent/reciprocal proportions (Ritcher, 1794) When two different elements combines with a fixed weight of a third element, the ratio of their combination will either be same or multiple of the ratio in which they combine with each other. e.g. CH₄, CO₂ and H₂O.
- 5. **Law of combining volumes** (Gay-Lussac, 1808) It states that when gases combine or are produced in a chemical reaction they do so in a simple ratio by volume provided all gases are at same temperature and pressure.
- 6. **Avogadro's Law** It states that equal volume of all gases at same temperature and pressure should contain equal number of molecules.

Dalton's Atomic Theory

John Dalton developed his famous theory of atoms in 1808. The main postulates of this theory were:

- Atom was considered as hard, dense and smallest indivisible particle of matter.
- Atom is indestructible i.e. it cannot be destroyed or created in a chemical reaction.
- Atom is the smallest portion of matter which takes part in chemical combination.
- Atoms combine with each other, to form compound (or molecules) in simple whole number ratio.
- Atoms of same elements are identical in mass and chemical properties.
- Chemical reactions involve reorganisation of atoms. These are neither created nor destroyed in a chemical reaction.

Atomic, Molecular and Formula Masses

1. Atomic Mass It is defined as the number which indicates how many times the mass of one atom of the element is heavier as compared to $\frac{1}{12}$ th part of the mass of one atom of C-12.

2. The **gram atomic mass** of an element should not be mass of their atoms. e.g. Gram atomic mass of H-element is 1.008 g but mass of H-atoms is $1 \mu [1.67 \times 10^{-24} \text{ g}]$.

The approximate atomic mass of solid elements except Be, B, C and Si, is related to specific heat as

Average atomic mass =
$$\frac{6.4}{\text{specific heat}}$$

(from Dulong and Petit's law for metals)

Exact atomic mass = Equivalent mass \times valency

As most of the elements have isotopes, so their actual atomic mass is the average of atomic masses of all the isotopes.

Average atomic mass is calculated as

$$M_{\rm av} = \frac{m_1 \times r_1 + m_2 \times r_2 + m_3 \times r_3}{r_1 + r_2 + r_3}$$

where, r_1 , r_2 and r_3 = relative abundances of the isotopes.

- 3. **Molecular Mass** It is the sum of atomic masses of the elements present in a molecule. It is obtained by multiplying the atomic mass of each element by the number of its atoms and adding them together.
- 4. **Formula Mass** It is the sum of the atomic masses of all atoms in the formula unit of the compound. It is normally calculated for ionic compounds. Formula mass of NaCl is 23 + 35.5 = 58.5 amu or 58.5u.

Equivalent Weight

It is the weight of an element or of a compound, which would combine with or displace (by weight) 1 part of hydrogen or 8 parts of oxygen or 35.5 parts of chlorine.

Equivalent weight. (Eq. wt.)

$$= \frac{\text{atomic wt. or molecular wt.}}{\text{`n' factor}}$$

'n' factor for various compounds can be obtained as:

- 1. 'n' factor for acids, i.e. basicity is the number of ionisable H^+ per molecule is the basicity of acids. e.g. basicity of HCl = 1
- 'n' factor for bases, i.e. acidity is the number of ionisable OH⁻ per molecule is the acidity of bases. e.g. Acidity of NaOH = 1
- 3. 'n' factor for salt is total positive or negative charge of ions. e.g. $Na_2CO_3 \longrightarrow 2Na^+ + CO_3^{2-}$
- 4. 'n' factor for ion is equal to charge of that ion.

e.g.
$$E_{\text{Cl}^-} = \frac{35.5}{1} = 35.5$$

5. **In redox titration**, *n* factor for reducing agent is number of electrons lost by the molecule and for oxidising agent is number of electron gained by the molecule.

e.g.
$$FeSO_4 \Rightarrow As \ reducing \ agent$$

$$Fe^{2^+} \longrightarrow Fe^{3^+} + e^- \qquad `n' \ factor = 1$$

$$\Rightarrow$$
 As an oxidising agent $Fe^{2+} + 2e^{-} \longrightarrow Fe(s)$ 'n' factor = 2

Mole Concept and Molar Mass

- Mole is the amount of substance which contains 6.022×10^{23} (Avogadro's number) particles and has mass equal to gram-atomic mass or gram-molecular mass.
- Mole is related to the mass of the substance (in grams), volume of gaseous substance and number of particles.
 Therefore, number of moles

$$= \frac{\text{Mass of substance (g)}}{\text{Molar mass (g mol}^{-1})}$$

$$= \frac{\text{Volume of gas at STP (L)}}{22.4(\text{L})}$$

$$= \frac{\text{Number of particles at STP}}{N_A}$$

- Moles of atoms/molecules/ions/ electrons $= N_{\!A} \times \text{Number of atoms/molecules/ions/electrons}$
- Total charge present on an ion = mole \times N_A \times charge on one ion \times 1.6 \times 10⁻¹⁹ C
- Molar mass of an element is defined as mass of 1 mole of a substance in grams, i.e. mass of 6.023×10^{23} entities or particles of that element.

Percentage Composition, Empirical and Molecular Formulae

 The percentage of any element or constituent in a compound is the number of parts by mass of that element or constituent present in two parts, by mass of the compound.

Mass % of an element

 $= \frac{\text{mass of element in the compound} \times 100}{\text{molar mass of compound}}$

 An empirical formula represents the simplest whole number ratio of various atoms present in a molecule of the compound, whereas the molecular formula shows the exact number of different types of atoms present in a molecule of a compound.

$$n = \frac{\text{molecular mass}}{\text{empirical formula mass}}$$

here, n is any integer such 1, 2, 3, ... etc. Molecular formula = $n \times$ empirical formula Molecular/molar mass = $2 \times$ vapour density

Chemical Equations and Stoichiometry

- A balanced chemical equation with suitable stoichiometric coefficients represent the ratio of number of moles of reactants and products.
- The chemical equation provides qualitative and quantitative information about a chemical change in a simple manner.
- Stoichiometry deals with calculation of masses of the reactants and the products involved in a chemical reaction.
- The numerals used to balance a chemical equation is called stoichiometric coefficients.
- For the stoichiometric calculations, the mole relationships between different reactants and products are required. The mass-mass, mass-volume and volume-volume relationship can be obtained between different reactants and products.

Limiting Reagent

 The substance which is completely consumed in a reaction is called limiting reagent. It determines the amount of product.

$$Reaction\ yield = \frac{actual\ yield\ \times\ 100}{theoretical\ yield}$$

 In stoichiometry, if the quantities of two or more reactants are given, the amount of products formed depend upon the limiting reactant (the reactant which consumed first in the reaction).

Various Concentration Terms

Different concentration terms are given below:

 Molarity (M) It is defined as the number of moles of solute per litre of solution or as the number of mg-molecules per millilitre of solution. The molarity is usually designated by M. It is dependent upon the temperature, as it depends on volume which changes with temperature.

e.g. if the molarity of $\rm H_3PO_4$ is 0.18, it means a concentration corresponding to 0.18 mole of $\rm H_3PO_4$ per litre of solution.

Thus, molarity is given as

Molarity,
$$(M) = \frac{\text{moles of solute}}{\text{volume of solution (in L)}}$$

If specific gravity is given,

$$molarity = \frac{\text{specific gravity} \times \% \text{ strength} \times 10}{\text{molecular weight}}$$

If molarity and volume of solution are changed from m_1, V_1 to m_2, V_2 , then

$$m_1V_1 = m_2V_2$$
 (molarity equation)

If two solutions of the same solute are mixed the molarity of resulting solution

$$m_3 = \frac{m_1 V_1 + m_2 V_2}{V_1 + V_2}$$

Strength of solution (S)

Amount of solute present in 1 L solution

Strength,
$$(S) = \frac{\text{weight of solute}}{\text{volume of solution (in L)}}$$

2. **Molality** (*m*) It is defined as the number of moles of solute dissolved in 1000 g of the solvent. It is designated by *m*. Molality is independent of temperature, as it depends only upon the mass which does not vary with temperature.

Molality,
$$(m) = \frac{\text{moles of solute}}{\text{weight of solvent (in g)}} \times 1000$$

3. Normality (N) It is defined as the number of g-equivalents of solute per litre of solution or as the number of mg-equivalents of a substance per millilitre of solution. e.g. 0.12 N H₂SO₄ means a solution which contains 0.12 g-equivalent of H₂SO₄ per litre of solution.

This also means that each millilitre of this solution can react, for example, with 0.12 mg-eq. of CaO or with 0.12 mg-eq. of Na_2CO_3 . Thus,

Normality (N) =
$$\frac{\text{gram-equivalent of solute}}{\text{volume of solution (in L)}}$$

or = $\frac{\text{gram-equivalent of solute}}{\text{volume of solution (in mL)}} \times 1000$

If specific gravity is known, normality is calculated as

$$Normality = \frac{specific \ gravity \times \% \ strength \times 10}{equivalent \ weight}$$

If normality and volume of solution are changed from N_1 , V_1 to N_2 , V_2 then $N_1V_1=N_2V_2$ if two solution of same solute are mixed then normality or resulting solution

$$N_3 = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

4. Mole fraction (χ) It is the ratio of number of moles of a particular component to the total number of moles of the solution.

Thus, mole fraction is given as

$$\label{eq:moles} \text{Mole fraction} \left(\chi \right) = \frac{\text{number of moles of component}}{\text{number of moles of solution}}$$

The sum of mole fractions of the component is equal to 1.

DAY PRACTICE SESSION 1

FOUNDATION QUESTIONS EXERCISE

1	The correctly reported answ 2.3 and 6.24 will have signifi (a) two (c) four		10	If we consider that 1/6 in pla atom is taken to be the relat mass of one mole of a subs (a) to be a function of the mol	ive atomic mass unit, the tance will		
2	A student performs a titration finds titre values of 25.2 mL, The number of significant fig value is (a) 1	25.25 mL and 25.0 mL. ures in the average titre → AIEEE 2010 (b) 2	11	(b) remain unchanged(c) increase two fold(d) decrease twiceHow many moles of magneswill contain 0.25 mole of oxy	gen atoms?		
3	(c) 3 A metal oxide contains 53% n	(d) 4		(a) 0.02 (c) 1.25×10^{-2}	(b) 3.125×10^{-2} (d) 2.5×10^{-2}		
	contains 27% carbon. Assum proportions, the percentage of (a) 75% (c) 37% Two oxides of metal were four	ing the law of reciprocal if metal in the metal carbide is (b) 25% (d) 66% and to contain 31.6% and 48%	12	Rearrange the following (I to masses and choose the cor (atomic mass; $O = 16$, $Cu = I$. 1 molecule of oxygen. II. 1 atom of nitrogen. III. 1×10^{-10} g molecular wei	63, N = 14)		
	of oxygen respectively. If the f by M_2O_3 , then formula of secondary MO_3 (c) M_2O			$ V.1 \times 10^{-10} \text{ g atomic weight}$ (a) $ I < I < II < V $ (c) $ I < II < V $	of copper. (b) IV < III < II < I (d) III < IV < I < II		
5	The equivalent weight of H ₃ F disproportionates into PH ₃ at (a) 82 (c) 33			is largest in (a) 4.0 g of hydrogen (c) 127.0 g of iodine	wing samples of substances → JEE Main (Online) 2013 (b) 70.0 g of chlorine (d) 48.0 g of magnesium		
6	3g of an oxide of a metal is completely and it yielded 5 g weight of the metal is	g of chloride.The equivalent	14	The total number of electron (density of water is 1 g mL $^{-1}$ (a) 6.02×10^{23} (c) 6.02×10^{24}			
	(a) 33.25 (c) 12	(b) 3.325 (d) 20	15	The weight of 1×10^{22} molec	` '		
7	Sea water contains 65×10^{-3} the bromide ions are converted.	ted to produce Br ₂ , how		(a) 41.59 g (c) 4.159 g	(b) 415.9 g (d) None of these		
	much sea water is needed to (a) 15.38 L (c) 7.69 \times 10 ³ L	o prepare 1 kg Br ₂ ? (b) 15.38× 10 ³ L (d) 76.9 L	16	The number of moles of (NH formed from a sample conta (a) 10 ⁻⁴ mol	aining 0.0056 g of Fe is (b) 0.5×10 ⁻⁴ mol		
8	is 9 g equiv ⁻¹)	andard conditions. ned is (equivalent mass of Al	17	(c) 2×10^{-4} mol If 10^{21} molecules are remove number of moles of CO_2 left (a) 2.88×10^{-3}	are (b) 28.8×10^{-3}		
	(a) 22.4 L (c) 11.2 L	(b) 5.6 L (d) 2.24 L	10	(c) 0.288×10^{-3}	(d) 1.66×10^{-2}		
9	The same amount of a metal oxygen and with 3.17 g of a mass of halogen is (a) 127 g	combines with 0.200 g of halogen. Hence, equivalent (b) 80 g	10	atoms per cm ³ blood (Pb = 2 (a) 8.72×10^{14}	a significant health risk ead level as the number of Pb 107). (b) 8.72× 10 ¹⁵		
	(c) 35.5 g	(d) 9 g		(c) 8.72×10^{13}	(d) 8.72×10^{16}		

19	Which of the following pairs of gas number of molecules? (a) 16 g of O ₂ and 14 g of N ₂ (b) 8 g of O ₂ and 22 g of CO ₂ (c) 28 g of N ₂ and 22 g of CO ₂ (d) 32 g of O ₂ and 32 g of N ₂	ses contains the same	28	Mixture $X = 0.02$ mc 0.02 mole of [Co(NF solution. 1 L of mixture $X + e$: 1 L of mixture $X + e$: Number of moles of	I ₃) ₅ Br] S0 xcess Aq xcess Ba	O_4 was prepared by $O_3 \longrightarrow Y$ and $O_2 \longrightarrow Z$	
20	The number of H-atoms present in which has a molar mass of 342.3	g is		(a) 0.01, 0.01 (c) 0.01, 0.02		(b) 0.02, 0.01 (d) 0.02, 0.02	2
21	(a) 22×10^{23} (b) 9.91×10^{23} (c) 1. The most abundant elements by rhealthy human adult are oxygen (22.9%), hydrogen (10.0%) and nweight which a 75 kg person wou	mass in the body of a 61.4%), carbon itrogen (2.6%). The	29	How much AgCl will HCl to a solution cor (Ag = 108)? (a) 0.1435 g (c) 14.35 g	ntaining		
22	are replaced by ² H atoms is (a) 15 kg (b) 37.5 kg (c) 7 A gaseous hydrocarbon gives upo		30	If 0.5 mole of BaCl ₂ the maximum numb formed, is			
~ ~	water and 3.08 g of CO_2 . The emphydrocarbon is	oirical formula of the → JEE Main (Online) 2013		(a) 0.7 (c) 0.30		(b) 0.5 (d) 0.10	
23	(a) C_2H_4 (b) C_3H_4 (c) C_3H_4 (c) C_3H_4 (d) C_3H_4 (e) C_3H_4 (e) C_3H_4 (f)	cobalt on analysis was	31	The reaction between produces H ₂ S and y that hydrogen produce (a) 1:2	v ³⁺ ions.		
	(a) CoO ₂ (b) C (c) CoO (d) C	CO ₂ O ₃ CO ₄ O ₆	32	(c) 2:3 3 g of activated cha		(d) 5:2 as added to 5	
24	At 300 K and 1 atom, 15 mL of a grequires 375 mL air containing 20 complete combustion. After combuccupy 330 mL. Assuming that th liquid form and the volumes were same temperature and pressure,	$0\% O_2$ by volume for pustion, the gases he water, formed is in measured at the		acid solution (0.06 N filtered and the stree 0.042 N. The amour of charcoal) is (a) 18 mg (c) 42 mg	ngth of that of acet	ne filtrate was	s found to be
	$\begin{array}{ll} \text{hydrocarbon is} \\ \text{(a) } C_3H_8 & \text{(b) } C \\ \text{(c) } C_4H_{10} & \text{(d) } C \end{array}$. 0	33	The molecular formular for exchanging ions (Mol. wt. = 206). Wh	in water at would	softening is be the maxi	C ₈ H ₇ SO ₃ Na mum uptake of
25	The ratio of mass per cent of C are compound ($C_xH_yO_z$) is 6 : 1. If one compound ($C_xH_yO_z$) contains half	e molecule of the above f as much oxygen as		Ca ²⁺ ions by the resresin? (a) 1/103 (b) 1/		expressed in (c) 2/309	n mole per gram → JEE Main 2015 (d) 1/412
		compound C_xH_y mpirical formula of $\rightarrow JEE \ Main \ 2018$ C_2H_4O $C_2H_4O_3$	34	The mass of potassi oxidise 750 cm ³ of 0 (Given, molar mass Mohr's salt = 392)).6 M Mo	hr's salt solu ium dichroma	tion is
26	A mixture of FeO and Fe ₃ O ₄ when constant weight, gains 5% in its w percentage of Fe ₃ O ₄ in mixture?	heated in air to	35	(a) 0.49 g (c) 22.05 g 5 mL of N HCl, 20 m HNO ₃ are mixed tog	L of N/2		
	(a) 73.87% (b) 2 (c) 79.75% (d) 2	26.13% 20.25%		normality of resulting (a) 0.45 (b) 0.45	g solutio		(d) 0.05
27	1.00×10^{-3} moles of Ag $^+$ and 1.00 react together to form solid Ag $_2$ Cr amount of Ag $_2$ CrO $_4$ formed (Ag $_2$ C	O ₄ Calculate the	36	Two solutions of a s in the following man with 520 mL of 1.2 M	ner : 480	0 mL of 1.5 M	of first solution

(b) 0.166 g

(d) 1.66 g

(a) 0.268 g

(c) 0.212 g

with 520 mL of 1.2 M of second solution. The molarity of

(c) 1.344 M (d) 2.70 M

(b) 1.50 M

final solution is

(a) 1.20 M

Direction (Q.Nos. 37-38) *In the following questions* assertion followed by a reason is given. Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is correct explanation of A
- (b) Both A and R are true but R is not correct explanation of A
- (c) A is true but R is false
- (d) Both A and R are false

(c) 8.000

(d) 9.875

37 Assertion (A) On changing volume of the solution by 20%, molarity of solution also changes by 20%.

Reason (R) Molar concentration or molarity of solution is not affected on dilution.

38 Assertion (A) If 30 mL of $\rm H_2$ combines with 20 mL of $\rm O_2$ to form water, 5 mL of $\rm H_2$ left after the reaction.

Reason (R) O₂ is the limiting reagent.

		DAY PRACTI	CE S	SESSION 2	
	DD.	ADECOME AL	IFA	TIANG FY	FRAIGE
	PRO	GRESSIVE QU	JE2	IION2 FX	FKCI2F
1	ammonia. When 450 g of h nitrogen, 1575 g of ammor per cent yield of this reacti (a) 61.8%	nia were produced. What is the on? (b) 41.5%	7	vessel and after react	oles of H_2 are allowed to react in a cion, H_2O is added. Aqueous ole of HCI. Mole fraction of H_2 in the reaction is (b) $\frac{5}{6}$
2	(c) 30.8% A sample of ammonium ph	(d) 20.7% nosphate, $(NH_4)_3PO_4$ contains		(c) $\frac{1}{3}$	(d) None of these
	3.18 moles of hydrogen ato oxygen atoms in the samp (a) 0.265 (c) 1.06	oms. The number of moles of le is (b) 0.795 (d) 3.18	8	Potassium selenate is	isomorphous with potassium s 50.0% of Se. Find the atomic
3		9		(a) 47.33 (c) 142	(b) 71 (d) 284
	formed? (a) 1 (b) 2	(c) 1.5 (d) 3	9	volume (in litres) of 10	lises oxalic acid to CO_2 . What is the $^{-4}$ MKMn O_4 required to completely M oxalic acid in acidic medium?
4	Amount of $A \text{ FeSO}_4(\text{NH}_4)_2$ = 392 g mol ⁻¹) must be diss	${ m SO}_4\cdot 6{ m H}_2{ m O}$ (molar mass solved and diluted to 250 mL		(a) 125 (c) 200	(b) 1250 (d) 20
	to prepare an aqueous sol i.e. 1.00 ppm Fe^{2+} by weig (a) $3.50 \times 10^{-3} \text{ g}$ (c) $7.00 \times 10^{-3} \text{ g}$	ution of density 1.00 g mL ⁻¹ , ht is (b) 1.75×10^{-3} g (d) 0.35×10^{-3} g	10	The molecular weight 67200. The number of	s 0.33% of iron by weight. of haemoglobin is approximately of iron atoms (at. wt. of Fe is
5		s passed through 50 mL of olution. After completion of the evaporated to dryness. The		(a) 1 (c) 4	olecule of haemoglobin are (b) 6 (d) 2
	solid calcium carbonate was 0.1 N hydrochloric acid. The required is (atomic mass of (a) 300 cm ³	as completely neutralised with ne volume of hydrochloric acid f calcium = 40). (b) 200 cm ³	11	pressure will be cons elemental boron (ator of boron trichloride by	
6	(c) 500 cm ³	(d) 400 cm ³ n with Zn in the presence of		(a) 89.6 L (c) 44.8 L	(b) 67.2 L (d) 22.4 L
U		IH ₃ . Mass of sodium nitrate	12	Density of 2.05 M so 1.02 g/mL. The molali (a) 1.14 mol kg ⁻¹	olution of acetic acid in water is ty of same solution is (b) 3.28 mol kg ⁻¹

(c) 2.28 mol kg⁻¹

(d) 0.44 mol kg⁻¹

- 13 A 15.00 mL sample of a solution is 0.04 M in Sn²⁺ and x M in Fe²⁺. Both are easily oxidised by $Cr_2O_7^{2-}$ in acidic solution to Sn⁴⁺ and Fe³⁺ and itself reduced to Cr³⁺. 18.0 mL of 0.125 M $\text{Cr}_2\text{O}_7^{2-}$ is required. Thus, x is
 - (a) 0.410
- (c) 0.820
- (d) 1.640
- 14 A mixture contains Na 2C2O4 and KHC2O4 in 1:1 molar ratio. Mixture is neutralised by 100 mL of 0.01 M KOH. What volume of 0.01 M KMnO₄?

Thus, the same mixture is oxidised by

- (a) 200 mL
- (b) 100 mL
- (c) 90 mL
- (d) 80 mL
- 15 Weight of 1 L milk is 1.032 kg. It contains butter fat (density 865 kg m⁻³) to the extent of 4% by volume/volume. The density of the fat free skimmed milk will be
 - (a) 1038.5 kg m^{-3}
- (b) 1032.2 kg m^{-3}
- (c) 997 kg m^{-3}
- (d) 1000.5 kg m^{-3}

ANSWERS

(SESSION 1)	1 (b)	2 (c)	3 (a)	4 (a)	5 (c)	6 (a)	7 (b)	8 (c)	9 (a)	10 (b)
	11 (b)	12 (a)	13 (a)	14 (c)	15 (c)	16 (b)	17 (a)	18 (a)	19 (a)	20 (b)
	21 (c)	22 (d)	23 (b)	24 (d)	25 (d)	26 (c)	27 (b)	28 (a)	29 (b)	30 (d)
	31 (c)	32 (a)	33 (d)	34 (c)	35 (a)	36 (c)	37 (d)	38 (d)		
(SESSION 2)	1 (a)	2 (c)	3 (a)	4 (b)	5 (c)	6 (b)	7 (b)	8 (c)	9 (d)	10 (c)
	11 (b)	12 (c)	13 (c)	14 (d)	15 (a)					

Hints and Explanations

SESSION 1

- **1** 4.523 + 2.3 + 6.24 = 13.063. As 2.3 has least number of decimal places, i.e. one, therefore sum should be reported to one decimal place only. After rounding off, reported sum = 13.1 which has three significant figures.
- **2** Average value = $\frac{25.2 + 25.25 + 25.0}{3} = \frac{75.45}{3} = 25.15 = 25.2 \text{ mol}$

Number of significant figure is 3.

3 In metal oxide, metal = 53%, O = 47%

C = 27%, O = 73%

: 73 parts of oxygen combines with 27 parts of carbon.

∴ 47 parts of oxygen will combine = $\frac{27}{73}$ × 47 = 17.38 parts of C.

Thus, metal and carbon will be present in the ratio of 53: 17.38. Hence, % of metal

$$=\frac{53}{53+17.38}\times 100 = 75.3\% \approx 75\%$$

- **4** First oxide is M_2O_3 . Here, O is 31.6% and M is 68.4%. Let second oxide be M_2O_x . Here, O is 48% and M is 52%. So, 68.4g of M in first oxide
 - = 2 atom of M and 52 g of M contains

 $= \frac{2 \times 52}{68.4} = 1.5 \text{ atom of } M \text{ and } 52 \text{ g of } M \text{ contains}$

31.6 g of oxygen in first oxide contains 3 atom of oxygen.

48 g of oxygen contains =
$$\frac{3 \times 48}{31.6}$$
 = 4.5 atoms of oxygen

Ratio of M:O = 1.5:4.5 = 1:3Thus, the formula is MO₃

5 H₃PO₂ disproportionates as

$$2 H_{3}^{+1} PO_{2} \longrightarrow PH_{3}^{-3} + H_{3}^{+5} PO_{4}$$
Molecular wt. of $H_{3} PO_{2} = 3 + 31 + 32 = 66$

$$\therefore Eq. wt. = \frac{66}{4} + \frac{66}{4} = 33$$

 $\frac{\text{Wt. of metal oxide}}{\text{Wt. of metal chloride}} = \frac{\text{Eq. wt. of metal} + \text{eq. wt. of oxide}}{\text{Eq. wt. of metal} + \text{eq. wt. of chloride}}$

where,
$$[E = \text{Eq. wt. of metal}]$$

or $5E + 40 = 3E + 106.5$ or $2E = 66.5$
 $\therefore E = 33.25$

7 $2Br^- \longrightarrow Br_2$

Equivalents of Br⁻ = Equivalents of Br₂

$$\frac{w}{80} = \frac{10^3}{160 / 2}$$

$$w_{Br}^- = 10^3 \text{ g}$$

$$w_{\rm Br}^{-} = 10^3 \,\rm g$$

∴ Sea water needed = $\frac{10^3}{65 \times 10^{-3}} = 15.38 \times 10^3 \,\rm L$

$$8 \ 0.376 \ \mathrm{g \ AI} = 0.468 \ \mathrm{L \ H_2}$$

$$\frac{0.376}{9} \ \mathrm{equivalent \ of \ AI} = 0.468 \ \mathrm{L \ H_2}$$

∴ 1 equivalent of Al = 11.2 L H₂

9 0.20 g oxygen \equiv 3.17 g halogen .: Equivalent mass halogen $\equiv \frac{3.17}{0.20} \times 8 = 126.8 \,\mathrm{g} \approx 127 \,\mathrm{g}$

- 10 Mass of the given amount of a substance is a constant quantity.
- 11 In Mg₃(PO₄)₂; 1 moles of O-atoms are present in 1 mole of Mg₃(PO₄)₂.

Hence, 0.25 mole of O-atom are contained

$$= \frac{1}{8} \times 0.25$$
$$= 3.125 \times 10^{-2}$$

12 I. 1 molecule of O₂ =
$$\frac{32}{6.022 \times 10^{23} \text{ g}}$$

= 5.3 × 10⁻²³ g
II. 1 atom of N = $\frac{14}{6.022 \times 10^{23} \text{g}}$
= 2.3 × 10⁻²³ g
III. 10⁻¹⁰ g mol. wt. of oxygen
= 10⁻¹⁰ × 32 = 3.2 × 10⁻⁹ g
IV. 10⁻¹⁰g atomic weight of copper
= 10⁻¹⁰ × 63.5 = 6.35 × 10⁻⁹ g
∴ Order of increasing mass is

13 Number of atoms

$$= \frac{\text{weight}}{\text{atomic weight}} \times N_A \times \text{species}$$

:. In 4 g of hydrogen,

Number of atoms =
$$\frac{4}{2} \times N_A \times 2 = 4N_A$$

[Here, species = 2, because hydrogen is present as H₂]

In 71 g of chlorine,

Number of atoms = $\frac{71}{71} \times N_A \times 2 = 2 N_A$

In 127 g of iodine,

Number of atoms = $\frac{127}{127} \times N_A \times 2$

In 48 g of magnesium,

Number of atoms =
$$\frac{48}{24} \times N_A \times 1 = 2N_A$$

[Here, Mg is present as Mg so species = 1] Thus, the number of atoms are largest in 4 g of hydrogen.

14 18 mLH₂O = 18 gH₂O = 1 mol
=
$$6.02 \times 10^{23}$$
 molecules/atoms

In 1 atom of water 10 electrons are present.

∴ electrons in 1 mole H₂O

$$= (2 + 8) \times 6.023 \times 10^{23}$$
 electrons

$$= 10 \times 6.02 \times 10^{23}$$

$$= 6.02 \times 10^{24}$$
 electrons

15 ∴ 6.02 × 10 ²³ molecules of CuSO₄ ⋅ 5H₂O
= 63.5 + 32 + 64 + 90 = 249.5 g
∴ 1 × 10 ²² molecules of CuSO₄ ⋅ 5H₂O
=
$$\frac{249.5}{6.02 \times 10^{23}}$$
 × 10²² = 4.15 g

16 Number of moles of Fe

$$=\frac{0.0056}{56}=10^{-4}$$
 mol

2 moles of Fe is present in 1 mole of (NH₄)₂SO₄Fe₂(SO₄)₃.

Therefore, 10^{-4} mole of Fe is present in

$$= \frac{10^{-4} \times 1}{2} \,\text{mol}$$
$$= 0.5 \times 10^{-4} \,\text{mol}$$

17. 200 mg CO₂ = 0.2 g =
$$\frac{0.2}{44}$$
 mol
= 0.00454 mol = 4.54× 10⁻³ mol
10²¹ molecules of CO₂ = $\frac{10^{21}}{6.02 \times 10^{23}}$
= 1.66× 10⁻³ mol

.. Number of moles left

$$= (4.54 - 1.66) 10^{-3}$$
$$= 2.88 \times 10^{-3}$$

18 0.1 L = 100 mL has Pb = 30 mg

$$= 30 \times 10^{-6} \text{ g}$$

$$= \frac{30 \times 10^{-6}}{207} \text{ mole of Pb}$$

$$= \frac{30 \times 10^{-6}}{207} \times 6.02 \times 10^{23} \text{ Pb atoms}$$

Number of atoms per cm³ blood

$$=\frac{30\times10^{-6}\times6.02\times10^{23}}{207\times100}=8.72\times10^{14}$$

19 16 g of
$$O_2 = \frac{16}{32} = 0.5 \text{ mol}$$

$$=\frac{N_A}{2} \quad \text{molecules}$$

$$14 \text{ g of N}_2 = \frac{14}{28} = 0.5 \text{ mol}$$

$$=\frac{N_A}{2} \text{ molecules}$$

20 Moles of sucrose [C₁₂H₂₂O₁₁]

$$=\frac{25.6}{342.3}=0.0747$$

Number of H-atoms in 1 mole of sucrose $= 22 \times 6.023 \times 10^{23}$

Number of H-atoms in 0.0747 mole of sucrose
=
$$22 \times 6.023 \times 10^{23} \times 0.0747$$

= 9.9×10^{23}

21 Given, abundance of elements by mass oxygen = 61.4%, carbon = 22.9%.

Total weight of person = 75 kg

Mass due to
$${}^{1}\text{H} = \frac{75 \times 10 \times 1}{100} = 7.5 \text{ kg}$$

¹H atoms are replaced by ²H atoms. Mass due to ${}^{2}H = (7.5 \times 2) \text{ kg}$

∴ Mass gain by person = 7.5 kg

22 18 g H₂O contains 2 g of H

∴ 0.72 g H₂O contains 0.08 g of H.

44 g CO₂ contains 12 g of C

∴ 3.08 gCO₂ contains 0.84 g of C
∴ C: H =
$$\frac{0.84}{12}$$
: $\frac{0.08}{1}$ = 0.07: 0.08 = 7: 8

∴ Empirical formula = C₇H₈

23 Weight of oxygen in sample

=
$$0.2075 - 0.1475 = 0.06 \text{ g}$$

Moles of cobalt = $\frac{0.1475}{59} = 0.0025$
Moles of oxygen = $\frac{0.06}{16} = 0.0037$
Simplest ratio of $C_0 = \frac{0.0025}{16} = 1.00$

Simplest ratio of Co =
$$\frac{0.0025}{0.0025}$$
 = 1.0
Simplest ratio of O = $\frac{0.0037}{0.0025}$ = 1.48 \approx 1.5

Simplest ratio of
$$O = \frac{0.0037}{0.0025} = 1.48 \approx$$

Ratio of Co:O = 1:1.5 = 2:3So, the formula is Co₂O₃.

24
$$C_xH_y + (x + y)_4O_2 \longrightarrow xCO_2(g) + y_2H_2O(l)$$

Before Combustion

$$O_2$$
 used = 20% of 375 = 75 mL

After Combustion

Inert part of air = 80% of 375 = 300 mL

Total volume of gases = CO₂ + Inert part of air

$$330 = 15x + 300 \Rightarrow x = 2$$

$$\frac{x + (y/4)}{1} = \frac{75}{15} \Rightarrow x + \frac{y}{4} = 5$$

$$\Rightarrow x = 2$$
, $y = 12 \Rightarrow C_2H_{12} \text{ or } C_3H_6$.

Thus empirical formula of compound is C₃H₆

25 We can calculate the simplest whole number ratio for C and H from the data given as:

Element	Relative mass	Molar mass	Relative mole	Simplest whole number ratio		
С	6	12	$\frac{6}{12} = 0.5$	$\frac{0.5}{0.5} = 1$		
Н	1	1	$\frac{1}{1} = 1$	$\frac{1}{0.5} = 2$		

Now, after calculating this ratio look for condition 2 given in the question, i.e. quantity of oxygen is half of the quantity required to burn one molecule of compound C_xH_v completely to CO₂ and H₂O. We can calculate number of oxygen atoms from this as consider the equation.

$$C_xH_y + \left[x + \frac{y}{4}\right]O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$$

Number of oxygen atoms required

$$= 2 \times \left[x + \frac{y}{4} \right] = \left[2x + \frac{y}{2} \right]$$
Now given, $z = \frac{1}{2} \left[2x + \frac{y}{2} \right] = \left[2x + \frac{2}{4} \right]$

Here, we consider x and y as simplest ratios for C and H so, now putting the values of x and y in the above equation.

$$Z = \left\lceil x + \frac{y}{4} \right\rceil = \left\lceil 1 + \frac{2}{4} \right\rceil = 1.5$$

Thus, the simplest ratio figures for x, yand z are x = 1, y = 2 and z = 1.5. Now, put these values in the formula given, i.e. $C_x H_v O_z = C_1 H_2 O_{1.5}$ So, empirical formula will be

$$[C_1H_2O_{1.5}]\times 2 = C_2H_4O_3$$

26 Let wt. of FeO = ag and wt. of Fe₃O₄ = bg

$$2FeO + \frac{1}{2}O_2 \longrightarrow Fe_2O_3$$
$$2Fe_3O_4 + \frac{1}{2}O_2 \longrightarrow 3Fe_2O_3$$

: 144 g of FeO gives 160 g Fe₂O₃.

$$\therefore$$
 a g FeO will give = $\frac{160 \times a}{144}$ g Fe₂O₃

Similarly, weight of Fe₂O₃ formed by b g $Fe_3O_4 = \frac{160 \times 3 \times b}{464}$

Now, if
$$a + b = 100$$
 ...(i

Then,
$$\frac{160 \times a}{144} + \frac{160 \times 3 \times b}{464} = 105$$
 ...(ii)

From Eqs. (i) and (ii), a = 20.25 gb = 79.75 a

∴ Percentage of Fe₃O₄ = 79.75%

27 The reaction is

$$2Ag^{+} + CrO_{4}^{2-} \longrightarrow Ag_{2}CrO_{4}$$
.

Using the limiting reagent concept, number of moles of Ag₂CrO₄

$$= 0.5 \times 10^{-3}$$

Amount of Ag₂CrO₄ formed $= 0.5 \times 10^{-3} \times 331.73$ = 0.166 a

28 Mixture X will contain 0.02 mole of Br⁻ ions and 0.02 mole of SO_4^{2-} ions in 2 L solution. Hence, 1 L of mixture X will contain 0.01 mole of Br and 0.01 SO₄² ions. With excess of AgNO₃, 0.01 moles of AgBr, i.e. Y is formed and with excess of BaCl₂, 0.01 moles of BaSO₄, i.e. Z is formed.

29 200 mL of 5 N HCI

=
$$200 \times 5$$
 milliequivalents
= 1000 millimoles = 1 mol HCl

$$1.7g { of } AgNO_3 = 0.01 { mol}$$

 $AgNO_3 + HCI \longrightarrow AgCI + HNO_3$ 1 mol 1 mol 1 mol 0.01 mol 1 mol

AgNO₃ is the limiting reagent. Thus, AqCl formed = 0.01 mol

 $= 0.01 \times 143.5 = 1.435 g$

30
$$3BaCl_2 + 2Na_3 PO_4 \longrightarrow Ba_3(PO_4)_2 + 6NaCl$$

Here, limiting reactant is Na 3PO4. 0.2 mole of Na₃PO₄ will give Ba₃(PO₄)₂ $=\frac{1}{2} \times 0.2 = 0.1 \text{ mol}$

31
$$2y \longrightarrow 2y^{3+} + 6e^{-}[y \rightarrow y^{3+} + 3e^{-}]$$

 $6H^{+} + 6e^{-} \longrightarrow 3H_{2}[2H^{+} + 2e^{-} \rightarrow H_{2}]$

 $2y + 6H^{+} \longrightarrow 2y^{3+} + 3H_{2}$ The above individual equations suggest

that,
1 eq. of
$$y = 1$$
 eq. of H_2
 $(n = 3)$ $(n = 2)$
 $\Rightarrow \frac{1}{3} \mod y = \frac{1}{2} \mod H_2$

Thus. $H_2: v = 2:3$

32 Initial strength of acetic acid = 0.06 N Final strength = 0.042 N

Given volume = 50 mL

.: Initial millimoles of CH3COOH

$$= 0.06 \times 50 = 3$$

Final millimoles of CH₃COOH

$$= 0.042 \times 50 = 2.1$$

.: Millimoles of CH₃COOH adsorbed

$$= 3 - 2.1 = 0.9 \, \text{mmol}$$

Hence, mass of CH₃COOH adsorbed per gram of charcoal = $\frac{0.9 \times 60}{2}$ [molar mass

of CH₃COOH =
$$60 \text{gmol}^{-1}$$
]
= $\frac{54}{3}$ = 18 mg

33 Molecular weight of C₈H₇SO₃Na

$$= (12 \times 8) + (1 \times 7) + 32 + (3 \times 16) + 23$$
$$= 206u$$

Number of moles in 206 g of C $_8$ H $_7$ SO $_3$ Na resin = $\frac{1}{206}$ mol

Now, reaction would be

$$2C_8H_7SO_3Na + Ca^{2+} \longrightarrow$$

(C₈H₇SO₃)₂Ca + 2Na +

.. 2 moles of C₈H₇SO₃Na combines with 1 mole of Ca 2+

∴ 1 mole of C₈H₇SO₃Na combines with $\frac{1}{2}$ mole of Ca²⁺.

 $\therefore \frac{1}{206}$ mole of C₈H₇SO₃Na will combine with

$$\frac{1}{2} \times \frac{1}{206} \text{mole of Ca}^{2+}$$
$$= \frac{1}{412} \text{mole of Ca}^{2+}$$

34 Mohr's salt is FeSO₄ · (NH₄)₂SO₄ · 6H₂O

Only oxidisable part is Fe2+

$$[Fe^{2+} \longrightarrow Fe^{3+} + e^{-}] \times 6$$

 $Cr_2O_7^{2-} + 14H^+ + 6e^{-} \longrightarrow 2Cr^{3+} + 7H_2O$
 $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$

Millimoles of Fe²⁺ = 750×0.6

Moles of Fe²⁺ =
$$\frac{450}{1000}$$
 = 0.450 mol

6 moles of Fe²⁺ \equiv 1 mole of Cr₂O₇²⁻ $\therefore 0.450 \text{ mole of Fe}^{2+} \equiv \frac{0.450}{6}$

6
= 0.0075 mole of
$$Cr_2O_7^{2-}$$

Mass of $K_2Cr_2O_7$ required
= 0.075 × 294 g = 22.05 g

35 Normality equation is,

$$N_1V_1 + N_2V_2 + N_3V_3 = N_4(V_1 + V_2 + V_3)$$

or $1 \times 5 + 20 \times \frac{1}{2} + 30 \times \frac{1}{3} = N_4(5 + 20 + 30)$

∴ Resulting normality
$$(N_4) = \frac{25}{55} = 0.45 \text{ N}$$

36 For I solution : millimoles

$$= MV = 480 \times 1.5 = 720$$

For II solution: millimoles

$$= MV = 520 \times 1.2 = 624$$

Total millimoles = 720 + 624 = 1344

$$\therefore \text{ Molarity} = \frac{\text{Moles of solute}}{\text{Total volume of solution (L)}}$$
$$= \frac{1344}{480 + 520}$$
$$= 1.344 \text{ M}$$

37 Assertion and Reason both are false. As volume of solution changes by 20%, so it

becomes =
$$1 + \frac{20}{100} = 1.2 L$$

.. Molarity of resulting solution

$$= 0.8 M$$

and change in molarity = 1 - 0.8 = 0.2 M

∴ % change in molarity
=
$$\frac{0.2}{1.2} \times 100 = 16.66\%$$

38 Both Assertion and Reason are false.

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

Volume of O_2 left = 20 - 15 mL = 5 mLTherefore, no H2 left after the reaction hence, H₂ is the limiting reagent.

SESSION 2

$$\begin{array}{ccc} \textbf{1} & N_2 + 3H_2 & \longrightarrow & 2NH_3 \\ & & 6g & & 2 \times 17g \\ & & 450 \, g & & \frac{34}{6} \times 450 = 2550 \, g \end{array}$$

Actual = 1575 g
% yield =
$$\frac{1575 \times 100}{2550}$$
 = 61.76%

- 2 (NH₄)₃PO₄ has 12 H atoms and 4 O atoms; H:O = 3:1Hence, O relative to 3.18 mol H = 1.06 mol
- 3 $2KCIO_3 \longrightarrow 2KCI + 3O_2$ $4AI + 3O_2 \longrightarrow 2AI_2O_3$ 2 mol of KClO₃ \equiv 2 mol Al₂O₃ ∴ 1 mol KClO₃ \equiv 1 mol Al₂O₃
- **4** 10^6 g solution = $1 g Fe^{2+}$ 250 mL = 250 g solution $=\frac{1}{10^6} \times 250 \,\mathrm{g}\,\mathrm{Fe}^{2+}$ $=\frac{250\times392}{10^6\times56}\,\mathrm{g}\;(A)$
- 5 Number of millimoles of Ca (OH)₂ $= 50 \times 0.5 = 25$

Number of millimoles of CaCO₃ = 25 Number of milliequivalents of CaCO₃ = 50

.. Volume of 0.1 N HCl

$$=\frac{50}{0.1}=500$$
 cm³

6 Required equation is given below:

$$Zn + 2OH^{-} \longrightarrow ZnO_{2}^{2-} + 2H^{+} + 2e^{-}$$

 $NO_{3}^{-} + 8H^{+} + 8e^{-} \longrightarrow OH^{-} + 2H_{2}O + NH_{3}$

From the above equation,

- :: 8 mole of electrons are absorbed by 85 g of NaNO₃
- \therefore 1 mole of electron will be absorbed by $\frac{85}{2}$ g of NaNO₃ = 10.625g

$$7 \quad \underset{1 \text{ mol}}{N_2} + \underset{4 \text{ mol}}{3H_2} \longrightarrow 2NH_3$$

$$NH_3 + HCI \longrightarrow NH_4CI$$

 NH_3 formed = 1 mol N_2 reacted = 0.5 mol

∴ H₂ reacted = 1.5 mol

 N_2 unreacted = 1 - 0.5 = 0.5 mol H_2 unreacted = 4 - 1.5 = 2.5 mol NH_3 formed = 1 mol

But NH₃ gets dissolved in H₂O leaving N₂

 $x_{\rm H_2} = \frac{2.5}{3.0} = \frac{5}{6}$

8 K₂SO₄ is isomorphous with K₂SeO₄.

The molar weight of K₂SeO₄ is given by $(2 \times 39) + x + (4 \times 16)$

$$[: x = \text{atomic wt. of Se}]$$

 \Rightarrow (142 + x) q

If (142 + x)q of K₂SeO₄ contains $x \neq 0$ K₂SO₄. So, therefore,

100 g of
$$K_2 SeO_4 = \frac{x}{(142 + x)} \times 100$$

But K₂SeO₄ contains 50% of Se, thus

$$50 = \frac{x}{(142 + x)} \times 100$$

x = 142 g

Hence, the atomic wt. of Se is 142 g.

9 KMnO₄ reacts with oxalic acid according to the following equation.

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow$$

 $2Mn^{2+} + 10CO_2 + 8H_2O_3$

Equivalent mass of KMnO₄

$$= \frac{\text{molecular mass}}{(7-2)}$$

 $N_{\text{KMnO}_4} = 5 \times \text{molarity} = 5 \times 10^{-4}$

Equivalent mass of

$$C_2O_4^{2-} = \frac{\text{molecular mass}}{2(4-3)}$$

$$C_2O_4^{2-} = \frac{\text{molecular mass}}{2}$$

$$N_{\text{C}_2\text{O}_4^{2-}} = 2 \times \text{molarity}$$

= 2 \times 10^{-2}

According to normality equation.

$$N_1V_1 = N_2V_2$$

$$5 \times 10^{-4} \times V_1 = 2 \times 10^{-2} \times 0.5$$

$$V_1 = \frac{2 \times 10^{-2} \times 0.5}{5 \times 10^{-4}} = 20 \text{ L}$$

- 10 100 g haemoglobin contains 0.33 g Fe.
 - :. 67200 g haemoglobin contains

$$=\frac{0.33\times67200}{100}$$
 g Fe

= 221.76 g Fe

∴ Number of Fe-ato = $\frac{221.76}{56}$

11
$$2BCl_3 + \frac{3}{2}H_2 \longrightarrow B + 3HCl$$

No. of moles of elemental boron

$$=\frac{21.6}{10.8}=2$$
 mol

:. No. of moles of H₂ consumed

$$= \frac{3}{2} \times 2 = 3 \text{ moles}$$

Volume of H_2 at NTP = (22.4 × 3) L = 67.2 |

12 Molarity of acetic acid = 2.05 M

Mass of CH₃COOH in 1 L solution

$$= 2.05 \times 60 = 123 \,\mathrm{g}$$

Mass of 1 L solution = $1000 \times 1.02 = 1020 \text{ g}$

(since density = 1.02 g/mL)

Mass of water in solution

$$= 1020 - 123 = 897 g$$

$$\therefore \text{ Molality} = \frac{2.05}{897 \times 10^{-3}} = 2.28 \text{ mol kg}^{-1}$$

 $Sn^{2+} \longrightarrow Sn^{4+} + 2e^{-}$ 2 units $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$ 1 unit $Cr_2O_7^{2-} + 6e^- \longrightarrow 2Cr^{3+}$ 6 units

Milliequivalent of $Sn^{2+} = 15 \times 0.04 \times 2 = 1.2$

Milliequivalent of Fe²⁺ = $15 x \times 1 = 15 x$

Milliequivalent of $Cr_2O_7^{2-} = 18 \times 0.125 \times 6$ = 13.5

- \therefore 1.2 + 15x = 13.5 \Rightarrow x = 0.82
- **14** KHC₂O₄ ≡ KOH

100 mL of 0.01 M KOH

$$\equiv$$
 100 mL of 0.01 M KHC $_2$ O $_4$

= 1 millimol KHC₂O₄

 \therefore Na₂C₂O₄ = 1 millimol

Total $C_2O_4^{2-} = 2$ millimol

= 4 milliequiv

Let volume of $KMnO_4 = V mL$

 $(MnO_4^- \text{ reduced to } Mn^{2+})$

$$V \times 0.01 \times 5 = 4$$

$$V = 80 \text{ mL}$$

- 15 Let 100 m³ milk contains 4 m³ fat.
 - .. Weight of butter fat in 1 m3 milk

$$=\frac{4}{100}\times865=35 \text{ kg}$$

Weight of 10³ cm³ (1 L) milk= 1.032 kg

- \therefore Wt. of 10⁶ cm³ (1 m³) milk = 1032 kg
- ∴ Weight of skimmed milk = 1032 35 = 997 kg

and volume of skimmed milk = 1 - 0.04 $= 0.96 \text{ m}^3$

.. Density of fat free skimmed milk

$$=\frac{997}{0.96}=1038.5 \text{ kg m}^{-3}$$