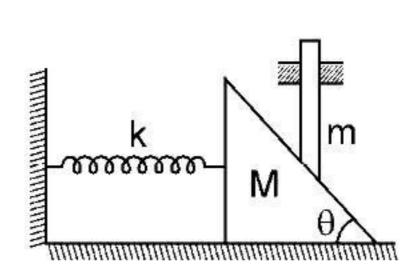

DPP No. 7

SYLLABUS: WORK POWER & ENERGY


- 1. A rope ladder with a length ℓ carrying a man of mass m at its end is attached to the basket of balloon with a mass M. The entire system is in equilibrium in the air. As the man climbs up the ladder into the balloon, the balloon descends by a height h. Then the potential energy of the man:
 - (A) Increases by mg (ℓ–h)
- (B) Increases by mgℓ

(C) Increases by mgh

- (D) Increases by mg (2ℓ-h)
- A block of mass m is attached to two unstretched springs of spring constants k₁ and k₂ as 2. shown in figure. The block is displaced towards right through a distance x and is released. Find the speed of the block as it passes through the mean position shown.

- (A) $\sqrt{\frac{k_1 + k_2}{m}} x$ (B) $\sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} x$ (C) $\sqrt{\frac{k_1^2 k_2^2}{m(k_1^2 + k_2^2)}} x$ (D) $\sqrt{\frac{k_1^3 k_2^3}{m(k_1^3 + k_2^3)}}$
- 3. A spring when stretched by 2 mm its potential energy becomes 4 J. If it is stretched by 10 mm, its potential energy is equal to
 - (A) 4 J
- (B) 54 J
- (C) 415 J
- (D) 100 J
- A wedge of mass M fitted with a spring of stiffness 'k' is kept on a smooth horizontal surface. A 4. rod of mass m is kept on the wedge as shown in the figure. System is in equilibrium and at rest Assuming that all surfaces are smooth, the potential energy stored in the spring is:

- $mg^2 tan^2 \theta$ 2K
- $m^2gtan^2\theta$ 2K
- $m^2g^2 tan^2 \theta$ 2K
- $m^2g^2 tan^2 \theta$ K

5.	A running man has half the kinetic energy of that of a boy of half of his mass. The man speeds
	up by 1 m/s so as to have same kinetic energy as that of the boy. The original speed of the man
	will be

(A)
$$\sqrt{2}$$
 m/s

(B)
$$(\sqrt{2} - 1)$$
m/s

(A)
$$\sqrt{2}$$
 m/s (B) $(\sqrt{2} - 1)$ m/s (C) $\frac{1}{(\sqrt{2} - 1)}$ m/s (D) $\frac{1}{\sqrt{2}}$ m/s

(D)
$$\frac{1}{\sqrt{2}}$$
 m/s

6. A rod of length 1m and mass 0.5 kg hinged at one end, is initially hanging vertical. The other end is now raised slowly until it makes an angle 60° with the vertical. The required work is : (use $g = 10 \text{ m/s}^2$)

(A)
$$\frac{5}{2}$$
 J

(B)
$$\frac{5}{4}$$
 J

(C)
$$\frac{17}{8}$$
 J

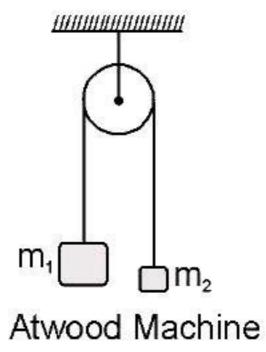
(A)
$$\frac{5}{2}$$
 J (B) $\frac{5}{4}$ J (C) $\frac{17}{8}$ J (D) $\frac{5\sqrt{3}}{4}$ J

7. A projectile is fired from the top of a 40 m high cliff with an initial speed of 50 m/s at an unknown angle. Find its speed when it hits the ground. ($g = 10 \text{ m/s}^2$)

(A)
$$5\sqrt{33}$$
 m/s

(B)
$$10\sqrt{25}$$
 m/s

(A)
$$5\sqrt{33}$$
 m/s (B) $10\sqrt{25}$ m/s (C) $10\sqrt{33}$ m/s (D) $15\sqrt{33}$ m/s


8. Calculate the velocity of the bob of a simple pendulum at its mean position if it is able to rise to a vertical height of 10 cm. Given : g = 980 cm s⁻².

(A)
$$1 \text{ m s}^{-1}$$

(B)
$$3.40 \text{ m s}^{-1}$$

(D)
$$1.40 \text{ m s}^{-1}$$

9. The heavier block in an Atwood machine has a mass twice that of the lighter one. The tension in the string is 16.0 N when the system is set into motion. Find the decrease in the gravitational potential energy during the first second after the system is released from rest.

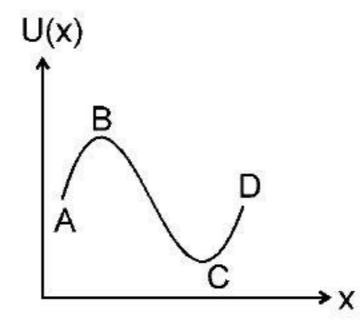
(A)
$$1 g = 19.6 J$$

(B)
$$2g = 19.6J$$
 (C) $2g = 15J$ (D) $2g = 10.6J$

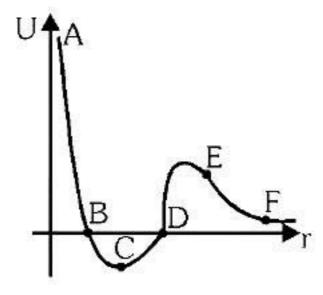
$$(C) 2 \alpha = 15 1$$

(D)
$$2 a = 10.6 J$$

A body is moved along a straight line by a machine delivering constant power. The distance 10. moved by the body in time t is proportional to :

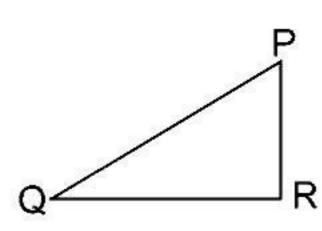

(A)
$$t^{1/2}$$

(C)
$$t^{3/2}$$


(D)
$$t^2$$

11.		istive force 'R'. When		straight level road against a is 'V', the rate at which the					
	(A) RV	(B) maV	(C) (R + ma)V	(D) (ma – R)V					
12.	coefficient of friction		nd plane is µ.The pow	ough horizontal plane. If the er delivered by the external					
	(A) ma ² t	(B) µmgat	(C) μm(a + μg) gt	(D) m(a + μg) at					
13.	An electric motor created What is the power of		N in hoisting cable an	d reels it at the rate of 2 m/s.					
	(A) 9 W	(B) 9 KW	(C) 225 W	(D) 9000 H.P.					
14.		ones to a height of 6 in the contract of 6 in the contract of		mass of each stone be one					
	(A) 10 W	(B) 30 W	(C) 50 W	(D) 75 W					
15.	A man of mass 70 kg developed by the ma	in son see so Neo seen gener	staircase at the rate o	f 1 ms⁻¹. What is the power					
	(A) 100 W	(B) 250 W	(C) 500 W	(D) 700 W					
16.	An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg through a height of 40 m? Given : $g = 10 \text{ ms}^{-2}$.								
	(A) 2 second	(B) 6 second	(C) 8 second	(D) 16 second					
17.		e of 5.3HP is to be use en by engine to do thi		through a distance of 12 m.					
	(A) 1 min	(B) 2 min	(C) 3 min	(D) 7 min					
18.	 -	e figure shown the potential energy (U) of a particle is plotted against its position 'x' from n. Then which of the following statement is correct. A particle at :							
	$\bigcup_{X_1 \ X_2 \ X_3} \bigvee_{X_3} X$								
	(A) x ₁ is in stable ed	quilibrium	(B) x ₂ is in stable ed	uilibrium					
	(C) x ₃ is in stable ed		(D) None of these						
	500 SO								

- The potential energy of a particle in a field is $U = \frac{a}{r^2} \frac{b}{r}$, where a and b are constant. The 19. value of r in terms of a and b where force on the particle is zero will be :
- (B) $\frac{b}{a}$
- (C) $\frac{2a}{b}$
- 20. The potential energy of a particle varies with distance x as shown in the graph. The force acting on the particle is zero at



- (A) C
- (B) B
- (C) B and C
- (D) A and D.
- 21. The given plot shows the variation, the potential energy (U) of interaction between two particles with the separating distance (r) between them. Which of the above statements are correct

- (1) B and D are equilibrium points
- (2) C is a point of stable equilibrium points
- (3) The force of interaction between the two particles is attractive between points C and D and repulsive between points D and E on the curve.
- (4) The force of interaction between the particles is repulsive between points E and F on the curve.
- (A) 1 and 3

- (B) 1 and 4 (C) 2 and 4 (D) 2 and 3
- For the path PQR in a conservative force field (fig.), the amount of work done in carrying a 22. body from P to Q & from Q to R are 5 J & 2 J respectively . The work done in carrying the body from P to R will be -

- (A) 7 J
- (B) 3 J
- (C) $\sqrt{21}$ J
- (D) zero

23. A particle is taken from point A to point B under the influence of a force field. Now it is taken back from B to A and it is observed that the work done in taking the particle from A to B is not equal to the work done in taking it from B to A. If W_{nc} and W_{c} is the work done by non-conservative forces and conservative forces present in the system respectively, ΔU is the change in potential energy, Δk is the change in kinetic energy, then

(A) $W_{nc} - \Delta U = \Delta k$ (B) $W_{c} = -\Delta U$ (C) $W_{nc} + W_{c} = \Delta k$ (D) $W_{nc} - \Delta U = -\Delta k$

A block of mass 250 g is kept (does not sticks to spring) on a vertical spring of spring constant 100 N/m fixed from below (block is in equilibrium). The spring is now compressed to have a length 10 cm shorter than its natural length and the system is released from this position. How high does the block rise from this position? Take $g = 10 \text{ m/s}^2$.

(A) 20 cm (B) 30 cm (C) 40 cm (D) 50 cm

25. A light spring of length 20 cm and force constant 2 N/cm is placed vertically on a table. A small block of mass 1 kg falls on it. The length h from the surface of the table at which the block will have the maximum velocity is:

(A) 20 cm (B) 15 cm (C) 10 cm (D) 5cm

ANSWER KEY										
1.	(A)	2.	(A)	3	3.	(D)	4	. (C) 5.	(C)
6.	(B)	7.	(C)	8	3.	(D)	9	. (В) 10). (C)
11.	(C)	12.	(D)	1	3.	(B)	1	4 . (C) 15	5. (D)
16.	(C)	17.	(B)	1	8.	(D)	1	9 . (C) 20	(C)
21.	(C)	22.	(A)	2	23.	(ABC)	2	4 . (A) 25	5. (B)