JEE Mains & Advanced Past Years Questions

JEE-MAIN PREVIOUS YEAR'S

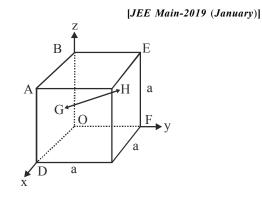
1. The energy required to take a satellite to a height 'h' above Earth surface (radius of Earth = 6.4×10^3 km) is E₁ and kinetic energy required for the satellite to be in a circular orbit at this height is E₂. The value of h for which E₁ and E₂ are equal is [JEE Main-2019 (January)] (a) 1.6×10^3 km (b) 3.2×10^3 km

(c) 6.4×10^3 km (d) 1.28×10^4 km

2. Two vectors \vec{A} and \vec{B} have equal magnitudes. The

magnitude of $(\vec{A} + \vec{B})$ is 'n' times the magnitude of

 $(\vec{A} - \vec{B})$. The angle between \vec{A} and \vec{B} is:


 $(a) \cos^{-1}\left[\frac{n^2-1}{n^2+1}\right]$

(b)
$$\cos^{-1}\left[\frac{n-1}{n+1}\right]$$

(c)
$$\sin^{-1}\left[\frac{n^2-1}{n^2+1}\right]$$

$$(d) \sin^{-1}\left[\frac{n-1}{n+1}\right]$$

3. In the cube of side 'a' shown in the figure, the vector from the central point of the face ABOD to the central point of the face BEFO will be:

(a)
$$\frac{1}{2}a(\hat{k}-\hat{i})$$
 (b) $\frac{1}{2}a(\hat{i}-\hat{k})$
(c) $\frac{1}{2}a(\hat{j}-\hat{i})$ (d) $\frac{1}{2}a(\hat{j}-\hat{k})$

4. Two forces P and Q, of magnitude 2F and 3F, respectively, are at an angle θ with each other. If the force Q is doubled, then their resultant also gets doubled. then, the angle θ is:

[JEE Main-2019 (January)]

- (a) 120° (b) 60° (c) 90° (d) 30°
- 5. Let $|\vec{A}_1| = 3$, $|\vec{A}_2| = 5$ and $|\vec{A}_1 + \vec{A}_2| = 5$. The value of $(2\vec{A}_1 + 3\vec{A}_2) \cdot (3\vec{A}_1 - 2\vec{A}_2)$ is :-

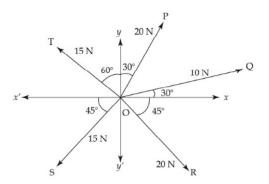
[JEE Main-2019 (April)]

(<i>a</i>) -112.5	(<i>b</i>) -106.5
(c) -118.5	(<i>d</i>) -99.5

6. The sum of two forces \vec{P} and \vec{Q} is \vec{R} such that $|\vec{R}| = |\vec{P}|$. The angle θ (in degrees) that the resultant of $2\vec{P}$ and \vec{Q} will make with \vec{Q} is,____.

[JEE Main-2020 (January)]

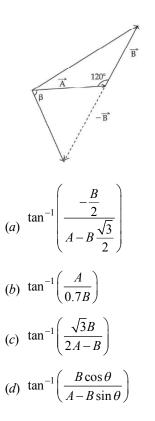
7. Statement I:Two forces $(\vec{P} + \vec{Q})$ and $(\vec{P} - \vec{Q})$ where $\vec{P} \perp \vec{Q}$, when act at an angle θ_1 to each other, the magnitude of their resultant is $\sqrt{3(P^2 + Q^2)}$, when they act at an angle θ_2 , the magnitude of their resultant becomes $\sqrt{2(P^2 + Q^2)}$. This is possible only when $\theta_1 < \theta_2$.

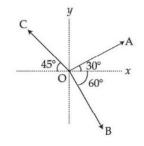

Statement II : In the situation given above.

$$\theta_1 = 60^{\circ} \text{ and } \theta_2 = 90^{\circ}$$
 [JEE Main-2021 (August)]

In the light of the above statements, choose the most appropriate answer from the options given below:-

- (a) Statement I is false but Statement II is true
- (b) Both Statement I and Statement II are true
- (c) Statement I is true but Statement II is false
- (d) Both Statement I and Statement II are false.
- 8. The resultant of these forces $\overrightarrow{OP}, \overrightarrow{OQ}, \overrightarrow{OR}, \overrightarrow{OS}$ and \overrightarrow{OT} is approximately N.

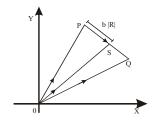

[Take $\sqrt{3} = 1.7, \sqrt{2} = 1.4$ Given \hat{i} and \hat{j} unit vectors along x, y axis] [*JEE Main-2021 (August*)]


(a) $9.25\hat{i} + 5\hat{j}$	(b) $3\hat{i} + 15\hat{j}$
(c) $2.5\hat{i} - 14.5\hat{j}$	(d) $-1.5\hat{i} - 15.5\hat{j}$

9. The angle between vector (\vec{A}) and $(\vec{A} - \vec{B})$ is :

[JEE Main-2021 (August)]

10. The magnitude of vectors $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} in the given figure are equal. The direction of $\overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{OC}$ with *x*-axis will be : [*JEE Main-2021 (August)*]



(a)
$$\tan^{-1} \frac{(1-\sqrt{3}-\sqrt{2})}{(1+\sqrt{3}+\sqrt{2})}$$

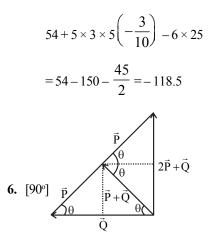
(b) $\tan^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1+\sqrt{3}-\sqrt{2})}$
(c) $\tan^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1-\sqrt{3}+\sqrt{2})}$
(d) $\tan^{-1} \frac{(1+\sqrt{3}-\sqrt{2})}{(1-\sqrt{3}-\sqrt{2})}$

JEE-ADVANCED PREVIOUS YEAR'S

1. Three vectors \vec{P} , \vec{Q} and \vec{R} are shown in the figure. Let S be any point on the vector \vec{R} . The distance by tween the point P and S is b| \vec{R} |. The general relation among vectors \vec{P} , \vec{Q} and \vec{S} is:

[JEE Advanced-2017]

- (a) $\vec{S} = (b-1)\vec{P} + b\vec{Q}$ (b) $\vec{S} = (1-b^2)\vec{P} + b\vec{Q}$ (c) $\vec{S} = (1-b)\vec{P} + b^2\vec{Q}$ (d) $\vec{S} = (1-b)\vec{P} + b\vec{Q}$
- 2. Two vectors \vec{A} and \vec{B} are defined as $\vec{A} = a\hat{i}$ and $\vec{B} = a(\cos\omega t \hat{i} + \sin\omega t \hat{j})$, where a is a constant and $\omega = \pi/6 \operatorname{rad} s^{-1}$. If $|\vec{A} + \vec{B}| = \sqrt{3} |\vec{A} - \vec{B}|$ at time $t = \tau$ for the first time, the value of τ , in seconds, is


[JEE Advanced-2018]

JEE Mains & Advanced Past Years Questions

JEE-MAIN PREVIOUS YEAR'S

1. (b)
$$E_1 = -\frac{GMm}{R+h} - \left(-\frac{GMm}{R}\right)$$

 $E_2 = -\frac{1}{2}m\left(\sqrt{\frac{GM}{R+h}}\right)^2 = -\frac{GMm}{2(R+h)}$
 $E_1 = E_2; h = \frac{R}{2}$
2. (a) $|\vec{A} + \vec{B}| = n |\vec{A} - \vec{B}|$
 $\Rightarrow A^2 + B^2 + 2AB \cos \theta$
 $= n^2(A^2 + B^2 - 2AB \cos \theta)$
 $\Rightarrow \cos \theta (1 + n^2) = \frac{2a^2(n^2 - 1)}{2a^2}$ [A = B = a]
 $\cos \theta = \frac{n^2 - 1}{n^2 + 1}$
3. (b) $1\left(0, \frac{a}{2}, \frac{a}{2}\right)$
 $2\left(\frac{a}{2}, \frac{a}{2}, 0\right)$

$$\vec{r}_{2} - \vec{r}_{1} = \frac{a}{2}\hat{i} - \frac{a}{2}\hat{k}$$
Unit vector = $\hat{\frac{i-\hat{k}}{\sqrt{2}}$
4. (a) $2|\vec{P}+\vec{Q}|=|\vec{P}+2\vec{Q}|$
 $\Rightarrow 13+12\cos\theta = 10+6\cos\theta$
 $\cos = -\frac{1}{2}$
 $\theta = 120^{\circ}$.
5. (c) $|\vec{A}_{1}|=3$ $|\vec{A}_{2}|=5$ $|\vec{A}_{1}+\vec{A}_{2}|=5$
 $|\vec{A}_{1}+\vec{A}_{2}|=\sqrt{|\vec{A}_{1}|^{2}+|\vec{A}_{2}|^{2}+2|\vec{A}_{1}||\vec{A}_{2}|\cos\theta}$
 $5 = \sqrt{9+25+2\times3\times5\cos\theta}$
 $\cos\theta = -\frac{9}{2\times3\times5} = -\frac{3}{10}$
 $(2\vec{A}_{1}+3\vec{A}_{2}).(3\vec{A}_{1}-2\vec{A}_{2})$
 $= 6|\vec{A}_{1}|^{2}+9\vec{A}_{1}.\vec{A}_{2}-4\vec{A}_{1}\vec{A}_{2}-6|\vec{A}_{2}|^{2}$

So angle between $(2\vec{P} + \vec{Q})$ and \vec{Q} is 90° Alternate solution

$$\begin{vmatrix} \vec{P} + \vec{Q} \end{vmatrix} = \begin{vmatrix} \vec{P} \end{vmatrix}$$
$$P^{2} + Q^{2} + 2PQ\cos\theta = P^{2}$$
$$\Rightarrow Q + 2P\cos\theta = 0$$

$$\Rightarrow \cos\theta = -\frac{Q}{2P}$$

$$2\vec{P} + \vec{Q} \qquad \vec{Q}$$

$$\vec{Q}$$

$$\vec{Q}$$

$$\vec{Q}$$

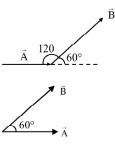
$$\tan \alpha = \frac{2P\sin\theta}{2P\cos\theta + Q} = \infty \because [2P\cos\theta + Q = 0]$$

$$\alpha = 90^{\circ}$$

7. (b) According to question the given data is two forces $(\vec{P} + \vec{Q})$ and $(\vec{P} - \vec{Q})$

$$\vec{A} = \vec{P} + \vec{Q} \Rightarrow \vec{B} = \vec{P} - \vec{Q} \Rightarrow \vec{P} \perp \vec{Q}$$
$$\Rightarrow |\vec{A}| = |\vec{B}| = \sqrt{2(P^2 + Q^2)(1 + \cos\theta)}$$
$$\Rightarrow \text{ For } |\vec{A} + \vec{B}| = \sqrt{3(P^2 + Q^2)} \Rightarrow \theta_1 = 60^\circ$$
$$\Rightarrow \text{ For } |\vec{A} + \vec{B}| = \sqrt{2(P^2 + Q^2)} n \Rightarrow \theta_2 = 90^\circ n$$

According to solution Both Statement I and Statement II are true


Force in x-direction,

$$\overline{F_x} = \left(10 \times \frac{\sqrt{3}}{2} + 20\left(\frac{1}{2}\right) + 20\left(\frac{1}{\sqrt{2}}\right) - 15\left(\frac{1}{\sqrt{2}}\right) - 15\left(\frac{\sqrt{3}}{2}\right)\right)\hat{i}$$

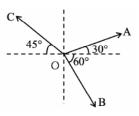
 $= 9.25\hat{i}$ Force in y-direction, $\vec{F}_{x} = \left(15\left(\frac{1}{2}\right) + 20\left(\frac{\sqrt{3}}{2}\right) + 10\right)$

$$\vec{F}_{y} = \left(15\left(\frac{1}{2}\right) + 20\left(\frac{\sqrt{3}}{2}\right) + 10\left(\frac{1}{2}\right) - 15\left(\frac{1}{\sqrt{2}}\right) - 20\left(\frac{1}{\sqrt{2}}\right)\right)\hat{j}$$
$$= 5\hat{j}$$

9. (c)

According to digram, Angle between \vec{A} and $\vec{B}, \theta = 60^{\circ}$ Angle between \vec{A} and $-\vec{B}, \theta = 120^{\circ}$ If angle between \vec{A} and $\vec{A} - \vec{B}$ is α

then
$$\tan \alpha = \frac{|-B| \sin \theta}{|\vec{A}| - |\vec{B}|_{\cos \theta}}$$
$$= \frac{B \sin 120^{\circ}}{|\vec{A}| + B \cos 120^{\circ}}$$


$$=\frac{B\frac{\sqrt{3}}{2}}{A-\frac{B}{2}}$$

 $\Rightarrow \tan \alpha = \frac{\sqrt{3}B}{2A - B}$

Hence, the angle between vector (\vec{A}) and $(\vec{A} - \vec{B})$

is
$$\tan \alpha = \frac{\sqrt{3B}}{2A - B}$$

10. (*a*)

According to diagram, let magnitude be equal to

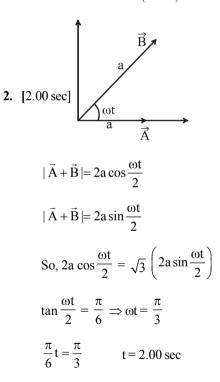
$$\overline{OA} = \lambda \left[\cos 30^\circ \hat{i} + \sin 30 \hat{j} \right] = \lambda \left[\frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right]$$

$$\overline{OB} = \lambda \left[\cos 60^\circ \hat{i} - \sin 60 \hat{j} \right] = \lambda \left[\frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j} \right]$$

$$\overline{OC} = \lambda \left[\cos 45^\circ (-\hat{i}) + \sin 45 \hat{j} \right] = \lambda \left[-\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} \right]$$

$$\therefore \overline{OA} + \overline{OB} - \overline{OC}$$

$$= \lambda \left[\left(\frac{\sqrt{3} + 1}{2} + \frac{1}{\sqrt{2}} \right) \hat{i} + \left(\frac{1}{2} - \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \right) \hat{j} \right]$$


$$\tan^{-1} \left[\frac{\frac{1}{2} - \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{1}{\sqrt{2}}} \right] = \tan^{-1} \left[\frac{\sqrt{2} - \sqrt{6} - 2}{\sqrt{6} + \sqrt{2} + 2} \right]$$

$$= \tan^{-1} \left[\frac{1 - \sqrt{3} - \sqrt{2}}{\sqrt{3} + 1 + \sqrt{2}} \right]$$

Hence option (a).

JEE-ADVANCED PREVIOUS YEAR'S

1. (d)
$$\vec{S} = \vec{P} + b\vec{R} = \vec{P} + b(\vec{Q} - \vec{P}) = \vec{P}(1-b) + b\vec{Q}$$

