है। याद आपका कवल लाल लिटमस पत्र
दिया जाता है तो आप प्रत्येक परखनली में रखे
गये पदार्थों की पहचान कैसे करेंगे?
Answer
अम्लीय विलयन नीले लिटमस पत्र को लाल रंग में
बदल देता है, तथा क्षारीय विलयन लाल लिटमस
पत्र को नीले में बदल देता है। अत: दिये गये एक
लाल लिटमस पत्र की मदद से निम्नाकित तरीके से
दिये गये विलयनों की पहचान की जा सकती है :-
• दिये गये लाल लिटमस पत्र को सभी परखनलीयों
में बारी – बारी से डुबायेंगे, जिस परखनली में लाल
लिटमस पत्र नीला हो जायेगा वह विलयन क्षारीय
है।
• अब दिया गया लिटमस पत्र नीला हो गया है। उसे
बचे हुए दोनों परखनली में बारी बारी से डुबाऐंगे।
जिस परखनली में लिटमस पत्र लाल हो जायेगा,
वह विलयन अम्लीय है।
• तथा अब शेष अंतिम बची परखनली में आसवित
3 .

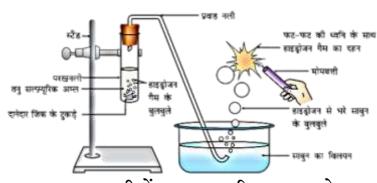
Q. No. - 1

आपको तीन परखनलियाँ दी गई हैं। इनमें से

एक में असावित जल एवं दो में से एक में

अम्लीय विलयन तथा दूसरे में क्षारीय विलयन

पेज न० - 20


जल है।

पेज न० - 24 Q. No 1 2 / 19
पीतल एवं ताम्बे के बर्तनों में दही एवं खट्टे
पदार्थ क्यों नहीं रखना चाहिये?
Answer
हम जानते है कि अम्ल तथा धातु के अभिक्रिया के
फलस्वरूप धातु के लवण तथा हाईड्रोजन गैस का
निर्माण होता है। इश्किये दही एवं खट्टे पदार्थों को इन
बर्तनों में रखने पर इन पदार्थों में उपस्थित अम्ल धातु
से अभिक्रिया करके विषैला और हानिकारक
यौगिक का निर्माण करेंगे जिसे खाने से व्यक्ति बीमार
पड़ सकता है। यही कारण है कि, पीतल एवं तांबे के
बर्तनों में दही एवं खट्टे पदार्थ नहीं रखने चाहिए।

सामान्यत: हाइड्रोजन गैस निकलती है। धात् + अम्ल \longrightarrow लवण + H_2 \uparrow

 $\mathbf{E}\mathbf{x}$ - $\mathbf{Z}\mathbf{n} + 2\mathbf{H}\mathbf{C}\mathbf{l} \longrightarrow \mathbf{Z}\mathbf{n}\mathbf{C}\mathbf{l}_2 + \mathbf{H}_2$

जांच की प्रक्रिया

(i) एक परखनली में तनु सल्फ्यूरिक अम्ल लेकर उसमें दानेदार जिंक के टुकड़े डालेंगे।

(ii) अभिक्रिया के फलस्वरूप निकलने वाले

गैस को साब्न के विलयन में प्रवाहित करेंगे,

होते हैं। (iii) इन बुलबुलों के पास जलती हुई मोमबत्ती ले

जिससे साबुन के विलयन में से बुलबुले उत्पन्न

जाने पर बुलबुलों के अंदर भरे गैस का फटफट की ध्वनि के साथ दहन होने लगता है।

फटफट की ध्विन के साथ इन ब्लब्लों का दहन होना बताता है कि निकलने वाला गैस हाइड्रोजन

गैस है।

पेज न० - 24 Q. No. - 3 4 / 19

कोई धातु यौगिक 'A' तनु हाइड्रोक्लोरिक

Answer चूँकि उत्पन्न यौगिकों में एक कैल्सियम क्लोराइड

(लवण) है, तथा निकलने वाली गैस मोमबत्ती को

बुझा देती है, अत: निकलने वाली गैस कार्बन डाइऑक्साइड है, जो कि आग बुझाने के काम आती है। अर्थात अभिकारक कैल्सियम कार्बोनेट तथा हाइड्रोक्लोरिक अम्ल है। जब कैल्सियम कार्बोनेट, हाइड्रोक्लोरिक अम्ल के साथ प्रतिक्रिया करता है, तो बुदबुदाहट के साथ

कार्बन डाइऑक्साइड गैस निकलती है तथा

 $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$

कैल्सियम क्लोराइड बनता है।

पेज न० - 27 Q. No. - 1 5/19
HCl, HNO₃ आदि जलीय विलयन में अम्लीय अभिलक्षण क्यों प्रदर्शित करते हैं, जबिक ऐल्कोहॉल एवं ग्लूकोज जैसे यौगिकों के विलयनों में अम्लीयता के अभिलक्षण नहीं प्रदर्शित होते हैं?

Answer

Answer एक अम्ल, जलीय घोल में हाइड्रोजन आयन मुक्त

करने के कारण अम्लीय अभिलक्षण प्रदर्शित करता है।

चूँकि HCl, HNO₃ आदि जलीय विलयन में हाइड्रोजन आयन देते है, इसलिए यें जलीय विलयन में अम्लीय गुण प्रदर्शित करते हैं। जबिक ऐल्कोहॉल तथा ग्लूकोज जैसे यौगिकों में हाइड्रोजन होने के बावजूद भी जलीय घोल में ये हाइड्रोजन आयन

मुक्त नहीं करते हैं, इसलिए यें यौगिक जलीय विलयन में अम्लीयता के अभिलक्षण नहीं प्रदर्शित करते हैं।

पेज न० - 27 Q. No 2 6/19
अम्ल का जलीय विलयन क्यों विद्युत का
चालन करता है?
Answer
विद्युत के चालन के लिए आयन उत्तरदायी होते है।
अम्ल जलीय विलयन में घुलकर H ⁺ आयन तथा
OH आयन में टूट जाता है। अम्ल के जलीय
विलयन में इन आयनों की उपस्थिति के कारण ही
विद्युत का चालन संभव हो पाता है। इसलिए अम्ल
का जलीय विलयन विद्युत का चालन करता है।

पेज न० - 27 Q. No 3 7/19
शुष्क हाइड्रोक्लोरिक गैस शुष्क लिटमस पत्र
के रंग को क्यों नहीं बदलती है?
Answer
शुष्क हाइड्रोक्लोरिक गैस शुष्क लिटमस पत्र के रंग
को नहीं बदलती है, क्योंकि जल की अनुपस्थिति में
HC1 गैस अम्लीय व्यवहार प्रदर्शित नहीं करती।
शुष्क अवस्था में HCl गैस H ⁺ आयन नहीं देता है,
और हम जानते हैं कि लिटमस पत्र का रंग परिवर्तन
के लिए H ⁺ आयन उत्तरदायी है। अतः शुष्क HCl
गैस शुष्क लिटमस पत्र के रंग को नहीं बदलती।
परंतु यदि HCl गैस को पानी में घोल दिया जाए या
लिटमस पत्र को गीला कर दिया जाए तो लिटमस

पत्र के रंग में परिवर्तन हो सकता है।

पेज न० - 27 Q. No 4 8/19
अम्ल को तनुकृत करते समय यह क्यों
अनुशंसित करते हैं कि अम्ल को जल में
मिलाना चाहिए न कि जल को अम्ल में?
Answer
जल में अम्ल या क्षारक के घुलने की प्रक्रिया अत्यंत
ऊष्माक्षेपी होती है। यदि अम्ल में जल को मिलाया
जाता है तो उत्पन्न हुई उष्मा के कारण अम्ल उछल
कर या आस्फलित होकर बर्तन से बाहर आ सकता
है, और हमारे शरीर के अंगों को जला सकता है। या
अत्याधिक स्थानीय ताप के कारण प्रयोग में उपयोग
किया जा रहा कांच का बर्तन भी टूट सकता है। परंतु
यदि जल में अम्ल को मिलाया जाता है तब उत्पन्न
ऊष्मा की मात्रा जल की अधिकता के कारण
अवशोषित हो जाती है। यही कारण है कि अम्ल को
तनुकृत करते समय यह अनुशंसित करते हैं कि
अम्ल को जल में मिलाना चाहिए न कि जल को
अम्ल में।

अम्ल के विलयन को तनुकृत करते समय
हाइड्रोनियम आयन (H ₃ O+) की सांद्रता कैसे
प्रभावित हो जाती है?
Answer
हम जानते हैं कि विलयन की सान्द्रता = विलेय की मात्रा

पेज न० - 27

अम्ल के विलयन को तनुकृत करने पर, जल

अर्थात विलयन की मात्रा अधिक हो जाने के कारण हाइड्रोनियम आयन H_3O^+ की सांद्रता घट जाती है। जब सोडियम हाइड्रॉक्साइड विलयन में आधिक्य क्षारक मिलाते हैं तो हाइड्रॉक्साइड आयन (OH-) की सांद्रता कैसे प्रभावित होती है? Answer चुकीं सोडियम हाइड्रोक्साइड एक क्षार है, अतः सोडियम हाइड्रोक्साइड के विलयन में हाइड्रोक्साइड आयन (OH⁻) उपस्थित रहता है। जब उसमें आधिक्य क्षारक मिलाते हैं तब

हाइड़ोक्साइड आयन (OH-) की सांद्रता और बढ़

Q. No. - 6

पेज न**० -** 27

जाती है।

पंज न० - 31 Q. No 1 11/19
आपके पास दो विलयन 'A' एवं 'B' हैं।
विलयन 'A' के pH का मान 6 है एवं विलयन
'B' के pH का मान 8 है। किस विलयन में
हाइड्रोजन आयन की सांद्रता अधिक है? इनमें
से कौन अम्लीय है तथा कौन क्षारकीय?
Answer
Answer pH स्केल 0 से 14 तक के मान पर कार्य करता है,
pH स्केल 0 से 14 तक के मान पर कार्य करता है,
pH स्केल 0 से 14 तक के मान पर कार्य करता है, जहां 7 के पहले अम्लीय गुण और 7 के बाद क्षारीय
pH स्केल 0 से 14 तक के मान पर कार्य करता है, जहां 7 के पहले अम्लीय गुण और 7 के बाद क्षारीय गुण तथा 7 पर उदासीन मान प्राप्त होता है।

पेज न० - 31	Q. No 2	12 / 19
H ⁺ (aq) आयन	की सांन्द्रता का वि	व्रलयन की
प्रकृति पर क्या :	प्रभाव पड़ता है?	
	Answer	
H ⁺ (aq) आयन	की सांद्रता बढ़ने से	विलयन में
अम्लीयता बढ़ती	है, तथा क्षारीयता व	न्म होती है।
और H ⁺ (aq) अ	ायन की सांद्रता घटने	से क्षारीयता

बढ़ती है तथा अम्लीयता कम होती है।

पेज न० - 31	Q. No 3	13 / 19
क्या क्षारकीय विल	नयन में H ⁺ (aq) अ	गायन होते
हैं? यदि हाँ, तो क्षा	रकीय क्यों होते हैं	?
	Answer	
हाँ, क्षारकीय विलय	न में H ⁺ (aq) आय	न होते हैं।
जिस विलयन में H	⁺ आयन की सान्द्रत	ता अधिक
होती है वह अम्ल	नीय तथा जिस व <u>ि</u>	वेलयन में
हाइड्रॉक्साइड आयन	न (OH⁻) की सान्द्र	ता अधिक
होती है, वह क्षारकी	य होता है।	
चूँकि क्षारकीय विल	त्यन में हाइड्रॉक्सा <u>ः</u>	इड आयन
(OH ⁻) की सान्द्रत	\mathbf{H}^+ आयन के र	प्तान्द्रता से
अधिक होती है, अ	ात: क्षारकीय विलन्	यन में H ⁺
(aq) आयन की उ	पस्थिति के बावजू	द भी वह
क्षारकीय ही होता है।		

(11 Q1 Q11 0 1 21 2)
कोई किसान खेत की मृदा की किस परिस्थिति
में बिना बुझा हुआ चूना (कैल्सियम
ऑक्साइड), बुझा हुआ चून (कैल्सियम
हाइड्रोक्साइड) या चॉक (कैल्सियम कार्बोनेट)
का उपयोग करेगा?
Answer
Answer
Answer बिना बुझा हुआ चूना (कैल्सियम ऑक्साइड), बुझा
Answer बिना बुझा हुआ चूना (कैल्सियम ऑक्साइड), बुझा हुआ चून (कैल्सियम हाइड्रोक्साइड) या चॉक

अम्लीयता को कम करेगा, जिससे मृदा उपजाऊं हो।

O. No. - 4

पेज न० - 31

401 70 - 30	Q. 110 1	13 / 19
CaOCl2 यौगि	ोक का प्रचलित	नाम क्या है?
	Answer	
20	~	

CaOCl2 यौगिक का प्रचलित नाम विरंजक चूर्ण

[Bleaching Powder] है।

उस पदार्थ का नाम बताइए जो क्लोरीन से
क्रिया करके विरंजक चूर्ण बनाता है।
Answer

O. No. - 2

अभिक्रिया

कैल्सियम हाइड्रोक्साइड [Ca(OH)2]

 $Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$

या

पेज न<u>० - 36</u>

(शुष्क बुझा चुना) (क्लोरीन) (विरंजक चूर्ण)

16/19

कैल्सियम हाइड्रोक्साइड

कठोर							
सोडियम यौगिक का उपयोग किया जाता है?							
Answer							
मोडियम कार्बोनेट ($N_{20}CO_{20}$) जो कि मोडियम							

O. No. - 3

पेज न० - 36

सोडियम कार्बानेट (Na₂CO₃), जो कि सोडियम का एक यौगिक है का उपयोग कठोर जल को मृदु करने के लिए किया जाता है। सोडियम हाइड्रोजन कार्बोनेट के विलयन को गर्म करने पर क्या होगा? इस अभिक्रिया के लिए समीकरण लिखिए। Answer सोडियम हाइड्रोजन कार्बोनेट (Na2CO3) के विलयन को गर्म करने पर यह सोडियम कार्बोनेट, कार्बन डाइऑक्साइड गैस तथा जलवाष्प देगा।

O. No. - 4

18 / 19

पेज न० - 36

प्लास्टर ऑफ पेरिस की जल के साथ अभिक्रिया के लिए समीकरण लिखिए। Answer प्लास्टर ऑफ पेरिस जल के साथ प्रतिक्रिया कर जिप्सम बनाता है। $CaSO_4 \cdot \frac{1}{2} H_2O + 1\frac{1}{2} H_2O \longrightarrow CaSO_4 \cdot 2H_2O$ प्लास्टर ऑफ

O. No. - 5

19 / 19

<u>पेज न० - 36</u>