JEE (MAIN) JANUARY 2023 DATE-30/01/2023 (SHIFT-1)

CHEMISTRY

- 1. Which of the following is water soluble?
 - (a) BeSO₄
- (b) MgSO₄
- (c) CaSO₄
- (d) SrSO₄

- (e) BaSO₄
- (1) (a) only
- (2) (a) & (b)
- (3) (c) only
- (4)(c) & (d)

- Ans. (2)
- **Sol.** BeSO₄ & MgSO₄ are water soluble.
- 2. During the qualitative analysis of SO_3^{2-} using dil. H_2SO_4 , SO_2 gas is evolved which turns $K_2Cr_2O_7$ solution.
 - (1) Green
- (2) Black
- (3) Blue
- (4) Red

Ans. (1)

Sol.
$$SO_3^{2-} \xrightarrow{\text{dil} \atop H_2SO_4} SO_2 \xrightarrow{K_2Cr_2O_7 \atop H^+} Cr^{3+} + SO_4^{2-}$$

3. Match the following

Atomic number			
(a)	52	(p)	s block
(b)	37	(q)	p block
(c)	65	(r)	d block
(d)	78	(s)	fblock

- (1) a (q), b (p), c (r), d (s)
- (2) a (q), b (p), c (s), d (r)
- (3) a (s), b (r), c (p), d (q)
- (4) a (r), b (p), c (q), d (s)

- **Ans.** (2)
- **Sol.** $52 \longrightarrow p\text{-block}$
 - $37 \longrightarrow s$ -block
 - $65 \longrightarrow f$ -block
 - $78 \longrightarrow d\text{-block}$

4.	If volume of ideal gas is increased isothermally than its internal energy						
	(1) Increased		(2) Remain consta	(2) Remain constant			
	(3) Decreased		(4) Can be increased or decreased				
Ans.	(2)						
Sol.	Isothermal process						
	$\Delta T = 0$						
	$\Delta U = nC_{v}dT = 0$	0					
5.	Which of the following compounds acts as an inhibitor for cancer growth.						
	(1) Cisplatin	(2) EDTA	(3) Cobalt	(4) Ethane 1,2-diamine			
Ans.	(1)						
Sol.	Cisplatin [Pt(NH ₃) ₂ Cl ₂]						
		2					
6.	Order of strength of ligands S^{-2} , CO, en, $C_2O_4^{-2}$, NH_3						
	(1) $S^{-2} < C_2 O_4^{-2} < NH_3 < en < CO$						
	(2) $C_2O_4^{-2} < S^{-2} < NH_3 < CO < en$						
	(3) NH ₃ $<$ C ₂ O ₄ ⁻² $<$ S ⁻² $<$ CO $<$ en						
	(4) CO < en < NH ₃ < $C_2O_4^{-2}$ < S^{-2}						
Ans.	(1)						
Sol.	Order of strength of ligand $S^{-2} < C_2 O_4^{-2} < NH_3 < en < CO$						
7.	Number of lone pairs in central atom of following species IF ₇ , ICl ₄ , XeF ₂ & XeO ₃						
	(1) 0, 2, 3, 1	(2) 3, 2, 1, 0	(3) 1, 2, 0, 3	(4) 0, 2, 3, 1			
Ans.	(1)						
Sol.	Species	No. of lone pair					
	IF ₇	0					
	ICl ₄	2					
	XeF_2	3					
	XeO_3	1					

$$(1)$$
 LiCl + AlCl₃

$$(2) LiH + Al(OH)_3$$

$$(3)$$
 LiH + AlCl₃

Ans. (3)

Sol.
$$8\text{LiH} + 2\text{AlCl}_3 \rightarrow 2\text{LiAlH}_4 + 6\text{LiCl}$$

Ans.

Sol.
$$5e^- + 8H^+ + MnO_4^- \longrightarrow Mn^{+2} + 4H_2O$$

10. Speed of
$$e^-$$
 in 7^{th} orbit is 3.6×10^6 m/s then find speed in 3^{rd} orbit

$$(1) 3.6 \times 10^6 \text{ m/s}$$

(2)
$$8.4 \times 10^6$$
 m/s (3) 7.5×10^6 m/s

(3)
$$7.5 \times 10^6$$
 m/s

(4)
$$1.8 \times 10^6$$
 m/s

Ans.

Sol.
$$V = 2.18 \times 10^6 \times \frac{Z}{n}$$
 m/s

$$3.6 \times 10^6 = 2.18 \times 10^6 \times \frac{Z}{7}$$

$$V = 2.18 \times 10^6 \times \frac{Z}{3}$$

$$=\frac{3.6\times10^6}{V}=\frac{Z}{7}\times\frac{3}{Z}$$

$$=\frac{3.6\times10^6}{V}=\frac{1\times3}{7}$$

$$V = \frac{3.6 \times 10^6 \times 7}{3}$$

$$= 8.4 \times 10^6 \text{ m/s}$$

$$[\log_{10} 7 = 0.84, \log_{10} 2 = 0.30]$$

0.618 min. Ans.

Sol.
$$t = \frac{1}{K} \ln \left[\frac{7}{2} \right]$$

$$=\frac{1}{2.011}\ln 3.5$$

$$=\frac{2.303}{2.011}\log_{10}3.5$$

$$=\frac{2.303}{2.011}[0.84-0.30]$$

$$=\frac{2.303}{2.011}\times0.54=0.618$$

12. Molarity of CO₂ in soft drink is 0.2M. The volume of soft drink is 300 ml. Volume of CO₂ (in L) at STP present in soft drink is

Ans. 1.362 L

Sol.
$$n_{CO_2} = M \times V = \frac{0.2 \times 300}{1000} = \frac{6}{100}$$

$$V_{CO_2}$$
 at STP = $\frac{6}{100} \times 22.7$

$$= 1.362 L$$

13. Find mole of a non-volatile solute dissolved in 30g water. The solution have boiling point $373.52 \text{K \& K}_{b \text{ (water)}} = 0.52 \text{ K Kg/mol}.$

Ans. 0.03 mole

Sol. (i = 1) Considering solute to be non-electrolyte

$$\Delta T_b = K_b.m$$

$$\Delta T_b = 373.52 - 373 = 0.52 \text{ K}$$

$$0.52 = 0.52 \times m$$

$$\Rightarrow$$
 m = 1

$$m = \frac{n_{solute}}{W_{solvent(g)}} \times 1000$$

$$1 = \frac{n_{\text{solute}}}{30} \times 1000$$

$$n_{solute} = 0.03 \text{ mol}$$

14. Observe the following reactions

$$B \xleftarrow{\text{cold}}_{\text{conc.H}_2SO_4} \xrightarrow{\text{H}_2O/\text{conc.H}_2SO_4} A$$

A and B are respectively.

$$(1)$$
 OSO₃H OH

$$OH$$
, OSO_3H

$$(2)$$
 OH OSO₃H

$$(4)$$
 OH OH

Ans. (2)

15. Which of the following acts as antacid?

(1) Brompheniramine

(2) Terfenadine

(3) Ranitidine

(4) Iproniazid

(3) Ans.

16. Caprolactum when heated at high temperature gives

- (1) Nylon-6,6
- (2) Nylon-6
- (3) Teflon
- (4) Buna-S

(2) Ans.

17. Match the following

Column - I

(p) CH_3 – $Cl + NaI \xrightarrow{Acetone} CH_3$ –I

Column - II

- (i) Swart's reaction
- (q) Ph–Cl $\xrightarrow{\text{Na}}$ Ph–Ph
- (ii) Finkelstein reaction
- (r) CH_3 – $C1 \xrightarrow{AgF} CH_3$ –F
- (iii) Fittig reaction
- (s) $Ph \stackrel{\oplus}{N} \equiv \stackrel{\Theta}{NCl} \xrightarrow{Cu_2Cl_2 + HCl} Ph-Cl$
- (iv) Sandmeyer's reaction

- - q
- S

(1) iii

p

- i
- ii
- iv

- (2) ii
- iii
- i
- iv

- (3) iv
- iii
- ii

- i **(4)**
- ii
- iii
- iv

Ans. (2) **18.** Which of the following is correct acidic strength order for the marked hydrogen in the given compound?

- (1) a > d > b > c
- (2) a > b > d > c (3) c > d > b > a
- (4) a > c > b > d

(1) Ans.

19. Consider the following reactions.

$$NO_2 \xrightarrow{UV} A + B$$

$$A + O_2 \longrightarrow C$$

$$B+C\longrightarrow NO_2+O_2$$

Find A,B & C respectively

 $(1) NO, O_3, O$

 $(2) O, NO, O_3$

(3) NO, O, O₃

(4) O₃, O, NO

(2) Ans.

Which of the following compound gives positive test with Fehling solution and blood red colour **20.** when fused with sodium metal followed by neutral FeCl₃ solution?

$$(1) \underbrace{\stackrel{H}{\underset{S}{\bigvee}}}_{\text{CHO}}$$

$$(2) \underbrace{\stackrel{H}{\underset{N}{\bigvee}}}_{N} CHO$$

$$(3)$$
 $\stackrel{S}{\smile}$ CHO

$$(4) \underbrace{\stackrel{\text{H}}{\bigvee}_{\text{NH}_2}}_{\text{NH}_2} \text{CHO}$$

Ans. (1)

Sol. -CHO group gives positive Tollen's test where as,

$$Na + S + C + N \xrightarrow{\Delta} NaSCN \xrightarrow{FeCl_3} Fe(SCN)_3$$
Blood red colour

21. Which of the following reaction will yield benzyl isocyanide as a major product?

$$(3) \qquad \begin{array}{c} \text{NH}_2 \\ + \text{Br}_2 \xrightarrow{\text{NaOH}} \\ \text{NH}_2 \\ \text{(4)} \qquad + \text{LiAlH}_4 \longrightarrow \\ \end{array}$$

Ans. (2)

22. Mark correct answer on the basis of following two statements.

Statement-I: Ketoses give seliwanoff's test faster than aldose.

Statement-II: When heated, fructose (ketose sugar) is more rapidly dehydrated than glucose (aldose sugar).

- (1) Both statements are true.
- (2) Both statements are false.
- (3) (I) is true (II) is false.
- (4) (II) is true (I) is false.

Ans. (1)

23. Compound (A)
$$(C_{10}H_{12}O_2)$$

NaOI

Positive test

Find the number of π bonds present in compound A

Ans. 4

Since compound gives FeCl₃ test so phenolic group is present.

Compound gives NaOI test (Iodoform test), so methyl ketone group should present.