Polynomials

(1 mark each)

Pobjective Section _____

Multiple Choice Questions

Q. 1. The zeroes of the polynomial $x^2 - 3x - m$ [CBSE OD, Set 1, 2020] (*m* + 3) are (b) -m, m+3(a) m, m + 3(c) $m_{r} - (m + 3)$ (d) $-m_{r} - (m+3)$ **Ans.** $x^2 - 3x - m(m+3)$ $= x^{2} - (m + 3 - m)x - m(m + 3)$ $= x^{2} - (m + 3)x + mx - m(m + 3)$ $= x\{x - (m + 3)\} + m\{x - (m + 3)\}$ $= (x + m) \{x - (m + 3)\}$ \therefore Its zeroes are -m, (m + 3). \therefore Option (b) is correct. Ans. If one of the zeroes of the quadratic O. 2. polynomial $x^2 + 3x + k$ is 2, then the value of k is [CBSE Delhi, Set 1, 2020] (b) -10 (a) 10 -7 (d) – 2 (c) $p(x) = x^2 + 3x + k$ Ans. Let • • x = 2 is a zero of p(x)

🗬 Short Answer Type Questions-I ____

Q.1. A teacher asked 10 of his students to write a polynomial in one variable on a paper and then to handover the paper. The following were the answers given by the students :

$$2x + 3, 3x^{2} + 7x + 2, 4x^{3} + 3x^{2} + 2, x^{3} + \sqrt{3x} + 7,$$

$$7x + \sqrt{7}, 5x^{3} - 7x + 2, 2x^{2} + 3 - \frac{5}{x}, 5x - \frac{1}{2}, ax^{3}$$

$$+ bx^{2} + cx + d, x + \frac{1}{x}$$

Answer the following questions :

Short Answer Type Questions-II ______ (3 marks each)

Q.1. Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial $f(x) = ax^2 + bx + c$, $a \neq 0$, $c \neq 0$.

[CBSE Delhi, Set 1, 2020]

Ans. Given, $f(x) = ax^2 + bx + c$, $a \neq 0$, $c \neq 0$. Let α and β be the zeroes of f(x)

p(2) = 0*.*.. $(2)^2 + 3(2) + k = 0$ \Rightarrow 4 + 6 + k = 0 \Rightarrow 10 + k = 0 \Rightarrow k = -10 \Rightarrow \therefore Option (b) is correct. Ans. Q.3. The quadratic polynomial, the sum of whose zeroes is - 5 and their product is 6, [CBSE Delhi, Set 1, 2020] is (b) $x^2 - 5x + 6$ $x^2 + 5x + 6$ (a) (c) $x^2 - 5x - 6$ (d) $-x^2 + 5x + 6$ **Ans.** Let the polynomial be $p(x) = k [x^2 - (\text{Sum of zeroes}) x]$ + Product of zeroes] Sum of zeroes = -5Product of zeroes = 6.:. Required polynomial is $p(x) = k[x^2 - (-5)x + (6)]$ $=k[x^2+5x+6]$ Let k = 1 $p(x) = x^2 + 5x + 6$ *.*.. \therefore Option (a) is correct. Ans. (3 marks each)

- (i) How many of the above ten, are not polynomials?
- (ii) How many of the above ten, are quadratic polynomials?

[CBSE OD, Set 1, 2020]

(i) 3 Ans.

$$\left(x^2 + \sqrt{3x} + 7, 2x^2 + 3 - \frac{5}{x} \text{ and } x + \frac{1}{x}\right)$$

(ii) There is only one quadratic polynomial which is $3x^2 + 7x + 2$.

$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$

Now let the zeroes of required polynomial be α' and β' .

So,
$$\alpha' = \frac{1}{\alpha}$$
, $\beta' = \frac{1}{\beta}$

Now, sum of zeroes (S) = $\alpha' + \beta'$ $= \frac{1}{\alpha} + \frac{1}{\beta}$ $= \frac{\beta + \alpha}{\alpha\beta}$ $= \frac{-b/a}{c/a}$ $= -\frac{b}{c}$ Product of zeroes (P) = $\alpha' \times \beta'$ $= \frac{1}{\alpha} \times \frac{1}{\beta}$ $= \frac{1}{\alpha\beta}$ $= \frac{1}{c/a}$ $= \frac{a}{c}$

$$g(x) = k[x^2 - Sx + P]$$
$$= k\left[x^2 - \left(-\frac{b}{c}\right)x + \frac{a}{c}\right]$$
$$= k\left[x^2 + \frac{b}{c}x + \frac{a}{c}\right]$$
$$= k\left[\frac{cx^2 + bx + a}{c}\right]$$

 $\therefore \quad k/c = \text{constant}$ $\therefore \quad g(x) = cx^2 + bx + a \text{ is the required}$ polynomial. **Ans.**

Q. 2. Divide the polynomial $f(x) = 3x^2 - x^3 - 3x + 5$ by the polynomial $g(x) = x - 1 - x^2$ and verify the division algorithm.

[CBSE Delhi, Set 1, 2020]

Given,
$$f(x) = 3x^2 - x^3 - 3x + 5$$

= $-x^3 + 3x^2 - 3x + 5$
and, $g(x) = x - 1 - x^2$
= $-x^2 + x - 1$

$$= -x^{2} + x - 1$$

Dividing $f(x)$ by $g(x)$
$$-x^{2} + x - 1 \overline{) - x^{3} + 3x^{2} - 3x + 5} (x - 2)$$

$$\frac{-x^{3} + x^{2} - x}{(+) (-) (+)}$$

$$2x^{2} - 2x + 5$$

$$2x^{2} - 2x + 5$$

$$\frac{-x^{2} - 2x + 5}{(-) (+) (-)}$$

:. q(x) = (x - 2), r(x) = 3Now,

Dividend = Divisor × Quotient + Remainder.

$$f(x) = g(x) \times q(x) + r(x)$$

= (-x² + x - 1) (x - 2) + 3
= -x² (x - 2) + x(x - 2) - 1(x - 2) + 3
= -x³ + 2x² + x² - 2x - x + 2 + 3
= -x³ + 3x² - 3x + 5
= f(x) Hence Verified.

Q. 3. If 4 is zero of the cubic polynomial
$$x^3 - 3x^2 - 10x + 24$$
, find its other two zeroes. [CBSE Delhi, Set 1, 2020]

Ans. Let
$$p(x) = x^3 - 3x^2 - 10x + 24$$

 $\therefore x = 4$ is a zero of $p(x)$.
 $\Rightarrow (x - 4)$ is a factor of $p(x)$
Dividing $p(x)$ by $(x - 4)$,
 $x - 4$) $\overline{x^3 - 3x^2 - 10x + 24}$ ($x^2 + x - 6$
 $x^3 - 4x^2$
(-) (+)
 $\overline{x^2 - 10x}$
 $x^2 - 4x$
(-) (+)
 $-6x + 24$
(+) (-)
 \overline{x}

Now, to find other zeroes of p(x),

Put $x^2 + x - 6 = 0$ $\Rightarrow x^2 + 3x - 2x - 6 = 0$ $\Rightarrow x(x + 3) - 2(x + 3) = 0$ $\Rightarrow (x + 3) (x - 2) = 0$ $\Rightarrow x = -3, 2$ $\therefore -3$ and 2 are the other two zeroes of the given polynomial. Ans.

Q. 4. For what value of *k*, is the polynomial

 $f(x) = 3x^4 - 9x^3 + x^2 + 15x + k$ completely divisible by $3x^2 - 5$? [CBSE OD, Set 1, 2019]

Ans. Given,

 $f(x) = 3x^4 - 9x^3 + x^2 + 15x + k$ It is completely divisible by $3x^2 - 5$ Let $g(x) = 3x^2 - 5$

 \therefore *f*(*x*) is completely divisible by *g*(*x*) then

$$k + 10 = 0$$
$$k = -10$$

- Q. 5. Find the zeroes of the quadratic polynomial $7y^2 \frac{11}{3}y \frac{2}{3}$ and verify the relationship between the zeroes and the coefficients. [CBSE OD, Set 1, 2019]
- **Ans.** The given polynomial is $P(y) = 7y^2 - \frac{11}{2}y - \frac{2}{2}$

...

$$P(y) = 7y - 3y - 3y - 3$$

$$P(y) = 0$$

$$7y^{2} - \frac{11}{3}y - \frac{2}{3} = 0$$

$$21y^{2} - 11y - 2 = 0$$

$$21y^{2} - 14y + 3y - 2 = 0$$

$$7y (3y - 2) + 1 (3y - 2) = 0$$

$$(3y - 2) (7y + 1) = 0$$

$$y = \frac{2}{3}, -\frac{1}{7}$$

So zeroes of P(y) are $\frac{2}{3}$, $-\frac{1}{7}$

Verification: On comparing
$$7y^2 - \frac{11}{3}y - \frac{2}{3}$$

with $ax^2 + bx + c$, we get

$$a = 7, b = \frac{11}{3}, c = \frac{2}{3}$$

Sum of zeroes
$$= \frac{-b}{a}$$
$$\frac{2}{3} + \left(-\frac{1}{7}\right) = \frac{-\left(\frac{-11}{3}\right)}{7}$$
$$\frac{14-3}{21} = \frac{11}{3 \times 7}$$
$$\frac{11}{21} = \frac{11}{21}$$

Product of zeroes = $\frac{c}{-}$ а

$$\frac{2}{3} \times \left(-\frac{1}{7}\right) = \frac{\left(-\frac{2}{3}\right)}{7}$$
$$\frac{-2}{21} = \frac{-2}{3 \times 7}$$
$$\frac{-2}{21} = \frac{-2}{21}$$
Hence Verified.

Q. 6. Find the value of k such that the polynomial $x^2 - (k + 6)x + 2(2k - 1)$ has sum of its zeros equal to half to their [CBSE Delhi, Set 1, 2019] product.

Ans. The given quadratic polynomial is $x^{2} - (k+6)x + 2(2k-1)$ Comparing with $ax^2 + bx + c$, we get

$$a = 1, b = -(k + 6) \text{ and } c = 2(2k + 1)$$

Let the zeroes of the polynomial be α and β

we know that

$$\alpha + \beta = -\frac{b}{a}$$
$$= \frac{k+6}{1}$$
$$\alpha + \beta = k+6 \qquad \dots(i)$$

or Also,

or

...

$$\alpha\beta =$$

$$=\frac{2(2k-1)}{1}$$

...(ii)

 $\alpha\beta = 2 (2k - 1)$ Given,

Sum of zeroes = $\frac{1}{2}$ of their product

C

$$\alpha + \beta = \frac{1}{2} \alpha \beta$$

or

$$k+6 = \frac{1}{2} \times 2(2k-1)$$
[using equations (i) & (ii)]
or

$$k+6 = 2k-1$$

$$k = 7$$

Q. 7. Find all zeroes of the polynomial $3x^3 + 10x^2 - 9x - 4$ if one of its zero is 1. [CBSE Delhi, Set 3, 2019]

Ans. Given,

$$P(x) = 3x^3 + 10x^2 - 9x - 4$$

$$x = 1 \text{ is a zero of } P(x)$$

$$\therefore (x - 1) \text{ is a factor of } P(x)$$
To find other zeroes, we divide $P(x)$ by $(x - 1)$

$$x - 1)\overline{3x^3 + 10x^2 - 9x - 4(3x^2 + 13x + 4)}$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(3x^2 + 12x + x + 4)$$

$$= (x - 1)(x + 4)(3x + 1)$$
other zeroes are $x + 4 = 0$

$$x = -4,$$
and $3x + 1 = 0$

$$x = -\frac{1}{3}$$

$$\therefore \text{ All zeroes are } x = 1, x = -4 \text{ and } x = -\frac{1}{3}$$

- Q. 8. Find all zeroes of the polynomial $(2x^4 9x^3 + 5x^2 + 3x 1)$ if two of its zeroes are $(2 + \sqrt{3})$ and $(2 \sqrt{3})$.
- Topper's Answers

\parallel	Two zeroes -> 2+53 and 2-53.
	=> product of two zeroes is also a zero.
	=) $(2+3)(2-3) = 4-3 = 1$ $[(a+b)(a-b) = a^2-b^2].$
	As 1 is a zero, $=> x-1$ is a factor.
	Dividing,
	$(x-1)$ $7x^{4} - 9x^{3} + 5x^{2} + 3x - 1(2x^{3} - 7x^{2} - 2x + 1)$
	2×4-2×3
	$-2\chi^3 + 5\chi^2$
	$-2x^{3}+7x^{2}$
	$-2 \times^{2} + 3 \times -2 \times^{2} + 2 \times$
	x-1 x-1
	=) By division algorithm, and a (r)
	$p(x) = (x-1)(2x^3 - 7x^2 - 2x + 1)$
	Now, in a cubic polynomial, we knows
	sum of noots = - coeff. of x ?
	Coeff. of x2.
	The roots of g(x) are 2+ 5, 2-12, and X.
	$\rightarrow q + 2 + J + 2 - J = - (-7)$
K	$x + 4 = \frac{7}{2}$
	$\alpha = -\frac{1}{2}$ which is hence a zero of $p(w)$
	2 All zerona and a 24 E and 2- E
-11-	m control the - 2, 1, 2743 and 2745.

Ans. Here, $p(x) = 2x^4 - 9x^3 + 5x^2 + 3x - 1$ And two of its zeroes are $(2+\sqrt{3})$ and $(2-\sqrt{3})$. Quadratic polynomial with zeroes is given by, $\{x-(2+\sqrt{3})\}$. $\{x-(2-\sqrt{3})\}$ $(x-2-\sqrt{3})(x-2+\sqrt{3})$ \Rightarrow $(x-2)^2 - (\sqrt{3})^2$ \Rightarrow $x^2 - 4x + 4 - 3$ \Rightarrow $x^2 - 4x + 1 = g(x)$ Let, Now, g(x) will be a factor of p(x) so g(x)will be divisible by p(x) $2x^2 - x - 1$ $x^2 - 4x + 1$) $2x^4 - 9x^3 + 5x^2 + 3x - 1$ 2.4 9.3 + 2.2

$$\begin{array}{r}
2x - 6x^{2} + 2x \\
- + - \\
- x^{3} + 3x^{2} + 3x \\
- x^{3} + 4x^{2} - x \\
+ - + \\
- x^{2} + 4x - 1 \\
- x^{2} + 4x - 1 \\
+ - + \\
\end{array}$$

For other zeroes,

$$2x^{2} - x - 1 = 0$$

$$2x^{2} - 2x + x - 1 = 0$$

or
$$2x (x - 1) + 1 (x - 1) = 0$$

$$(x - 1) (2x + 1) = 0$$

$$x - 1 = 0 \text{ and } 2x + 1 = 0$$

$$-1$$

$$x = 1, x = \frac{-1}{2}$$

Zeroes of p(x) are

1,
$$\frac{-1}{2}$$
, 2+ $\sqrt{3}$ and 2- $\sqrt{3}$.

- Q. 9. If three zeroes of a polynomial $x^4 x^3 3x^2 + 3x$ are 0, $\sqrt{3}$ and $-\sqrt{3}$, then find the fourth zero. [CBSE Term 1, 2016]
- **Ans.** Let, $P(x) = x^4 x^3 3x^2 + 3x$

Given, 0, $\sqrt{3}$, $-\sqrt{3}$ are three zeroes, so

$$x = 0,$$

$$x = \sqrt{3} \text{ and } x = -\sqrt{3}$$

$$\Rightarrow \qquad (x - \sqrt{3}) = 0 \text{ and } x + \sqrt{3} = 0$$

Here, $x(x + \sqrt{3})(x - \sqrt{3})$ will also be the factor of P(x).

Or, $x(x^2 - 3)$ will be the factor of P(x). then $x^3 - 3x$ $x^4 - x^3 - 3x^2 + 3x(x - 1)$ $x^4 - 3x^2$ - + $-x^3 + 3x$ + -0 Quotient = (x - 1)So fourth zero $\Rightarrow x - 1 = 0$ $\Rightarrow x = 1$

Q. 10. Using division algorithm, find the quotient and remainder on dividing f(x)by g(x) where $f(x) = 6x^3 + 13x^2 + x - 2$ and g(x) = 2x + 1. [CBSE Term 1, 2016]

Quotient = $3x^2 + 5x - 2$ and Remainder = 0

Q. 11. Find a quadratic polynomial, the sum and

product of whose zeroes are 0 and $-\frac{3}{5}$ respectively. Hence find the zeroes. [CBSE Term 1, 2015]

Ans. Quadratic polynomial

$$= x^2 - ($$
Sum of zeroes $) x +$ Product of zeroes

$$= x^{2} - (0) x + \left(\frac{-3}{5}\right) = x^{2} - \frac{3}{5}$$
$$= (x)^{2} - \left(\sqrt{\frac{3}{5}}\right)^{2}$$
$$= \left(x - \sqrt{\frac{3}{5}}\right) \left(x + \sqrt{\frac{3}{5}}\right)$$

Zeroes are,
$$x - \sqrt{\frac{3}{5}} = 0$$
 or $x + \sqrt{\frac{3}{5}} = 0$
 $\Rightarrow \qquad x = \sqrt{\frac{3}{5}}$ or $x = -\sqrt{\frac{3}{5}}$

🗳 Long Answer Type Questions .

- Q. 1. Obtain all other zeroes or the polynomial $x^4 + 6x^3 + x^2 - 24x - 20$, if two of its zeroes [CBSE Term 1, 2016] are +2 and -5.
- Ans. Given, 2 and –5 are the zeroes of polynomial () 1 (2) 2

$$p(x) = x^{4} + 6x^{3} + x^{2} - 24x - 20$$

So, $(x - 2)$ and $(x + 5)$ are factors of $p(x)$
 $\Rightarrow (x - 2) (x + 5)$ is also a factor of $p(x)$
So, $(x - 2) (x + 5) = x^{2} + 3x - 10$
 $x^{2} + 3x - 10)\overline{x^{4} + 6x^{3} + x^{2} - 24x - 20(x^{2} + 3x + 2))}$
$$x^{4} + 3x^{3} - 10x^{2} + \frac{x^{4} + 3x^{3} - 10x^{2}}{3x^{3} + 11x^{2} - 24x - 20}$$
$$\frac{3x^{3} + 9x^{2} - 30x}{-x^{2} + 6x - 20}$$
$$\frac{2x^{2} + 6x - 20}{-x^{2} + 6x}$$

So, by remainder theorem,

Dividend = Divisor × Quotient

+ Remainder

$$x^4 + 6x^3 + x^2 - 24x - 20$$

 $= (x^2 + 3x - 10) \times (x^2 + 3x + 2) + 0$
 $= (x^2 + 3x - 10) (x^2 + 2x + x + 2)$
 $= (x^2 + 3x - 10) [x(x + 2) + 1(x + 2)]$
 $= (x^2 + 3x - 10) (x + 2) (x + 1)$

So other zeros are -2 and -1.

Q. 2. If the polynomial

 $(x^4 + 2x^3 + 8x^2 + 12x + 18)$ is divided by another polynomial $(x^2 + 5)$, the remainder comes out to be (px + q), find the values of *p* and *q*.

[CBSE Term 1, Set 1, 2015]

$$x = \sqrt{\frac{3}{5} \times \frac{5}{5}}$$
 or $x = -\sqrt{\frac{3}{5} \times \frac{5}{5}}$
 $x = \frac{\sqrt{15}}{5}$ or $x = \frac{-\sqrt{15}}{5}$

(4 marks each)

Q. 3. What must be subtracted from p(x) $= 8x^4 + 14x^3 - 2x^2 + 8x - 12$ so that $4x^2 + 3x^2 +$ 3x - 2 is factor of p(x)? This question was given to group of students for working together.

> Do you think teacher should promote group work?

> > [CBSE Term 1, Set 1, 2015]

Ans. For this,

 \Rightarrow

...

15x - 14

Polynomial to be subtracted is (15x - 14).