SAMPLE QUESTION PAPER - 04

Time: 3 Hrs 15 Min

Subject : Mathematics (35)

Max Marks: 100

 $10 \times 1 = 10$

Instructions: (1) The question paper has five Parts namely A, B, C, D and E. Answer all the parts. (2) Use the graph sheet for the question on linear programming in PART-E.

PART-A

Answer any Ten of the following. (One Mark each)

- 1. Define binary operation on a set.
- 2. A relation R on A= $\{1,2,3\}$ defined by R= $\{(1,1),(2,2),(3,3),(1,2),((2,3))\}$ is not transitive. Why?
- 3. Write the set of principal values of y, if $sin^{-1}x = y$.
- 4. Prove that $sin(tan^{-1}x) = \frac{x}{\sqrt{1+x^2}}$, |x| < 1
- 5. If a matrix has 13 elements, what are the possible order it can have?.
- 6. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, find the value of $|A^{-1}|$.
- 7. Differentiate $log(cose^x)$ with respect to x.
- 8. Find the derivative of $2\sqrt{cot(x^2)}$ with respect to x
- 9. Find $\int tan^2 x dx$.
- 10. Evaluate $\int_{a}^{b} x \, dx$
- 11. Define Zero vector or Null vector
- 12. If the vectors $2\hat{i} + 3\hat{j} 6\hat{k}$ and $4\hat{i} m\hat{j} 12\hat{k}$ are parallel, find the value of *m*.
- 13. Write the direction cosines of negative z-axis.
- 14. Define optimal solution in the linear programming problem.
- 15. What is conditional probability?

PART-B

Answer any Ten of the following.(Two Marks each)

 $10 \times 2 = 20$

16. Let * be a binary operation on the set of natural numbers N given by a * b = H. C. F of a and b. Is * associative?
17. Evaluate sin [^π/₃ - sin⁻¹ (-¹/₂)]
18. Write tan⁻¹ (^x/_{√a²-x²}), |x| < 1 in simplest form
19. Find the value of x and y in [^{x + 2y}/₄ ²/_{x+y}] - [³/₄ ²/₁] = 0 where O is null matrix.
20. Find the equation of line joining (3,1) and (9,3) using determinants.
21. If sin²x + cos(xy) = k, find ^{dy}/_{dx}.
22. Differentiate x^x with respect to x
23. If y = sin(logx), then prove that ^{dy}/_{dx} = ^{√1-y²}/_x
24. Find point on the curve y² = 4x at which tangents are parallel to the line y = x + 1.
25. Find ∫ sin2x. cos3xdx.
26. Find ∫ ¹/_{x-√x} dx.
27. Evaluate ∫₀^{π/2} cos²x dx.
28. Find the order and degree of differential equation

$$\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^4 + y^5 = 0 \text{ OR } (y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$$

- 29. Find the projection of vector $\vec{a} = 3\hat{\imath} 5\hat{\jmath} + 7\hat{k}$ on vector $\vec{b} = \hat{\imath} + 3\hat{\jmath} + 2\hat{k}$.
- 30. Find the vector of magnitude 8 units in the direction of the vector $\vec{a} = 5\hat{i} \hat{j} + 2\hat{k}$
- 31. Find the vector equation of plane which is at a distance of 7 units from the origin and normal to the vector $3\hat{i} + 5\hat{j} 6\hat{k}$.
- 32. Show that the lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other
- 33. If the probability distribution of X is

	Х	0	1	2	3	4	
	P(X)	0.1	k	2k	2k	k	
nd	and the value of k and $P(X > 2)$						

Find the value of k and $P(X \ge 2)$.

PART-C

Answer any Ten of the following. (Three Marks each)

 $10 \times 3 = 30$

- 34. Show that the relation R in the set $A = \{x/x \in Z, and 0 \le x \le 12\}$ given by
 - $R = \{(a, b): a = b\}$ is an equivalence relation.
- 35. Find the value of x, if $tan^{-1}(2x) + tan^{-1}(3x) = \frac{\pi}{4}$, x > 0
- 36. By using elementary transformation find the Inverse of matrix $A = \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$
- 37. Consider the determinant $\begin{vmatrix} 1 & -2 \\ 3 & 3 \end{vmatrix}$ then find the minor and cofactors of all the elements
- 38. If $x = a(\cos\theta + \theta \sin\theta)$ and $y = a(\sin\theta \theta \cos\theta)$ then find $\frac{dy}{dx}$.

39. If $y = x^3 log x$ then find $\frac{d^2 y}{dx^2}$

- 40. Verify Rolle's theorem for the function $f(x) = x^2 + 2$, in the interval [-2,2]
- 41. Find the point on the curve $x^2 = 2y$ which is nearest to the point (0,5).

42. Evaluate
$$\int \frac{2x}{(x^2+1)(x^2+2)} dx$$

43. Integrate $x \tan^{-1} x$ with respect to x.

44. Evaluate
$$\int_0^1 \frac{tan^{-1}x}{1+x^2} dx$$

- 45. Find the Area of region bounded by the curve $y^2 = x$ and the lines x = 4 and x = 9 and the x-axis in first quadrant.
- 46. Form the differential equation representing family of circles having centre on y-axis and radius 3 units.
- 47. Find the general solution of differential equation $y log_e y dx x dy = 0$.
- 48. Show that the position vector of the point P which divides the line joining the points A and B having the position vectors \vec{a} and \vec{b} internally in the ratio m:n is $\frac{m\vec{b}+n\vec{a}}{m+n}$
- 49. Find unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.
- 50. Find the equation of a line which passes through the point (1,2,3) and parallel to the vector $3\hat{i} + 2\hat{j} 2\hat{k}$ both in vector and Cartesian form
- 51. Probability that A speaks truth is 4/5. A coin is tossed. A reports that is a head appear. Find the probability that it is actually head.

PART-D

Answer any Six of the following. (Five Marks each)

52. Show that $f: N \to N$ given by $f(x) = \begin{cases} x - 1 & \text{if } x \text{ is odd} \\ x + 1 & \text{if } x \text{ is even} \end{cases}$ is both one-one and onto

53. Prove that the function $f: N \to Y$ is defined as f(x) = 4x + 3, where, $V = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}$ is invertible, write the inverse of f(x)

$$f = \{y \in N : y = 4x + 3 \}$$
 of some $x \in N\}$ is invertible. Write the

54. If
$$A = \begin{bmatrix} 4 & 2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$ then

Show that i) (A + B)' = A' + B' ii) (A - B)' = A' - B'

55. Solve the following system of linear equation by matrix method

$$x + y + z = 6,$$

$$y + 3z = 11,$$

$$x + z = 2y.$$

56. If $y = 3\cos(\log_e x) + 4\sin(\log_e x)$ show that $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$.

- 57. A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall.
- 58. Find the integral $\frac{1}{\sqrt{x^2-a^2}}$ w.r.t x and hence evaluate $\int \frac{1}{\sqrt{x^2+6x-7}} dx$.
- 59. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by the method of integration
- 60. Solve the differential equation $(1 + x^2)dy + 2xydx = cotxdx, (x \neq 0).$
- 61. Derive the Equation of a plane perpendicular to a given vector and passing through a given point.
- 62. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is

1/100. What is the probability that he will win a prize

(i) At least once (ii) Exactly once (iii) At least twice?

- 63. Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6.
 - Find (i) P(A and B) (ii) P(A and not B) (iii) P(A or B) (iv) P(neither A nor B)

PART-E

Answer any One of the following. (Ten Marks)

$$1 \times 10 = 10$$

64. a) Prove that
$$\int_0^{2a} f(x) dx = \begin{cases} 2 \int_0^a f(x) dx & \text{if } f(2a-x) = f(x) \\ 0 & \text{if } f(2a-x) = -f(x) \end{cases}$$
 and find $\int_0^{2\pi} \cos^5 x \, dx$.

b) If $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, satisfies the equation $A^2 - 4A + I = 0$, then find the inverse of A using this equation, where I is the identity matrix of order 2

65. a) Solve the following problem graphically:

Minimise and Maximise Z = 5x + 10ySubject to $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$.

b) Find the value of k if $f(x) = \begin{cases} kx^2 & \text{if } x \le 2\\ 3 & \text{if } x > 2 \end{cases}$ is continuous at x = 2.

66. a) Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $tan^{-1}\sqrt{2}$

b) Prove that
$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1 - x^3)^2$$