To find the focal length of a concave lens, using a convex lens

Materials Required

- 1. An optical bench with four upright
- 2. A convex lens with a lens focal length
- 3. A concave lens with a more focal length
- 4. Two lens holders
- 5. One thick and one thin optical needle
- 6. A knitting needle
- 7. A half-metre scale

Theory

We use the lens formula in this experiment to calculate the focal length of the concave lens:

$$f=rac{uv}{u-v}$$

Where,

- f is the focal length of the concave lens L1
- u is the distance of I from the optical centre of the lens L2
- v is the distance of I' from the optical centre of the lens L2.

From sign convention, the f obtained from the above formula will be negative as v > u and u - v is negative.

Ray Diagram

Procedure

To determine the rough focal length of the convex lens

- 1. Place the convex lens on the lens holder.
- 2. Now face the lens towards a distant tree or building.
- 3. Obtain the image either on the white wall or on a screen and keep moving the lens either forward or backwards till a sharp image is formed.

4. To determine the rough focal length of the lens, measure the distance between the lens and the screen.

To set the convex lens

- 1. Place the lens on the holder with fixed upright such that the upright is kept at 50 cm mark.
- 2. The lens should be placed in such a way that its surface is vertical and perpendicular to the length of the optical bench.
- 3. The upright should be kept in this position throughout.

To set the object needle

- 1. Place the thin optical needle which is the object needle O near-zero end of the upright which is moveable.
- 2. Place the object needle upright at a distance nearly 1.5 times the focal length of the lens.
- 3. The tip of the needle should be horizontal to the optical centre of the lens.
- 4. Note the position of the index mark below the object needle upright.
- 5. To see an inverted and enlarged image of the object needle which is in the middle of the lens, close the left eye and see with a right eye open.
- 6. On the other end of the optical bench, place the image needle on the fourth upright.
- 7. The tip of the image needle should be in line with the image that is seen with the right eye.
- 8. To see the parallax, move the eye towards the right. The image needle and object needle are no longer in line.
- 9. Remove the parallax tip to tip.
- 10. Note the position of the index mark at the base of the image needle upright.
- 11. Record the position of the index marks.
- 12. Now place the concave lens holder on the I side of the convex lens.
- 13. The upright and convex lens should be placed at a distance from each other.
- 14. The concave lens should be placed such that it coincides with the principal axes.

To set the image needle at I'

1. Repeat steps 4 and 5.

To get more observations

- 1. Repeat the experiment by moving the object needle towards the lens by 2cm.
- 2. Repeat the experiment by moving the object needle away from the lens by 2cm.
- 3. Record all the observations.

Observations

The rough focal length of a convex lens =

The actual length of the knitting needle, x =

Observed distance between the concave lens and image =

Needle when knitting needle is placed between them, y =

Index correction for u as well as v, $x - y = \dots$

Table for u, v and f

SI. no	Position of					Observed		Corrected		f uv
	0 in cm	L ₁ at O ₁ in cm	l in cm	L ₂ at O ₂ in cm	l' in cm	u = IO ₂ in cm	v = l'O ₂ in cm	u in cm	v in cm	$\int -\frac{1}{u-v}$ in cm
1.										f ₁ =
2.										f ₂ =
3.										f ₃ =

Calculations

- 1. To find observed u by finding the difference of position of L_2 and I.
- 2. To find observed v by finding the difference of position of L_2 and I'.
- 3. Corrected values of u and v are obtained by applying index correction.

4. Calculate
$$f = \frac{uv}{u-v}$$

5. Finding the mean of f

Mean
$$f=rac{f_1+f_2+f_3}{3}$$

Result

The focal length of the given concave lens = cm

Precautions

- 1. The lens must be clean.
- 2. The focal length of the convex lens should be lesser than the concave lens.
- 3. For u and v index correction should be applied.
- 4. To obtain a real and inverted image, the needle should be kept at a certain distance.
- 5. To avoid parallax, a distance of at least 30 cm should be maintained between the tip of the needle and eye.

Sources Of Error

- 1. Vertical uprights might not be used.
- 2. The removal of parallax might not be perfect.

Viva Questions

Q1. What is spherical lens?

Ans: Spherical lens is defined as a lens that is part of a sphere and has a surface that is spherical.

Q2. What type of lens is present in human eye?

Ans: Convex lens is present in human eye.

Q3. What are the factors affecting the power of lens?

Ans: Following are the factors affecting the power of lens:

- 1. Refractive index of the material used in the lens.
- 2. The change in medium.
- 3. The radius of curvature.
- 4. The wavelength of the light.
- 5. The thickness of the lens.

Q4. What is the focal length of a lens?

Ans: The focal length of a lens is defined as the distance between the optical centre and the principal focus of the lens.

Q5. What are the uses of lens?

Ans: Lenses are used in spectacles, microscopes, in optical instruments, and in telescopes.

Stay tuned with BYJU'S to learn more about other Physics-related experiments.