	REDOX RE	ACT		EXERCISE-I			
1.	Which reaction does not represent autoredox or	8.	For the redox reaction,				
	disproportionation :-		$MnO_{4}^{-} + C_{2}O_{4}^{2-} + H^{+}$	$\rightarrow \text{Mn}^{2+} + \text{CO}_2 + \text{H}_2\text{O}$			
	(1) $\operatorname{Cl}_2 + \operatorname{OH}^- \longrightarrow \operatorname{Cl}^- + \operatorname{ClO}_3^- + \operatorname{H}_2\operatorname{O}$		the correct coefficients	s of the reactants for the			
	$(2) 2H_2O_2 \longrightarrow H_2O + O_2$		balanced reaction are :				
	$(3) 2Cu^+ \longrightarrow Cu^{+2} + Cu$		$MnO_4^ C_2O_4^{2-}$	H^{+}			
	(4) $(NH_4)_2 Cr_2 O_7 \longrightarrow N_2 + Cr_2 O_3 + 4H_2 O$		(1) 2 5	16			
2 .	Which of the following is not a redox reaction?		(2) 16 5	2			
	(1) $\operatorname{BaO}_2 + \operatorname{H}_2\operatorname{SO}_4 \to \operatorname{BaSO}_4 + \operatorname{H}_2\operatorname{O}_2$		(3) 5 16	2			
	$(2) 2BaO + O_2 \rightarrow 2BaO_2$		(4) 2 16	5			
	$(3) 2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$	9.	In a redox reaction,	the equivalent weight of			
	$(4) \operatorname{SO}_2 + 2\operatorname{H}_2\operatorname{S} \to 2\operatorname{H}_2\operatorname{O} + 3\operatorname{S}$		2	found to be 23.5. The reaction products			
3.	H_2O_2 acts as a reducing agent in :		might contain				
	(1) $\operatorname{FeCl}_2 + \operatorname{HCl} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{FeCl}_3 + \operatorname{H}_2\operatorname{O}$		(1) NO_2	(2) NO			
	(2) $\operatorname{Cl}_2 + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{HCl} + \operatorname{O}_2$		(3) NH ₃	(4) HNO ₃			
	$(3) \operatorname{HI} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{I}_2 + \operatorname{H}_2\operatorname{O}$	10.		acts with Br - ion in acid solution			
	$(4) H_2 SO_3 + H_2 O_2 \longrightarrow H_2 SO_4 + H_2 O$		Br_2 is literated. The equ this reaction is	ivalent weight of KBrO ₃ in			
4.	Match List-I (Compounds) with List-II (Oxidation		(1) M/8	(2) M/3			
	states of nitrogen) and select answer using the codes given below the lists :-		(3) M/5	(4) M/6			
	List-I List-II	11.					
	(a) NaN ₃ 1. +5		In the reaction $CrO_5 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + H_2O +$ one mole of CrO_5 will liberate how many moles				
	(b) N_2H_2 2. +2		0 ₂ :-				
	(c) NO $31/3$		(1) 5/2	(2) 5/4			
	(d) N_2O_5 41		(3) 9/2	(4) 7/2			
Cod		12.	A solution of $KMnO_4$ is reduced to MnO_2 . The solution of $KMnO_4$ is reduced to MnO_2 .				
	(1) 3 4 2 1		normality of solution is	0.6. The molarity			
	(2) 4 3 2 1		is:				
	(3) 3 4 1 2		(1) 1.8M	(2) 0.6M			
	(4) 4 3 1 2		(3) 0.1M	(4) 0.2M			
5.	In the reaction	13.	0.52 g of a dibasic acid required 100 mL of 0.2 N NaOH for complete neutralization.				
	$xHI + yHNO_3 \longrightarrow NO + I_2 + H_2O$		The equivalent weight of acid is				
	(1) $x = 3, y = 2$ (2) $x = 2, y = 3$		(1) 26	(2) 52			
	(3) $x = 6, y = 2$ (4) $x = 6, y = 1$		(3) 104	(4) 156			
6.	The number of electrons to balance the following	14.					
	equation :-	14.	The number of moles of $KMnO_4$ that will be required to react with 2 mol of ferrous oxalate is				
	$NO_3^- + 4H^+ + e^- \rightarrow 2H_2O + NO$ is						
	$\begin{array}{c} (1) 5 \\ (2) 4 \\ (3) 2 \\ (4) 9 \\$		(1) $\frac{6}{5}$ (2) $\frac{2}{5}$	(3) $\frac{4}{5}$ (4) 1			
-	(3) 3 (4) 2		0 0	0			
7.	Number of moles of electrons taken up when 1 mole of NO_3^- ions is reduced to 1 mole of NH_2OH	15.	The mass of oxalic acid crystals $(H_2C_2O_4, 2H_2O)$ required to prepare 50 mL of a 0.2 N solution is :-				
	is		(1) 4.5 g	(2) 6.3 g			
	(1) 2 (2) 4 (3) 5 (4) 6		· · · _	· · · -			
	· · · · · · · · · · · · · · · · · · ·		(3) 0.63 g	(4) 0.45 g			

 $16. \quad \mbox{The minimum quantity of } H_2 S \mbox{ needed to precipitate} \\ 63.5 \mbox{ g of } Cu^{2+} \mbox{ will be nearly.}$

(1) 63.5 g (2) 31.75 g (3) 34 g (4) 2.0 g

17. The volume of $1.5 \text{ MH}_3\text{PO}_4$ solution required to neutralize exactly 90 mL of a 0.5 M Ba (OH)₂ solution is :-

(1) 10 mL (2) 30 mL (3) 20 mL (4) 60 mL

18. The number of moles of $\operatorname{Cr}_2O_7^{2-}$ needed to oxidize 0.136 equivalents of $N_2H_5^+$ by the reaction $N_2H_5^+ + \operatorname{Cr}_2O_7^{2-} \rightarrow N_2 + \operatorname{Cr}^{3+} + H_2O$ is

 $(1) \ 0.136 \quad (2) \ 0.068 \quad (3) \ 0.0227 \ (4) \ 0.272$

As₂O₃ is oxidised to H₃AsO₄ by KMnO₄ in acidic medium. Volume of 0.02M KMnO₄ required for this purpose by 1mmol of As₂O₃ will be

(1) 10 mL (2) 20 mL (3) 40 mL (4) 80 mL

20. 0.3 g of an oxalate salt was dissolved in 100 mL solution. The solution required 90 mL of N/20 KMnO₄ for complete oxidation. The % of oxalate ion in salt is :-

 $(1) 33\% \qquad (2) 66\% \qquad (3) 70\% \qquad (4) 40\%$

21. Equivalent weight of H_3PO_2 when it disproportionate into PH_3 and H_3PO_3 is :-

22. 4 mole of a mixture of Mohr's salt and $Fe_2(SO_4)_3$ requires 500 mL of 1 M $K_2Cr_2O_7$ for complete oxidation in acidic medium. The mole % of the Mohr's salt in the mixture is :-

(1) 25 (2) 50 (3) 60 (4) 75

23. The oxidation number of sulphur in $S_8,\,S_2F_2,\,H_2S$ and H_2SO_4 respectively are :-

(1) 0, + 1, -2 and 6 (2) +2, 0, + 2 and 6 (3) 0, + 1, +2 and 4 (4) -2, 0, + 2 and 6

24. In which of the following the oxidation number of oxygen has been arranged in increasing order :-

(1) $OF_2 < KO_2 < BaO_2 < O_3$ (2) $BaO_2 < KO_2 < O_3 < OF_2$ (3) $BaO_2 < O_3 < OF_2 < KO_2$ (4) $KO_2 < OF_2 < O_3 < BaO_2$ **25.** Which reaction does not represent auto redox or disproportionation :-

(1)
$$Cl_2 + OH^- \longrightarrow Cl^- + ClO_3^- + H_2O$$

(2) $2Hl_2O_2 \longrightarrow H_2O + O_2$
(3) $2Cu^+ \longrightarrow Cu^{2+} + Cu$
(4) $(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + 4H_2O$
26. Equivalent weight of FeS₂ in the half reaction FeS₂ \longrightarrow Fe₂O₃ + SO₂ is :-

(1) M/10 (2) M/11 (3) M/6 (4) M/1

27. $KMnO_4$ reacts with oxalic acid according to the equation :-

 $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow$

$$2Mn^{2+} + 10CO_2 + 8H_2O$$

Here, 20 mL of 0.1 M KMnO₄ is equivalent to:-

- (1) 120 mL of 0.25 $MH_2C_2O_4$
- (2) 150 mL of 0.10 $MH_2C_2O_4$
- (3) 25 mL of 0.20 $MH_2C_2O_4$
- (4) 50 mL of 0.20 $MH_2C_2O_4$
- **28.** $I_2 + OH^- \longrightarrow I^- + IO_3^- + H_2O \eta$ -factor of I_2 in the above reaction will be :

(1) 10 (2)
$$\frac{5}{6}$$
 (3) $\frac{5}{3}$ (4) 1

29. The oxidation state of chromium in the final product formed by the reaction between KI and acidied potassium dichromate solution is :-

(1) + 3 (2) + 2 (3) + 6 (4) + 4

30. Equivalents of MnO_4^{-} and $Cr_2O_7^{-2-}$ per mole of the ion in acidic medium are in the ratio of :-

 $(1) \ 1 : 1 \qquad (2) \ 1 : 5 \qquad (3) \ 5 : 6 \qquad (4) \ 6 : 1$

				AN	SWER K	KEY	Exercise-I				
Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	4	1	2	1	3	3	4	1	4	3	
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.	4	4	1	1	3	3	3	3	3	2	
Que.	21	22	23	24	25	26	27	28	29	30	
Ans.	4	4	1	2	4	2	3	3	1	3	

PR	EVIOUS YEARS' QUESTIONS		EXERCISE-II
1.	The oxidation states of the most electronegative element in the products of the reaction of BaO_2 with dilute H_2SO_4 . [JEE 1991] (1) 0 and -1 (2) -1 and -2 (3) -2 and 0 (4) -2 and +2	11.	Oxidation number of Cl in CaOCl ₂ (bleaching powder is) [AIEEE-02] (1) Zero, since it contains Cl ₂ (2) -1, since it contains Cl ⁻
2.	For the redox reaction, [JEE 1992] $MnO_4^- + C_2O_4^{2-} + H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$ the correct coefficients of the reactants for the balanced reaction are : $MnO_4^- C_2O_4^{2-} H^+$ (1) 2 5 16 (2) 16 5 2	12.	(3) +1, since it contains ClO ⁻ (4) +1 and -1 since it contains ClO ⁻ and Cl ⁻ Which of the following is a redox [AIEEE-02] (1) $2NaAg(CN)_2 + Zn \longrightarrow Na_2Zn (CN)_4 + 2 Ag$ (2) $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$ (2) $NO_2 + H_2O_2 \longrightarrow SUNO_2$
3.	(2) 10 3 2 (3) 5 16 2 (4) 2 16 5 A 5.0 cm ³ solution of H ₂ O ₂ liberates 0.508 g of iodine from an acidified KI solution. Calculate the	13.	(3) $N_2O_5 + H_2O \longrightarrow 2HNO_3$ (4) $AgNO_3 + KI \longrightarrow AgI + KNO_3$ In the coordination compound, $K_4[Ni (CN)_6]$, the oxidation state of nickel is [AIEEE-03]
4.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	14.	(1) +1 (2) +2 (3) -1 (4) 0 The oxidation state of Cr in [Cr(NH ₃) ₄ Cl ₂] ⁺ is -
5.	completely with one mole ferrous oxalate in acidic solution is : [JEE 1997] (1) $2/5$ (2) $3/5$ (3) $4/5$ (4) 1 The equivalent mass of MnSO ₄ is half its molecular	15.	[AIEEE-05] $(1) + 2$ $(2) + 3$ $(3) 0$ $(4) + 1$ The oxidation state of chromium in the final productformed by the reaction between Kl and acidified
6.	mass when it is converted to : [JEE 1998] (1) Mn_2O_3 (2) MnO_2 (3) MnO_4^- (4) MnO_4^{2-} How many millilitre of 0.5 M H_2SO_4 are needed to	16.	potassium dichromate solution is -[AIEEE-05] $(1) + 6$ $(2) + 4$ $(3) + 3$ $(4) + 2$ Reduction of the metal centre in aqueouspermanganate ion involves -[JEE-2011]
7.	dissolve 0.5 g of copper II carbonate ? [JEE 1999](1) 7.097(2) 8.097(3) 10(4) 12Among the following species in which oxidation state		 3 electrons in neutral medium 5 electrons in neutral medium 3 electrons in alkaline medium 5 electrons in acidic medium
8.	of the element is +6 : [JEE 2000] $(1) \text{ MnO}_4^ (2) \text{ Cr(CN)}_6^{3-}$ $(3) \text{ NiF}_6^{2^-}$ $(4) \text{ CrO}_2 \text{Cl}_2$ Oxidation number of iron in Na2 [Fe(CN)5 NO [⊕]] is:	17.	Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen- (1) HNO_3 , NO, NH_4Cl , N_2 [JEE- 2012]
9.	[JEE 2001] (1) +2 (2) +3 (3) +8/3 (4) none of these An aqueous solution of 6.3 g of oxalic acid dihydrate	18.	 (2) HNO₃, NO, N₂, NH₄Cl (3) HNO₃, NH₄Cl, NO, N₂ (4) NO, HNO₃, NH₄Cl, N₂ 25 mL of household bleach solution was mixed
_ •	is made up to 250 mL. The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is : [JEE 2001] (1) 40 mL (2) 20 mL		with 30 mL of 0.50 M KI and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of 0.25 N $Na_2S_2O_3$ was used to reach the end point. The molarity of the household bleach solution
10.	(a) 10 mL (b) 20 mL (b) 20 mL (c) 20 mL (c) 20 mL (d) 4 mL MnO ₄ ⁻ is good oxidising agent in different medium changing to - [AIEEE-02] MnO_4^- Mn ²⁺	19.	is [JEE- 2012] (1) 0.48 M (2) 0.96 M (3) 0.24 M (4) 0.024 M Given :
	MnO_4^{2-} $\longrightarrow MnO_2$ $\longrightarrow Mn_2O_3$ Changes in oxidation number respectively are -		$\begin{array}{llllllllllllllllllllllllllllllllllll$
	(1) 1, 3, 4, 5 (3) 5, 1, 3, 4 (2) 5, 4, 3, 2 (4) 2, 6, 4, 3		(1) 2, 1, 3 (2) 3, 1, 6 (3) 2, 1, 2 (4) 3, 1, 4

20. Consider the following reaction:

 $xMnO_4^- + yC_2O_4^{2-} + zH^+ \rightarrow$

$$xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O$$

The values of x, y and z in the reaction are respectively :-

(1) 5,2 and 16	(2) 2,5 and 8
(3) 2, 5 and 16	(4) 5,2 and 8

- **21.** How many electrons are involved in the following redox reaction ? [JEE(Main-online)-2014] $Cr_2O_7^{2-} + Fe^{2+} + C_2O_4^{2-} \rightarrow Cr^{3+} + Fe^{3+} + CO_2$ (Unbalanced) (1) 3 (2) 4 (3) 5 (4) 6
- **22.** Consider the reaction

[JEE(Main-online)-2014]

$$\mathrm{H}_{2}\mathrm{SO}_{3(\mathrm{aq})} + \mathrm{Sn}_{(\mathrm{aq})}^{4+} + \mathrm{H}_{2}\mathrm{O}_{(\mathrm{l})} \rightarrow$$

 $Sn^{2+}_{(aq)} + HSO^{-}_{4(aq)} + 3H^{+}_{(aq)}$

Which of the following statements is correct?

- (1) H_2SO_3 is the reducing agent because it undergoes oxidation
- (2) H_2SO_3 is the reducing agent because it undergoes reduction
- (3) Sn⁴⁺ is the reducing agent because it undergoes oxidation
- (4) Sn⁴⁺ is the oxidizing agent because it undergoes oxidation
- **23.** In which of the following reaction H_2O_2 acts as a reducing agent ? [JEE(Main)-2014] (a) $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ (b) $H_2O_2 - 2e^- \rightarrow O_2 + 2H^+$ (c) $H_2O_2 + 2e^- \rightarrow 2OH^-$ (d) $H_2O_2 + 2OH^- - 2e^- \rightarrow O_2 + 2H_2O$ (1) (a), (c) (2) (b), (d) (3) (a), (b) (4) (c), (d)
- 24. The molecular formula of a commercial resin used for exchanging ions in water softening is $C_8H_7SO_3Na$ (Mol. w.t 206). What would be the maximum uptake of Ca^{2+} ions by the resin when expressed in mole per gram resin ? [JEE(Main)-2015]

(1)
$$\frac{2}{309}$$
 (2) $\frac{1}{412}$ (3) $\frac{1}{103}$ (4) $\frac{1}{206}$

25. The volume of 0.1N dibasic acid sufficient to neutralize 1 g of a base that furnishes 0.04 mole of OH- in aqueous solution is :

[JEE(Main)-OnLine-2016]

- (1) 400 mL (2) 200 mL (2) 600 mL (4) 800 mL
- (3) 600 mL (4) 800 mL
- **26.** Which of the following reactions is an example of a redox reaction ? [JEE(Main)-2017] (1) $XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$ (2) $XeF_2 + PF_5 \rightarrow [XeF]^+PF_6^-$ (3) $XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$ (4) $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$
- 27. In which of the following reaction, hydrogen peroxide acts as an oxidizing agent ?
 - [JEE(Main)-OnLine-2017](1) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$ (2) $HOCl + H_2O_2 \rightarrow H_3O^+ + Cl^- + O_2$ (3) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ (4) $2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2 + 3O_2 + 2H_2O + 2OH^-$
- 28. The pair of compounds having metal in their highest oxidation state is : [JEE(Main)-OnLine-2017]
 (1) [NiCl₄]²⁻ and [CoCl₄]²⁻
 (2) [Fe(CN)₆]³⁻ and [Cu(CN)₄]²⁻
 (3) [FeCl₄]⁻ and Co₂O₃
 (4) MnO₂ and CrO₂Cl₂
- 29. In KO₂, the nature of oxygen species and the oxidation state of oxygen atom are, respectively[JEE(Main)-OnLine-2018]
 - (1) Superoxide and -1/2
 - (2) Oxide and -2
 - (3) Peroxide and -1/2
 - (4) Superoxide and -1
- **30.** To measure the quantity of $MnCl_2$ dissolved in an aqueous solution, it was completely converted to $KMnO_4$ using the reaction, [JEE- 2018] $MnCl_2 + K_2S_2O_8 + H_2O \rightarrow KMnO_4 + H_2SO_4 + HCl$ (equation not balanced).

Few drops of concentrated HCl were added to this solution and gently warmed. Further, oxalic acid (225 g) was added in portions till the colour of the permanganate ion disappeard. The quantity of $MnCl_2$ (in mg) present in the initial solution is _____. (Atomic weights in g mol⁻¹ : Mn = 55, Cl = 35.5)

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	1	3	2	2	2	4	1	1	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	1	2	2	3	1,2,4	2	3	2	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	2	2	1	1	3	2	1	126
							•			