Linear Equations

Objective

To verify the conditions for consistency of a system of linear equations in two variables by graphical representation.

Linear Equation

An equation of the form ax+by+c = 0, where a, b, c are real numbers, $a\neq 0$, $b\neq 0$ and x, y are variables; is called a linear equation in two variables.

Prerequisite Knowledge

- 1. Plotting of points on a graph paper.
- 2. Condition of consistency of lines parallel, intersecting, coincident,

Materials Required

Graph papers, fevicol, geometry box, cardboard.

Procedure

Consider the three pairs of linear equations **1stpair:** 2x-5y+4=0, 2x+y-8=0 **2nd pair:** 4x + 6y = 24, 2x + 3y = 6**3rd pair:** x-2y=5, 3x-6y=15

1. Take the 1st pair of linear equations in two variables, e.g., 2x - 5y + 4=0, 2x + y - 8 = 0.

2. Obtain a table of at least three such pairs (x, y) which satisfy the given equations.

For	2x-3	5y + 4	l = 0	For	$2x + \frac{1}{2}$	y-8	= 0
x	-2	0.5	3	x	2	3	4
у	0	1	2		4		

3. Plot the points of two equations on the graph paper as shown in fig. (i).

- Observe whether the lines are intersecting, parallel or coincident. Write the values in observation table.
 Also, check ; ^{a1}/_{a2}; ^{b1}/_{b2}; ^{c1}/_{c2}
- 5. Take the second pair of linear equations in two variables

For 4x + 6y = 24 For 2x + 3y = 6

x	0	6	3	x	0	3	1.5
			2	у			

6. Repeat the steps 3 and 4.

7. Take the third pair of linear equations in two variables, i.e. x-2y=5, 3x-6y=15

For	x-2	y = 5	;	For	3x-6	y = 15	5
x	1	5	0	x	0	1	5
		_	-2.5	у	-2.5	-2	0

8. Repeat steps 3 and 4

Obtain the condition for two lines to be intersecting, parallel or coincident from the observation table by

comparing the values of $\frac{a_1}{a_2}, \frac{b_1}{b_2} and \frac{c_1}{c_2}$

Observation Table *							
Pairs of lines	$\frac{a_1}{a_2}$	$\frac{b_1}{b_2}$	$\frac{c_1}{c_2}$	Compare the ratios and write conditions	Types of lines		
1st pair							
2nd pair							
3rd pair			- Interior	and the second second			

Observation

Students will observe that

- 1. for intersecting lines, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$
- 2. for parallel lines,
- 3. for coincident lines, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Result

The conditions for consistency of a system of linear equations in two variables is verified.

Learning Outcome

Students will learn that some pairs of linear equations in two variables have a unique solution (intersecting lines), some have infinitely many solutions (coincident lines) and some have no solutions (parallel lines).

Activity Time

Perform the same activity by drawing graphs of x-y+1=0 and 3x + 2y - 12 = 0. Show that there is a unique solution. Also from the graph, calculate the area bounded by these linear equations and x-axis.

Viva Voce

Question 1.

What is the equation of a line parallel to x-axis ? **Answer:** y = a, where a is any constant.

Question 2.

What is the equation of a line parallel to y-axis ? **Answer:** x = b, where b is any constant.

Question 3.

If x = 0 and y = 0, where would the point lie on graph ? **Answer:** At origin (0,0)

Question 4.

What is the condition for inconsistent and consistent solution for the system of linear equations ?

Answer:

Linear equations are $a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$ Inconsistent solution, Consistent solution, (i) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

(i) a_2 / b_2 (ii) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Question 5.

Is the pair of linear equations 2x + 3y - 9 = 0 and 4x + 6y - 18 = 0, consistent ? **Answer:**

Here

 \Rightarrow Given system of equations is consistent and has infinitely many solutions.

Question 6.

For what value of p does the pair of linear equations given below has unique solution ? 4x + 8 = 0, 2x + 2y + 2 = 0**Answer:**

For unique solution,

Question 7.

What does the graph of a linear equation represent ? Answer: A straight line

Question 8.

If the graphical solutions of two linear equations of two lines are parallel to each other in plane, then what type of solution do they have ?

Answer:

No solution

Question 9.

If the graphical solutions of two linear equations of two lines intersect in a plane, then what type of the solution do they have ? Answer:

Unique solution

Multiple Choice Questions

Question 1.

Is x= -1, y=5 a solution of the equation 4x + 3y = 11 ? (a) yes (b) no (c) can't say (d) none of these

Question 2.

Equations 5x + 2y=16 and 7x-4y = 2 have: (a) no solution (b) a unique solution (c) infinitely many solutions (d) none of these

Question 3.

Equations -3x + 4y = 5 and $\frac{9}{2}x - 6y = \frac{15}{2}$ (a) a unique solution (b) infinitely many solutions (c) no solution (d) none of these

Question 4.

Equations -3x + 4y = 5 and $\frac{9}{2}x - 6y + \frac{15}{2} = 0$ have: (a) many solutions (b) a unique solution (c) no solution (d) none of these

Question 5.

Condition for the system of linear equations ax + by = c; lx + my = n to have a unique solution is: (a) am \neq bl (b) am = bl (c) $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$ (d) none of these

Question 6.

When l_1 and l_2 are parallel lines, then the graphical solution of system of linear equations has

- (a) many solutions
- (b) no solution
- (c) a unique solution
- (d) none of these

Question 7.

When lines l_1 and l_2 are coincident, then the graphical solution of system of linear equations has

- (a) infinitely many solutions
- (b) a unique solution
- (c) no solution
- (d) parallel lines

Question 8.

Values of x and y for the pair of linear equations x+y=14 and x-y=4 are respectively (a) 9 and 5

- (b) 5 and 9
- (c) 5 and 5
- (d) 9 and 9

Question 9.

The difference between two numbers is 26 and one number is three times the other. The numbers are

- (a) 39 and 12
- (b) 39 and 13
- (c) 38 and 13
- (d) 13 and 13

Question 10.

In a cyclic quadrilateral BACD, $\angle A = (2x - 4)^{\circ}$, $\angle B = (y + 5)^{\circ}$, $\angle C = (2y + 10)^{\circ}$ and $\angle D = (4x - 2)^{\circ}$. Find four angles. (a) $\angle A = 58^{\circ}$, $\angle B = 60^{\circ}$, $\angle C = 120^{\circ}$, $\angle D = 122^{\circ}$ (b) $\angle A = 65^{\circ}$, $\angle B = 55^{\circ}$, $\angle C = 115^{\circ}$, $\angle D = 125^{\circ}$ (c) $\angle A = 70^{\circ}$, $\angle B = 110^{\circ}$, $\angle C = 55^{\circ}$, $\angle D = 125^{\circ}$ (d) $\angle A = 65^{\circ}$, $\angle B = 55^{\circ}$, $\angle C = 110^{\circ}$, $\angle D = 127^{\circ}$

Answers

- 1. (a)
- 2. (b)
- 3. (c)
- 4. (a)
- 5. (a) 6. (b)
- 7. (a)
- 8. (a) 9. (b)
- 10.(a)