Haloalkanes and Haloarenes

INTRODUCTION

- + Haloalkanes and haloarenes are organic compounds in which halogen atom is directly linked with carbon atom.
- + Haloalkanes are also called as alkyl halides.
- \bullet General formula of haloalkanes is $C_nH_{2n+1}X$, (X = F, Br, Cl, I).
- → The carbon that bears functional group (halogen atom) is sp³ hybridised in alkyl halides.
- + In these compounds, geometry of carbon is tetrahedral.
- + Central carbon atom has a bond angle of 109°28'.
- → On the basis of number of halogen atom(s), haloalkanes are of following types:
 - (i) Monohalides They possess only one halogen atom; e.g., CH₃Cl, CH₃CH₂Br, etc.
 - (ii) Dihalides They possess two halogen atoms. These are of following three types:

geminal dihalide, vicinal dihalide, and α , ω or terminal dihalide.

- (iii) Trihalides They possess three halogen atoms; e.g., CHCl₃, CHI₃, etc.
- (iv) Tetrahalides They possess four halogen atoms; e.g., CCl₄, etc.
- → Alkyl halide shows chain and position isomerism. If unsymmetrical or chiral carbon is present, then it shows optical isomerism also.
- → Alkyl halides do not show functional isomerism, metamerism, tautomerism, and geometrical isomerism.

PHYSICAL PROPERTIES HALOAIKANES

- Alkyl halides are colourless with sweet smell or pleasant smelling oily liquid. However, CH₃F, CH₃Cl, CH₃Br, CH₃CH₂F, CH₃CH₂Cl are gaseous in nature.
- Although carbon-halogen bond is polar in nature, alkyl halides are partially soluble in H₂O.
- Alkyl halides are completely soluble in organic solvents.
- Boiling point ∞ molecular weight

$$\propto \frac{1}{\text{branching (for isomers)}}$$

- Chloroform is colourless and pleasant smelling liquid while iodoform is yellow crystalline solid.
- · Chloroform is used as an anaesthetic agent.
- Iodoform is more reactive than chloroform due to large size of iodine atom.

$$CHI_3 + AgNO_3 \rightarrow AgI$$
 (yellow ppt)

- Carbon tetrachloride is colourless liquid and used as FIRE EXTINGUISHER under the trade name PYRENE.
- Chloroform is kept in dark coloured bottles to avoid the following oxidation reaction.

$$\text{CHCl}_{3} \xrightarrow{\text{[O]}} \text{COCl}_{2} \quad \text{(Phosgene)} + \text{HCl}$$

$$\text{(Poisonous)}$$

• Test of Chloroform (Before Anaesthetic use):

Serial Number	Test	Pure CHCI ₃	[COCI ₂ + HCI]
(i)	Litmus paper	Blue o Blue	Blue $ ightarrow$ Red
(ii)	AgNO ₃	No ppt	While ppt (AgCl)
(iii)	H ₂ SO ₄	No colouration	Yellow colour

- Polarity order is RF > RCl > RBr > RI
- Reactivity order is RI > RBr > RCl > RF
- For same halide group, the reactivity order is 3° halide > 2° halide > 1° halide
- Fluorides and chlorides are lighter than water whereas bromides and iodides are heavier than H₂O due to more
 density of bromine than oxygen. CH₂I₂ is heavier liquid after Hg.
- All haloalkanes burn on copper wire with green flame (BELESTEIN TEST for halogens)

ALIPHATIC NUCLEOPHILIC SUBSTITUTION

If a substitution reaction is brought about by a nucleophile then it is known as nucleophilic substitution reaction. A general nucleophilic substitution reaction may be represented as:

$$R \text{--}L + \overset{\Theta}{\text{Nu}} \longrightarrow R \text{--}\text{Nu} + \overset{\Theta}{\text{L}}$$

where L is a leaving group and Nu is an incoming nucleophile.

In nucleophilic substitution two changes occur:

- (i) breaking of the bond with leaving group
- (ii) formation of bond with nucleophile

The principal mechanistic variations are associated with changes in the timing of the two processes.

Depending on nucleophiles, substrates, leaving groups and reaction conditions, several mechanisms are possible but the most common are $S_N 1$ and $S_N 2$ mechanisms.

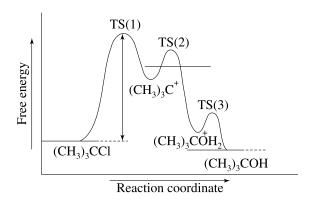
S_N1 Mechanism or S_N1 Reaction

The mechanisms for the reaction of tert-butyl chloride with water are given below:

$$(CH_3)_3 CCI + 2 H_2O \rightarrow (CH_3)_3 COH + H_3O^+ + CI^-$$

Step 1

$$\begin{array}{c} CH_3 \\ \downarrow \\ C \\ CH_3 \end{array} \stackrel{Slow}{\underset{H_2O}{\longleftarrow}} H_3C \stackrel{CH_3}{\underset{CH_3}{\longleftarrow}} + : \stackrel{\ominus}{\overset{\ominus}{\overset{\smile}{\bigcirc}}} :$$


Step 2

Step 3

Main characteristics:

- (1) The $S_N 1$ mechanism is mostly two-step process.
- (2) The first step is a slow ionisation to form carbocation and thus rearrangement into stable carbocation accompanied frequently.
- (3) The second step is a fast attack on the carbocation by the nucleophile. The carbocation being a very strong electrophile reacts very fast with both strong and weak nucleophiles.

(4) Energy profile diagram

(5) Kinetics

The S_N1 reaction is first order reaction which follows the rate law given below:

Rate = K [Substrate]

So that nucleophile plays no role in the mechanism.

(6) Effect of substrate structure:

The more stable the carbocation intermediate, the faster the $S_{\rm N}1$ mechanism.

The following is the decreasing order of reactivity of some substrates in S_N1 reaction:

$$Ar_3CX > Ar_2CHX > R_3CX > ArCH_2X > CH_2 = CH-CH_2-X > R_2CHX > RCH_2X$$

- (a) $S_N 1$ reactions are highly favoured if there is a heteroatom at the α -carbon because it highly stabilises the carbocation formed.
- (b) Substrate containing carbonyl group on β -carbon does not gives S_N1 reaction because carbonyl group has very strong–I effect which destabilises the carbocation reaction intermediate.
- (c) The greater the crowding around the carbon having leaving group, the greater is the possibility of $S_{\rm N}1$ reaction.

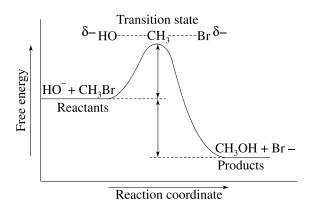
For some tertiary substrates the rate of S_N1 reactions is greatly increased if the β -carbon is highly substituted.

- (7) Effects of solvent: Polar solvents accelerate the S_N1 reaction because it favours the formation of polar transition state.
- (8) **Effect of leaving group:** Weaker bases are good leaving groups and thus favour $S_N 1$ mechanism. Thus the reactivity order among the halide ions is:

$$I^- > Br^- > Cl^- > F^-$$

(9) **Effect of attacking nucleophile:** Since the rate determining step of $S_N 1$ reaction does not involve the incoming nucleophile, and neither its nucleophilicity nor its concentration has any effect on the rate of the reaction, so an $S_N 1$ reaction can proceed with weak nucleophiles of low concentration.

(10) **Stereochemistry:** The $S_N 1$ reaction on a chiral starting material ends up with the racemisation of the product (enantiomers) because the carbocation formed in the first step of an $S_N 1$ reaction has a trigonal planar structure, when it react with nucleophile, it may do so form either front side or back side.


S_N2 Mechanism or S_N2 Reaction:

A typical example of this process is the hydrolysis of methyl bromide in the presence of NaOH.

$$CH_3$$
-Br + NaOH \longrightarrow CH_3 -OH + NaBr

Main characteristics:

- (1) S_N^2 mechanism is a one-step (concerted) process.
- (2) There is no intermediate, only transition state is formed.
- (3) The conversion of reactants to transition state is the rate determining step.
- (4) Energy profile diagram

- (5) **Kinetics:** The S_N 2 reaction is a second order reaction that follows the rate law given below: Rate = K [Substrate] [Nucleophile]
- (6) **Effect of substrate structure:** The rate of reaction depends on the steric bulk of the alkyl group. Kinetic studies have shown that the methyl halides are the most reactive in S_N2 reactions. The increase in the length of chain of alkyl group decreases the rate of reaction. Alkyl branching next to the leaving group decreases the rate drastically. The reactivity order for S_N2 reactions follows the following order.

$$\text{CH}_3 > 1^{\circ} > 2^{\circ} >> \text{neopentyl} > 3^{\circ}$$

- (7) **Effects of solvent:** Aprotic solvents increase the rate of S_N^2 reactions.
- (8) **Effect of leaving group:** Weaker bases are good leaving groups and thus favour S_N2 mechanism. Thus the reactivity order among the halide ions is:

$$I^- > Br^- > Cl^- > F^-$$

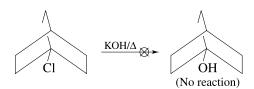
(9) Effect of attacking nucleophile: Since the single step S_N^2 reaction involves the substrate and the nucleophile, the rate of the reaction depends on largely on the concentration of nucleophile and its nucleophilicity. Strong nucleophiles increases the rate of the S_N^2 reaction while weak nucleophiles decrease it.

(10) **Stereochemistry:** S_N2 reaction involves the inversion of stereochemistry around carbon atom of the substrate. This inversion is known as Walden inversion because in this reaction the nucleophile attaches the substrate from the just opposite (back) side (at 180°) to the leaving group.

Summary of structural variations and nucleophilic substitution:

We are now in position to summarise structural variation for $S_N 1$ and $S_N 2$ reaction in ordinary condition:

	Substrate	S _N 1 reaction	S _N 2 reaction
1.	CH ₃ –X	no	very good
2.	R-CH ₂ -X	no	good
3.	R ₂ CH–X	yes	yes
4.	R ₃ C-X	very good	no
5.	CH ₂ =CH-CH ₂ -X	yes	good
6.	Ar-CH ₂ -X	yes	good
7.	R-CO-CH ₂ -X	no	excellent
8.	R-O-CH ₂ -X	excellent	good
9.	R ₂ N-CH ₂ -X	excellent	good
10	CH ₂ =CH-X/Ar-X	no	no


No substitutions at bridgehead carbons:

 S_N 1 reactions proceed through carbocation which must be planar. Because of rigid like structures of the substrate, bridgehead carbon atoms cannot assume planarity. Hence, heterolysis leading to the formation of carbocation is also prevented.

 S_N 2 reaction proceed through backside attack by the nucleophile, inversion of configuration and coplanarity of the nonreacting groups in the TS all of which are prevented at the bridgehead carbons due to rigid cage like structures of the compounds containing the bridgehead carbons.

Thus bridgehead carbons are resistant towards substitution by the SN1 and SN2 mechanism.

For example:

Elimination Reaction:

In the presence of alcoholic KOH and heating, elimination reaction occurs resulting into a double bond. If more than one product is possible, the major product is of more substituted alkene (Saytzeff rule).

$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-CH-CH}_3 \xrightarrow{\text{alcoholic}} \text{CH}_3\text{CH=CHCH}_3\text{+CH}_3\text{CH=CH}_2\\ \text{Br} \end{array}$$

Competition between Substitution and Elimination Reactions:

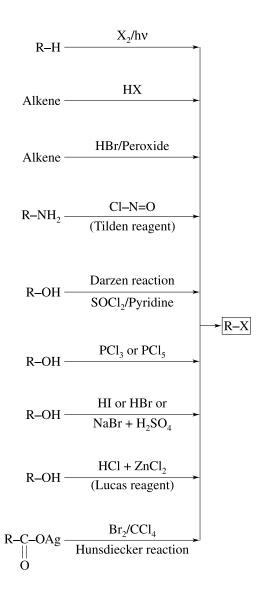
The relative proportion of products depends on mainly three factors, namely, basicity of the nucleophile, hindrance in the haloalkane, and steric bulk around the nucleophilic atom.

Factor 1: Weak bases (H₂O, ROH, halides, RS⁻, N₃, NC⁻, RCOO⁻) lead to more substitution.

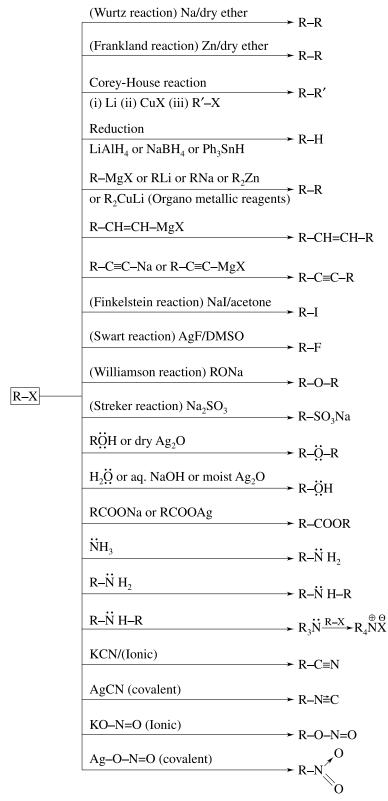
Strong bases (HO $^-$, RO $^-$, H $_2$ N $^-$, R $_2$ N $^-$) lead to more elimination.

Factor 2: Steric hindrance around the reacting carbon.

Sterically unhindered (primary) haloalkanes lead to more substitution.


Sterically hindered (branched primary, secondary, tertiary) haloalkanes lead to more elimination.

Factor 3: Steric hindrance in the nucleophile.

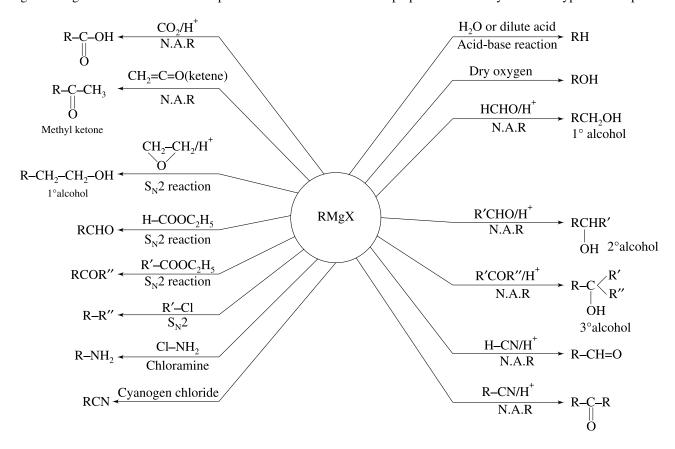

Sterically unhindered (HO⁻, CH₃O⁻, CH₃CH₂O⁻, H₂N⁻) nucleophile lead to more substitution.

Sterically hindered $(CH_3)_3CO^-$, $[(CH_3)_2CH_2NH^-]$ nucleophiles lead to more elimination.

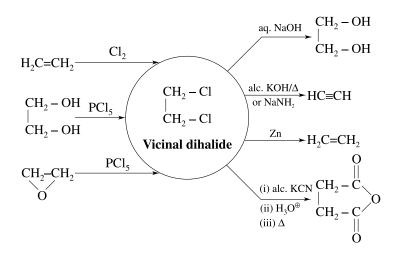
Methods of Preparation of Haloalkanes:

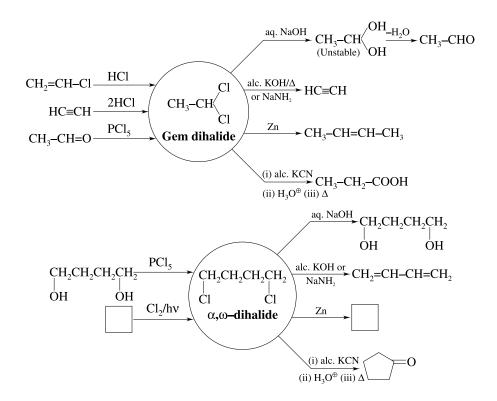
Chemical Properties of Haloalkane:

Formation and reaction of Grignard Reagent


Haloalkanes react with magnesium metal (turnings) in dry ether to form alkyl magnesium halide, known as Grignard reagent.

$$\begin{array}{ccc} RX + Mg & \xrightarrow{Dry \text{ ether}} & RMgX \\ & & & & \\ ArX + Mg & \xrightarrow{Dry \text{ ether}} & ArMgX \end{array} \right\} \begin{array}{c} Grignard \\ reagents \end{array}$$


The order of reactivity of halides with magnesium is RI > RBr > RCl.


Reaction of Grignard reagent:

Grignard reagent is most versatile compound as it can be used in the preparation of many different types of compounds.

Chemical Properties and Methods of Preparation of Dihalides:

Trihalides

Haloform Reaction

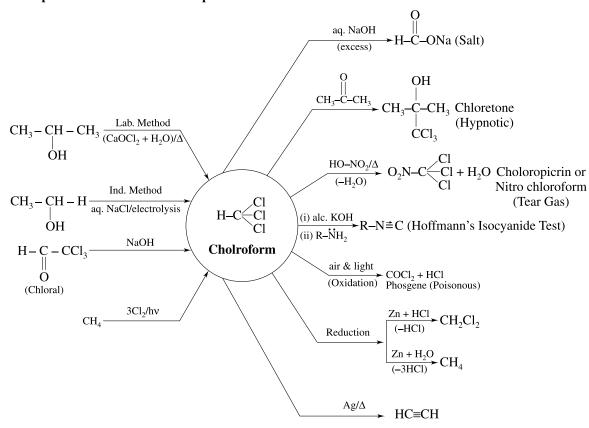
When methyl ketones react with halogens in the presence of base multiple halogenations always occur at the carbon of the methyl group. Multiple halogenations occur because introduction of the first halogen (owing to its electronegativity) makes the remaining α hydrogens on the methyl carbon more acidic.

The Iodoform Test

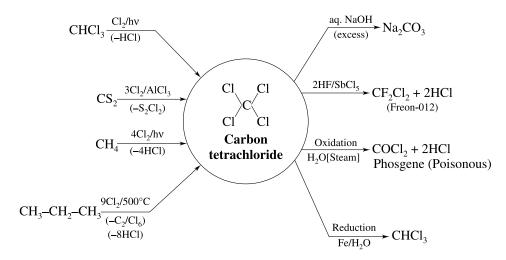
The haloform reaction using iodine and aqueous sodium hydroxide is called the iodoform test. The iodoform test was once frequently used in structure determinations because it allows identification of the following two groups:

–C–CH
$$_3$$
 and –CH–CH $_3$ \mid O OH

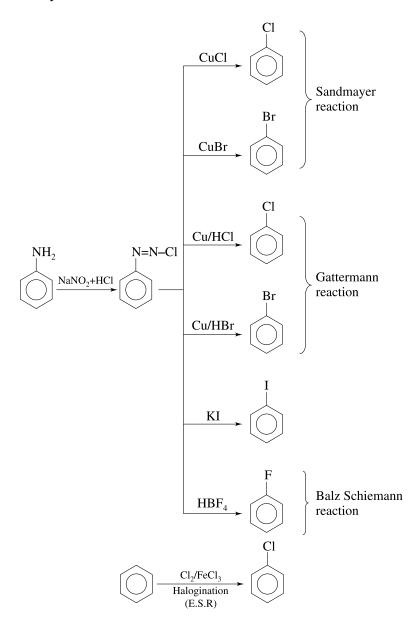
Compounds containing either of these groups react with iodine in sodium hydroxide to give a bright yellow precipitate of iodoform (CHI₃, mp 119°).


Compounds containing the -CHOHCH₃ group give a positive iodoform test because they are first oxidized to methyl ketones:

$$\begin{array}{c} -\text{CHCH}_3 + \text{I}_2 + 2\text{OH}^{-} \longrightarrow \text{CCH}_3 + 2\text{I}^{-} + 2\text{H}_2\text{O} \\ | & | \\ \text{OH} & \text{O} \end{array}$$


Methyl ketones then react with iodine and hydroxide ion produce iodoform:

The group to which the $-COCH_3$ or $-CHOHCH_3$ function is attached can be aryl, alkyl, or hydrogen. Thus, even ethanol and acetaldehyde give positive iodoform test.


Chemical Properties and Methods of Preparation of Chloroform:

Chemical Properties and Methods of Preparation of Carbon Tetrachloride:

Methods of Preparation of Aryl Halides:

Chemical Properties of Aryl Halides:

(1) Electophilic Aromatic Substitution Reaction $(Ar-S_E)$

The halo groups are the only ortho-para directors even that are deactivating group. It is due to the fact that electron withdrawing inductive effect influences reactivity and their electron donating resonace effect governs orientation.

$$\begin{array}{c} Cl & Cl \\ Cl_{2}/AlCl_{3} \\ Halogenation (E.S.R.) \\ \hline \\ Cl \\ \hline \\ CH_{3}Cl/AlCl_{3} \\ \hline \\ Friedel-Craft Reaction \\ (E.S.R) \\ \hline \\ CH_{3}-C-Cl/AlCl_{3} \\ \hline \\ Cl -Cl/AlCl_{3} \\ \hline \\$$

(2) Nucleophilic Aromatic Substitution Reaction (Ar-SN)

In general, aryl halides are less reactive than alkyl halides towards nucleophilic substitution reactions. This is due to the resonance effect in which lone pair of electron on halogen atom is delocalised to benzene ring imparting a partial double bond character to C–X bond.

In alkyl halide, the C-X bond involves $sp^3(C)$ whereas in aryl halide, $sp^2(C)$ is involved. Since the $sp^2(C)$ is more electronegative than the $sp^3(C)$, the C-X bond in aryl halide is shorter than in alkyl halides. This makes C-X bond more strong in aryl halides.

Under normal conditions, halobenzenes are inert to nucleophiles. However, Chlorobenzene can be made to react if the experimental conditions are:

- 1. At high temperature and high pressure.
- 2. In presence of strong electron-withdrawing substituent at ortho and/or para positions.

(A) Addition Elimination reaction

The presence of electron-withdrawing substituent at ortho and/or para positions is a favourable factor for the nucleophilic substitution reaction.

More such substituents, the faster the reaction.

Mechanism

S_N Ar reaction takes place by a two steps reaction,

In the first step nucleophile attacks on the carbon bearing the leaving group.

In the second step leaving group departs, re-estabilishing the aromaticity of the ring.

Meisenheimer complex

The carbanion is stabilised by electron-withdrawing groups in the positions ortho and para to the halogen atom.

(B) Elimination Addition Reaction (Benzyne)

An aromatic halide such as chlorobenzene can undergo nucleophilic substitution in presence of very strong base such as $NaNH_2$ or KNH_2

Substitution at the carbon that was attached to the leaving group is called direct substitution. Substitution at the adjacent carbon is called cine substitution.

Mechanism

The mechanism of reaction proceed through benzyne intermediate.

$$\begin{array}{c|c} NH_2 & NH_2 \\ \hline \\ NH_2 & \\ \hline \\ NH_2 & \\ \hline \\ NH_2 & \\ \hline \\ \\ Benzyne & \\ \\ \end{array}$$

The substituted halobenzene give different products through benzyne formation. The major product formation can be predicted on the basis of inductive electronic effect of the stability of the intermediate carbanion.

$$\begin{array}{c|ccccc} CH_3 & CH_3 & CH_3 \\ & & & & \\ & & & \\ &$$

(3) Wurtz-Fittig Reaction

(4) Fittig Reaction

$$C1 + 2Na + C1$$
 Ethereal solution $+ 2NaC1$

(5) Chlorobenzene to D.D.T

$$Cl \longrightarrow H + O = CH-CCl_3 \xrightarrow{H_2SO_4(conc.)} Cl \longrightarrow CH-Cl_3$$

$$Cl \longrightarrow H \xrightarrow{Trichloro acetaldehyde (Chloral)} Cl \longrightarrow D.p'-dichloro diphenyl trichloroethane (D.D.T)$$

SOLVED EXAMPLE

O
||
1.
$$CH_3$$
- CH_2 - C - O $Ag \xrightarrow{Br_2} X \xrightarrow{(1) Li} Y \xrightarrow{CH_3$ - CH_2 - Br Z ;

Z is:

(1) CH₃-CH₃

(2) CH₃-CH₂-CH₃

Sol. [3]

$$\begin{array}{c} O \\ \parallel \\ H_3C-CH_2-C-O \text{ Ag} \xrightarrow{Br_2} CH_3-CH_2-Br \\ \hline (X) & \downarrow^{(i)} Li \\ (ii) Cul \\ \\ Li[Cu(CH_2-CH_3)_2] \\ \hline (Y) \\ \downarrow CH_3-CH_2-Br \\ \hline CH_3-CH_2-CH_3 \\ \hline (Z) \end{array}$$

- 2. An S_N 1 reaction at the asymmetric carbon of an enantiomerically pure chiral alkyl halide gives a product:
 - (1) with retention of configuration
 - (2) with inversion of configuration
 - (3) with racemisation
 - (4) with partial racemisation

Sol. [3]

Since intermediate is carbocation thus nucleophile attack from both front as well back side.

- **3.** 1, 1-Dichloropropane on hydrolysis gives:
 - (1) propanone
- (2) propanal
- (3) ethanal
- (4) 1, 1-Propanediol

Sol. [2]

$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-CH} \stackrel{\text{Cl}}{\longleftarrow} \xrightarrow{\text{Aq. KOH}} \text{CH}_3\text{-CH}_2\text{-CH} \stackrel{\text{OH}}{\longleftarrow} \\ \text{unstable} & -\text{H}_2\text{O} \\ \text{CH}_3\text{-CH}_2\text{-CH=O} \\ \text{Propanal} \end{array}$$

- **4.** Which of the following reagents may not be used to convert alkyl chlorides and alkyl bromides into alkyl fluorides?
 - (1) Hg₂F₂
- (2) SbF₅
- (3) AgF
- (4) CaF₂

Sol. [4]

$$R-Br \xrightarrow{HgF_2} R-F$$

$$\xrightarrow{or} R-F$$

$$or$$

$$AgF$$

Swart reaction

- **5.** Which of the following statements is incorrect for ethylene dichloride and ethylidene chloride?
 - (1) These are structural isomers
 - (2) Both of these yield same product on reaction with alcoholic KOH solution
 - (3) Both of these yield same product on treatment with aqueous KOH solution
 - (4) Both of these yield same product on reduction

Sol. [3]

6.
$$CH = CH \xrightarrow{HgSO_4} (X) \xrightarrow{LiAlH_4} (Y) \xrightarrow{P_4/Br_2} (Z)$$

In this sequence of reaction, (Z) is:

- (1) Ethylene bromide
- (2) Ethanol
- (3) Ethyl bromide
- (4) Ethylidene bromide

Sol. [3]

$$CH = CH \xrightarrow{HgSO_4} CH_3 - CH = O \xrightarrow{LiAlH_4} CH_3 - CH_2 - OH$$

$$\downarrow Br_2/P_4$$

$$CH_3 - CH_2 - Br$$

$$Ethyl bromide$$

- **7.** When HCl gas is passed through propene in the presence of benzoyl peroxide it gives
 - (1) n-propyl chloride
- (2) 2-chloropropane
- (3) allyl chloride
- (4) no reaction

Sol. [2]

HCl is not affected by peroxide so major product formed by E.A.R.

$$CH_{3}\text{-}CH=CH_{2}\xrightarrow{\text{HCl}}CH_{3}\xrightarrow{\text{CH}}CH_{3}\xrightarrow{\text{CH}}CH_{3}\xrightarrow{\text{CH}}CH_{3}\xrightarrow{\text{CH}}CH_{3}$$

$$E.A.R$$

$$Cl$$

- 8. 1-Methylcyclohexene on addition of HCl produces
 - (1) 1-chloro-1methylcyclohexane
 - (2) (±)-trans-2-chloro-1-methylcyclohexane
 - (3) (±) cis-2-chloro-1-methylcyclohexane
 - (4) 1-chloro-2-methylcyclohexane

Sol. [1]

Markowrikaff No chiral C addition

l-chloro-lmethylcyclohexane

- **9.** Which of the following compounds has the highest boiling point?
 - $(1) \qquad \qquad (2) \qquad (2)$ $(3) \qquad \qquad (4)$

Sol. [1]

Boiling point ∝ Molecular weight

$$\approx \frac{1}{\text{Branching (for isomer)}}$$

- **10.** Ethyl alcohol is heated with bleaching powder and water. The final product formed is:
 - (1) Cl₃CCHO
- (2) CH₃CH₂Cl
- (3) Cl₃CCO₂H
- (4) CHCl₃

Sol. [4]

$$Ca(OCl)Cl + H_2O \longrightarrow Ca(OH)_2 + Cl_2$$

$$CH_3$$
- CH_2 - $OH \xrightarrow{Cl_2} CH_3$ - CH = O

$$CH_3-CH=O \xrightarrow{Cl_2/Ca (OH)_2} CCl_3-C-H$$

$$Co(OH)$$

$$Cl_3-CH$$

$$O Chloral$$

11. For the given reaction, A is:

$$A \xrightarrow{\hspace*{1cm}} Br \\ NO_2$$

- (1) $C_6H_5Br + HNO_3$, H_2SO_4
- (2) $C_6H_5NO_2 + Br_2$, FeBr₃
- (3) $C_6H_5Br + H_2SO_4$, heat
- (4) $C_6H_5NO_2 + HBr$

Sol. [1]

$$\begin{array}{c|c}
Br & Br \\
\hline
HNO_3, H_2SO_4 \\
\hline
NO_2 \\
NO_3
\end{array}$$

 $Br \rightarrow o/p$ directive

12.
$$(i) \text{ HNO}_3/\text{H}_2\text{SO}_4 \longrightarrow \text{Product}$$

$$(ii) \text{ NaOH, } 150^{\circ}\text{C} \longrightarrow \text{Product}$$

$$(iii) \text{ CH}_3\text{-I}$$

$$(iv) \text{ Conc. H}_2\text{SO}_4$$

Product is:

$$(1) \qquad SO_3H \qquad (2) \qquad SO_3H \qquad (3) \qquad O-CH_3 \qquad O-CH_3 \qquad O-CH_3 \qquad (4) \qquad SO_3H \qquad (5)$$

Cl Cl OH OCH₃

$$(ii) \qquad (iii) \qquad (iiii) \qquad (iiii) \qquad (CH_3-I) \qquad (NaOH/350^{\circ}C) \qquad NO_2 \qquad NO_2 \qquad NO_2 \qquad (iv) \qquad (Conc. H_2SO_4) \qquad O-CH_3 \qquad SO_3H$$

13. Which one of the following compounds undergoes predominantly S_N 2 reaction with aqueous NaOH in a polar aprotic solvent?

(2)
$$O_2N$$
— CH_2B_1

$$(4) H2N \longrightarrow CH2Br$$

Sol. [2]

In primary halide

Rate of
$$S_N 2 \propto EWG \propto \frac{1}{ERG}$$

14. Among the compounds

The order of decreasing S_N1 reactivity is

- (1) I > II > III
- (2) I > III > II
- (3) II > III > I
- $(4) \quad III > I > II$

Sol. [2]

Rate of SN_1 reaction ∞ stability of carbocation

15. Which of the following alcohols will give the positive iodoform test?

(3)
$$C_6H_5$$
– CH_2 – CH_2OH

Sol. [1]

Substance like R–CH–CH $_3$ will give positive iodoform OH

test.

16. Which combination of reagents will bring about the following conversion?

- (1) (i) MeMgl/H⁺, (ii) H_2SO_4/Δ , (iii) HBr/ R_2O_2
- (2) (i) $MeMgl/H^+$, (ii) H_2SO_4/Δ , (iii) HBr
- (3) (i) MeMgl/H⁺, (ii) HBr
- (4) (i) MeMgl/H⁺ (ii) H_2SO_4/Δ , (iii) Br_2/hv

Sol. [1]

O

MeMgl/H

Dehydration
$$H_2SO_4/\Delta$$
 CH_3
 HBr/R_2O_2

Anti Markovnikov rule

(Peroxide effect)

17. In the reaction

$$CH_{3}CHCH_{3} \xrightarrow{alc. KOH} A \xrightarrow{Peroxide} B \xrightarrow{acetone} C$$
Br

C is-

Sol. [1]

$$\begin{array}{cccc} \text{CH}_3\text{-CH-CH}_3 & \xrightarrow{\text{alc. KOH}} & \text{CH}_3\text{-CH=CH}_2 \\ & \text{Br} & & \text{HBr/Perorcide} \\ & & \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-Br} \\ & & & \text{Nal/Acetone} \\ & & & \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-I} \end{array}$$

18. Which of the following is an S_N 2 reaction?

(1)
$$\bigwedge^{\text{Cl}} + I^{\Theta} \rightarrow$$

(2) $\Rightarrow \text{Br} + {}^{\Theta}\text{CN} \rightarrow$
(3) $\Rightarrow \text{Br} + {}^{\Theta}\text{H(aq.)} \rightarrow$
(4) $\Rightarrow \text{Br} + {}^{\Theta}\text{H(alc.)} \rightarrow$

Sol. [1]

- \rightarrow 3° halide gives β -elimination
- \rightarrow 2° halide also gives β -elimination with alcohalic $\stackrel{\circ}{OH}$
- \rightarrow 1° halide give SN₂ reaction predominantly.
- 19. Major product of given chemical reaction is

- (4) No reaction takes place
- Sol. [1]

 S_N2 reaction takes place in presence of diethyl ether (Polar aprotic solvent) and $CH_3-CH_2-CH_2-\overline{C}H_2(Nu^-)$

- **20.** These given number of factor influences relative rate of SN_1 reaction except
 - (1) The structure of substrate
 - (2) The concentration and reactivity of nucleophile
 - (3) The effect of solvent
 - (4) The nature of leaving group
- *Sol.* [2]

Rate = $k[substrate]^1$

Independent of concentration of nucleophile

- 21. The reaction of chloroform with acetone gives
 - (1) Mesitylene
- (2) Ethylidene chloride
- (3) Chloretone
- (4) Chloral

Sol. [3]

$$CH_3$$
 $C=O$ $CHCl_3$ CH_3 CH_3 $CCCl_3$ $CHOretone$

- **22.** CH₃CH₂–OH can be converted to CH₃CH₂CN by the following reactions:
 - (1) $CH_3CH_2OH + KCN \xrightarrow{\Delta}$
 - (2) $CH_3CH_2OH + HCN \xrightarrow{\Delta}$
 - (3) CH₃CH₂OH Na/A KCN
 - (4) CH₃CH₂OH SOCl₂ KCN
- Sol. [4]

$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-OH} \xrightarrow{\text{SOCI}_2} \text{CH}_3\text{-CH}_2\text{-CI} \\ & \downarrow \text{KCN} \\ & \text{CH}_3\text{-CH}_2\text{-CN} \end{array}$$

- **23.** Which of the following reactions will proceed the fastest?
 - (1) $CH_3CH_2OH + HCl \longrightarrow CH_3CH_2Cl + H_2O$
 - (2) $CH_3CH_2OH + HBr \longrightarrow CH_3CH_2Br + H_2O$
 - (3) $(CH_3)_2CHOH + HBr \longrightarrow (CH_3)_2CHBr + H_2O$
 - (4) $(CH_3)_2CHOH + HI \longrightarrow (CH_3)_2CHI + H_2O$

 \rightarrow Reactivity of alcohol (towards HX) \propto stability of carbocation

$$\rightarrow$$
 If $-C^{\oplus}$ is same, then HI > HBr > HCl > HF

- **24.** Major product of which of the following reactions shows zero dipole moment?
 - (1) CH₃OH, SOCl₂
 - (2) C_2H_5OH , OH^- , Cl_2
 - (3) CHCl₃, Cl₂, hv
 - (4) CHI₃, Zn, HCl

Sol. [3]

$$CH_3$$
-OH $\xrightarrow{SOCl_2}$ CH_3 -Cl $\mu \neq 0$

CH₃-CH-H
$$\xrightarrow{\text{OH}^{-}/\text{Cl}_{2}}$$
 CHCl₃ + H-COO $\mu \neq 0$
OH reaction

CHCl₃
$$\xrightarrow{\text{Cl}_3/\text{hv}}$$
 CCl₄ $\mu = 0$
CHI₃ $\xrightarrow{\text{Zn/HCl}}$ CH₂Cl₂ $\mu \neq 0$

25. In the reaction

$$C_{2}H_{5}$$
 C Br + KOH water $C_{3}H_{7}$

If the concentration of both the reactants is doubled, the rate of the reaction will

- (1) double
- (2) quadruple
- (3) be reduced to one-fourth
- (4) remain unchanged

Sol. [1]

Substrate is tertiary halide so reaction is SN₁

Thus
$$\frac{dx}{dt} = K$$
 [substrate]

Rate of SN₁ reaction is independent of concentration of alkali.

EXERCISE 1

1. Consider the reaction:

(i)
$$(CH_3)_2CH-CH_2Br \xrightarrow{C_2H_5OH} (CH_3)_2CH-CH_2 OC_2H_5 + HBr$$

(ii)
$$(CH_3)_2CH-CH_2Br \xrightarrow{C_2H_5O^-} (CH_3)_2CH-CH_2 OC_2H_5 + Br$$

The mechanisms of reaction (i) and (ii) are, respectively:

- (1) $S_N 2$ and $S_N 1$
- (2) $S_N 1$ and $S_N 2$
- (3) $S_N 1$ and $S_N 1$
- (4) $S_N 2$ and $S_N 2$

2. 2, 2-Dichloropentane can best be synthesised by:

(1)
$$CH_2CH_2CH_2C \equiv CH \xrightarrow{Cl_2}$$

(2)
$$CH_3CH_2CH_2C \equiv CH \xrightarrow{H_2} [A] \xrightarrow{Cl_2}$$

(3)
$$CH_3CH_2CH_2C \equiv CH \xrightarrow{2HCl}$$

(4)
$$CH_3CH_2CH=CHCH_3 \xrightarrow{HCl}$$

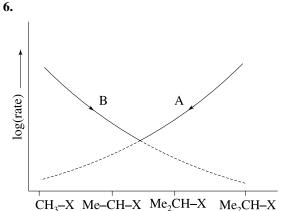
3. HCl Major product:

4. $CH_2 \stackrel{COOH}{\longleftarrow} \stackrel{\Delta}{\longrightarrow} (A) \xrightarrow{\text{Tollen's}} (B) \xrightarrow{Br_2} (C)$

The end product (C) of given sequence of reaction is:

- (1) CH₂BrCOOAg
- (2) CH₃COOBr
- (3) CH₃CH₂Br
- (4) CH₃Br

5.
$$CH_2 \xrightarrow{Br_2} A$$
; A is:


(1)
$$CH_2Br$$

(2)
$$CH_2OH$$

(3)
$$CH_2Br$$

(4)
$$CH_3$$

6

Which of the following is true about given graph A

$$(1) \ A \rightarrow S_N 1 \ B \rightarrow S_N 2 \ (2) \ A \rightarrow S_N 2, \ B \rightarrow S_N 1$$

(3) A and B \rightarrow E₁ (4) A and B \rightarrow E₂

- 7. Ethyl alcohol reacts at faster rate with HI than with HCl in forming the corresponding ethyl halides under identical conditions mainly because:
 - (1) HI, being a stronger acid, protonates ethyl alcohol at oxygen much better and helps substitution
 - (2) the bond length in HI is much shorter than that in HCl
 - (3) I derived from HI is a much better leaving group
 - (4) I derived from HI is a much better nucleophile than Cl-
- 8. Identify the correct reaction to synthesise the following compound from cyclopentane.

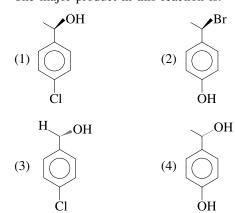
$$(1) \xrightarrow{\text{Cl}_2} \xrightarrow{\text{Alc. KOH}} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_4}$$

$$(2) \xrightarrow{\text{Br}_2} \xrightarrow{\text{C}_2\text{H}_3\text{O}^{\Theta}} \xrightarrow{\text{Br}_2, \text{CCl}_4}$$

$$(3) \xrightarrow{Br_2} \xrightarrow{Alc. KOH} \xrightarrow{NBS} \xrightarrow{Br_2} \xrightarrow{CCl_4}$$

- (4) None of these
- **9.** Which of the following reactions will result in the formation of a chiral centre in the product?
 - (1) $CH_3CH=CH_2 + HBr \longrightarrow$
 - (2) $CH_2=CH_2 + HOBr \longrightarrow$
 - (3) $CH_3CH_2CH=CH_2 + HBr \xrightarrow{H_2O_2}$
 - (4) CH₂CH₂CH=CH₂+HBr —
- 10. In the presence of dibenzoyl peroxide, addition of HBr to 1-butene produces
 - (1) 2-bromobutane
- (2) 1-bromobutane
- (3) (\pm) -2-bromobutane
- (4) 1-bromobutene
- 11. The reaction of (S) 2-bromobutane with OH to produce (R)-butan-2-ol will be
 - (1) first order in 2-bromobutane only
 - (2) first order in OH only
 - (3) first order in 2-bromobutane and first order in OH-
 - (4) second order in OH⁻
- 12. The correct order of increasing reactivity of the substrates (I), (II), (III), and (IV) below, towards S_N1 reaction with a given nucleophile is:

(I) CH_3CH_2 —Br (II) (CH₃)₂CH—Br


(III)
$$CH_2$$
= $CHCH_2$ — Br (IV) Ph
 CH - Br

- (1) I < II < III < IV
- (2) II < I < III < IV
- (3) IV < II < I < III
- (4) III < IV < II < I
- 13. Among the bromides I-III given below, the order of reactivity of S_N 1 reaction is:

$$(II) \bigvee_{Br}$$

- (1) III > I > II
- (2) III > II > I
- (3) II > III > I
- (4) II > I > III
- 14. The S_N^2 reaction of 1-chloro-3-methylbutane with sodium methoxide is relative slow, but can be accelerated by the addition of a small amount of NaI. How this catalysis is best explained?
 - (1) The sodium cation helps pull off the chloride anion
 - (2) The iodide anion activates the methoxide nucleophile
 - (3) $S_N^{\ 2}$ reaction of iodide ion converts the alkyl chloride to the more reactive alkyl iodide
 - (4) The NaI changes the mechanism to S_N^{-1}

The major product in this reaction is:

- **16.** Isopropylidene chloride is hydrolysed with aqueous NaOH. The product formed is:
 - (1) 1-propanal
- (2) propanal
- (3) 2-propanal
- (4) propanone

17.
$$CH_3$$

CH₃

C-Cl

CH₃
 $00\% C_2H_5OH$
 $00\% H_2O$
 $00\% H_2O$
 $00\% H_2O$
 $00\% H_2O$
 $00\% H_2O$
 $00\% H_2O$

The given reaction undergoes

- (1) unimolecular substitution predominantly.
- (2) unimolecular elimination predominantly.
- (3) bimolecular substitution predominantly.
- (4) bimolecular elimination predominantly.

18.
$$CH_3$$
 CH₃-C-O $^{\Theta}$ +CH₃-CH₂-CH₂-Br (CH₃)₃-C-OH, 40 $^{\circ}$ C CH₃

Major product

(1) CH_3 – $CH = CH_2$ by E_2 pathway

(2)
$$CH_3$$
- CH_2 - CH_2 - O - C - CH_3 by SN_2 pathway CH_3

(3) CH_3 – $CH = CH_2$ by E1 pathway

(4)
$$CH_3$$
– CH_2 – CH_2 – C – C – CH_3 by SN^1 pathway CH_3

19.
$$CH_3$$
 $C - Br + H - S^{\Theta} \xrightarrow{50^{\circ}C} CH_3 - OH$ Major product

Select the major product and path of mechanism of given reaction

$$CH_3$$
 C – SH by $S_N 2$ reaction

(2)
$$CH_3$$
–O–C CH_2 – CH_3 by S_N 2 reaction

(3) HS-C
$$CH_3$$
 CH₂-CH₃ by S_N2 reaction

(4)
$$CH_3$$
-O-C CH_2 - CH_3 by S_N 2 reaction

What would be major product of given reaction?

$$(2) \quad \begin{array}{c} Br \\ H \end{array}$$

$$(3) \quad \overset{\text{Br}}{\underset{\text{H}}{\bigvee}} \stackrel{\text{I}}{\underset{\text{H}}{\bigvee}} \qquad \qquad (4) \quad \overset{\text{H}}{\underset{\text{I}}{\bigvee}}$$

$$(4) \quad \stackrel{H}{I} \qquad \stackrel{H}{\bigvee} \qquad \stackrel{H}{F}$$

21. The product formed in the reaction is:

$$H \longrightarrow OH + SOCl_2 \longrightarrow$$

22. The product formed in the reaction is:

$$\sim$$
 COOH \sim (CH₃COO)₄Pb, I₂ \rightarrow

(1)
$$\left\langle -\right\rangle$$
 —COOCOCH₃

(3)
$$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$$
 COCH₃

(4)
$$\langle - \rangle$$
—COCH₂I

23. $CHCl_3 \xrightarrow{OH^{-}/H_2O} A, A \text{ is}$ (1) CO_3^{2-} (2) H-C-HO

(3) $H-C-O^{-}$ (4) $C_2O_4^{2-}$

(1)
$$CO_3^{2-}$$

(4)
$$C_2O_4^{2-}$$

24. Identify (X):

$$CHCl_3 \xrightarrow{SbF_5} CHF_2Cl \xrightarrow{1070K} (X) + 2HCl$$

(1)
$$F_2C = CF_2$$

$$(2)$$
 CIFC = CFC1

(1)
$$F_2C = CF_2$$

(3) $F_2C = CFC1$

$$(4) F2C = CCl2$$

25.
$$OH + aI_2 + bNaOH \longrightarrow CHI_{3,}$$
 ratio of moles

(a) and (b) is:

(1) 3:4

(2) 2:3

(3) 3:2

(4) 4:3

- **26.** Chloropicrin is a strong lachrymatory compound and is used in war. It is prepared by:
 - (1) heating acetone with chloroform in the presence of dilute NaOH.
 - (2) heating chloroform with HNO₃.
 - (3) heating nitormethane with carbon tetrachloride.
 - (4) the reaction of acetylene and arsenic chloride.
- 27. An aromatic compound A of the molecular formula $C_8H_{10}O$ on reaction with iodine and dilute NaOH gives a yellow precipitate. The structure of the compound is expected to be:
 - (1) C₆H₅CH₂CH₂OH
 - (2) C₆H₅CHOHCH₃

(3)
$$CH_3$$
— CH_2OH

- 28. Which of the following has zero dipole moment?
 - (1) o-Dichlorobenzene
 - (2) m-Dichlorobenzene
 - (3) p-Dichlorobenzene
 - (4) p-chlorotoluene
- **29.** The boiling points of methyl bromide (I), ethyl bromide (II), n-propyl bromide (III) and n-butyl bromide (IV) decrease in the order:
 - (1) I > II > III > IV
- (2) IV > III > II > I
- (3) I > III > II > IV
- (4) III > IV > I > II
- **30.** The stabilities of alkyl fluorides (I), alkyl chlorides (II), alkyl bromides (III) and alkyl iodides (IV) decrease in the order
 - (1) I > II > III > IV
- (2) IV > III > II > I
- (3) I > IV > II > III
- (4) II > I > IV > III
- **31.** The strengths of carbon–halogen bonds follow the order:
 - (1) R-F > R-Cl > R-Br > R-I
 - (2) R-I > R-Br > R-Cl > R-F
 - (3) R-F > R-I > R-Br > R-Cl
 - (4) R-Cl > R-Br > R-I > R-F
- **32.** Arrange the following compounds in the increasing order of their boiling points:

(a)
$$CH_3$$
 CH CH_2Cl

(b) CH₃CH₂CH₂CH₂Cl

- (1) (b) < (a) < (c)
- (2) (a) < (b) < (c)
- (3) (c) < (a) < (b)
- (4) (c) < (b) < (a)
- 33. Positive Beilstein's test for halogens shows that:
 - (1) a halogen is definitely present.
 - (2) a halogen may be present.
 - (3) a halogen is absent.
 - (4) None of the above
- **34.** The structure of the major product formed in the following reaction is:

35. Chlorobenzene reacts with trichloro acetaldehyde in the presence of H₂SO₄

$$2 \bigcirc Cl + H - C - CCl_3 \xrightarrow{H_2SO_4}$$

The major product formed is:

$$(1) Cl \xrightarrow{Cl} Cl$$

(2)
$$Cl$$
 Cl CH_2Cl

(3)
$$Cl \longrightarrow CH \longrightarrow CCl_3$$

36. Which of the given aryl halide is most readily hydrolysed?

$$\begin{array}{c|c}
Cl & Cl \\
Cl & CN \\
Cl & CN \\
Cl & Cl \\
CM=O & NO_2
\end{array}$$

37.
$$Cl \xrightarrow{KNH_2} (P)$$
 Major

What is P?

OCH₃ OCH₃

$$NH_2$$
OCH₃

$$OCH_3$$

38. Which of the following reaction does not takes place?

(1)
$$CH_3$$
 OCH_3 KNH_3 $Liq. NH_3$

(2)
$$+ Cl + aq. KOH \rightarrow$$

$$(3)$$
 + Cl + alc. KOH \rightarrow

39. Among the following compounds, which one undergoes nucleophilic substitution of chlorine atom by OH⁻ most readily?

$$\begin{array}{c|c} Cl & CH_2Cl \\ \hline (1) & OMe \\ \hline Cl & Cl \\ \hline (3) & NO_2 \\ \end{array}$$

40. The product obtained from the reaction

$$Br \longrightarrow CH_2Cl + NaCN \xrightarrow{Ethanol} is:$$

(1) Br
$$\longrightarrow$$
CH₂CN

(2)
$$NC - CH_2Cl$$

(3) NC
$$\longrightarrow$$
CH₂CN

EXERCISE 2

1.
$$\underbrace{\begin{array}{c} \text{(i) Li} \\ \text{(ii) D}_2\text{O} \end{array}}$$

What is the product in the above reaction?

$$(4) \qquad OH$$

2. Transition state of given S_{N_2} is:

3. Which are possible products in following?

$$\begin{array}{c|cccc} CH_3 & \xrightarrow{moist Ag_2O} & Major product \\ CH_2CI & & SN_1 & & & \\ CH_2CI & & & & \\ CH_3 & & & & \\ CH_2OH & & & & \\ CH_2OH & & & & \\ CH_3 & & \\ CH_3 & &$$

4. Arrange the following compound for S_N^{-1} reactivity order:

- (1) I > II > III > IV
- (2) I > III > II > IV
- (3) IV > III > II > I
- (4) II > IV > III > I

5. What is the product of the given reaction?

Br
$$\xrightarrow{\text{Mg}}$$
 A then A + $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{(i) Et}_2\text{O}}$ B

$$(1) \qquad OH \\ OH_3 \qquad (2) \qquad OH \\ OH_3 \qquad (3) \qquad OH \\ CH_3 \qquad (4) \qquad OH$$

6. Consider the following reaction:

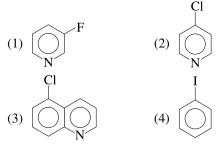
$$H \xrightarrow{CH_3} H + KOH \xrightarrow{H_2O} S_{N^2}$$

 $(1R,\ 3S)\text{-}Cis\text{-}1\text{-}chloro\text{-}3\text{-}methylcyclohexane}$

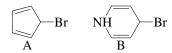
The product formed in the reactions is:

- (1) (1R, 3S)-cis-3-methylcyclohexanol
- (2) (1S, 3R)-cis-3-methylcyclohexanol
- (3) (1S, 3S)-Trans-3-methylcyclohexanol
- (4) (1R, 3R)-Trans-3-methylcyclohexanol
- 7. The reaction RCH=CH-CH₂-X $\xrightarrow{y^-}$ R-CH-CH=CH₂ is:
 - (1) an S_N1 reaction
- (2) an S_N2 reaction
- (3) an S_Ni reaction
- (4) None of these
- 8. In the reaction

$$\text{R-COOAg} \, + \, \text{Br}_2 \longrightarrow \text{RBr} \, + \, \text{CO}_2 \, + \, \text{AgBr}$$

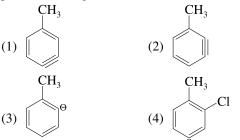

The reaction proceeds through the intermediate formation of:

- $(3) R^{\bullet}$
- (4) All of these
- **9.** Consider the following reaction and select best choice that represents the reaction.


CH₃

$$H$$
 $Na^{\oplus} - SCH_2CH_3$
 CH_3
 H
 SCH_2CH_3
 CH_3
 CH_3
 CH_3
 CH_2CH_3
 CH_3
 CH_3

10. Which is most reactive towards nucleophilic aromatic substitution?


11. Which of the following statements is correct regarding the rate of hydrolysis of the compounds (A) and (B) by $S_N 1$ reaction?

- (1) A reacts faster than B
- (2) B reacts faster than A
- (3) Both A and B reacts at the same rate
- (4) Neither A nor B reacts

 $H - \stackrel{\blacksquare}{C} - OCH_3 \xrightarrow{\overline{OH}} \stackrel{}{S_N 2}$

12. o-Chlorotoluene reacts with NaNH₂ in liquid ammonia to give o-toluidine and m-toluidine. This reaction proceeds through the intermediate

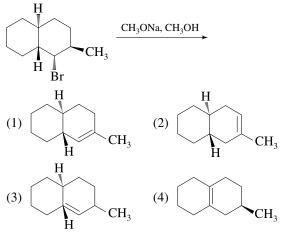
13. What is the major product of the given reaction? CH₂Cl

14. Which chlorine is most easily replaced under nucleophilic attack?

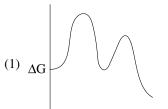
- (1) Cl(1)
- (2) Cl(2)
- (3) Cl(4)
- (4) Cl(1) and Cl(4)

15. Arrange the following compounds in order of increasing dipole moment:

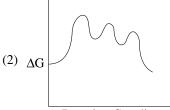
Toluene (I) o-dichlorobenzene (III) m-dichlorobenzene (II) p-dichlorobenzene (IV)

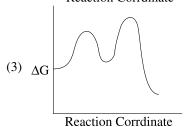

(1) I < IV < II < III

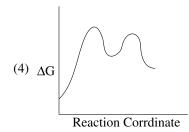
(2) IV < I < II < III


(3) IV < I < III < II

(4) IV < II < I < III


16. Provide the structure of the major organic product which results in the following reaction:


17. Which is the correct reaction coordinate diagram for the following solvolysis reaction?



Reaction Corrdinate

Reaction Corrdinate

- **18.** Which of the following reagents can be used to distinguish chlorobenzene from chlorocyclohexane?
 - (1) $AgNO_3/C_2H_5OH$
 - (2) Ag(NH₃)₂OH
 - (3) Na fusion; HNO₃, AgNO₃
 - (4) Br₂/CCl₄
- 19. Which reaction takes place at the fastest rate?

(1)
$$\begin{array}{c|c} & NaSH \\ \hline C_2H_5OH, 25^{\circ}C \end{array} \\ \hline \\ (2) & \\ \hline C_1 & \hline \\ C_2H_5OH, 25^{\circ}C \end{array} \\ \hline \\ (3) & \\ \hline \\ Br & \hline \\ C_2H_5OH, 25^{\circ}C \end{array} \\ \hline \\ SH \\ \hline \\ (4) & \\ \hline \\ Rr & \hline \\ C_2H_5OH, 25^{\circ}C \end{array} \\ \hline \\ SH$$

Br
$$CH_3-CH_2-O^{\Theta}$$
 Major production CH_3 CH_2 CH_3 CH_3

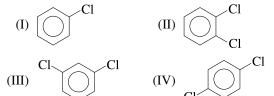
21. Which of the following reaction is feasible?

(1)

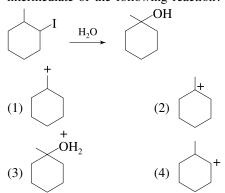
NaNH₂.NH₃

22. The major product obtained in the reaction

23. The major product obtained in the reaction

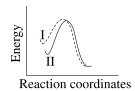

O
$$C-CH_{2} \longrightarrow Br_{2}$$

$$C-CH_{2} \longrightarrow C-CH_{2} \longrightarrow Br$$

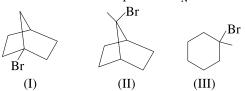

$$C \longrightarrow C-CH_{2} \longrightarrow Br$$

- 24. 2-Bromo-1-phenylpropane can be synthesised by
 - (1) $C_6H_5CH_2CH(OH)CH_3 + HBr \xrightarrow{\Delta}$
 - (2) $C_6H_5CH=CHCH_3 + HBr + benzoyl peroxide \rightarrow$

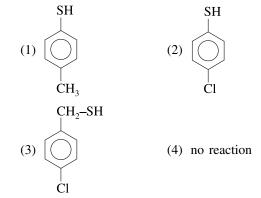
- (3) $C_6H_5CH_2CH_2CH_3 + Br_2 + light \longrightarrow$
- (4) none of these
- **25.** Which of the following substituted benzene derivatives would produce three isomeric products when one more constituent is introduced?



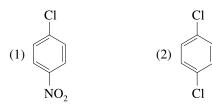
- (1) I, II and III
- (2) I
- (3) II and IV
- (4) I and III
- **26.** Which of the following is not expected to be an intermediate of the following reaction?


27. In which reaction Halide is not obtained?

- (3) $CH_3-CH_2-OH + SOCl_2$
- (4) CH_3 - CH_2 - $OH + KBr \longrightarrow$
- **28.** What is the correct increasing order of reactivity of the followings in S_N^2 reaction?
 - (I) CH₂=CH-CH₂-Br
 - (II) CH₂=CH-I
 - (III) CH₃CH₂CH₂-I
 - (IV) CH₃OCH₂CH₂-I
 - (1) I < II < III < IV
- $(2) \quad III < II < I < IV$
- (3) II < III < IV < I
- $(4) \quad III < I < II < IV$
- **29.** Consider the two lines shown in the diagram given below


Which of the following apply appropriately to a $S_{\rm N}2$ reaction?

- (1) Graph I could represent Cl⁻ and Graph II represents I⁻ leaving group
- (2) Graph I could represent HO⁻ and Graph II represents CH₃COO⁻ nucleophile
- (3) Graph I could represent H_2O and Graph II H_2S as nucleophile
- (4) Graph I could represent $(CH_3)_2NH$ and Graph II to $(CH_3)_2N-$ nucleophiles
- **30.** Which of the following alkyl halides is respectively most and least electrophilic in S_N1 reaction?



- (1) Both I and III
- (2) Both II and III
- (3) Both III and I
- (4) Both I and II

31. $NaSH \rightarrow A$; Product (A) of the reaction is:

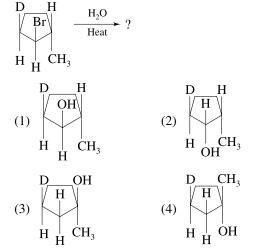
32. Which one of the following undergoes nucleophilic aromatic substitution at the fastest rate?

- **33.** Arrange the following compounds in the increasing order of their densities:
 - (a) Cl
 - (1) (a) < (b) < (c)
- (2) (a) < (c) < (b)
- (3) (c) < (b) < (a)
- (4) (b) < (c) < (a)

- **34.** Among the following halides, the one which reacts most readily with ethanol is
 - (1) p-nitrobenzyl bromide
 - (2) p-chlorobenzyl bromide
 - (3) p-methoxybenzyl bromide
 - (4) p-methylbenzyl bromide
- **35.** Which of the statements is incorrect about below reaction?

$$HO^{-} + H \\ H \\ C - CI \rightarrow HO \\ C \\ H \\ H \\ H$$

$$HO - C \\ H \\ H \\ H$$


$$HO - C \\ H \\ C$$

- (1) The given reaction follows S_N 2 mechanism.
- (2) In (c) carbon atom is sp³ hybridised.
- (3) In (c) carbon atom is sp² hybridised.
- (4) (b) and (d) have opposite configuration.

EXERCISE 3

One and More than One Option Correct Type Question

- 1. Consider the following elimination reaction:
 - $C_{2}H_{5}OH$ Cl Heat (2) (3) (4)
- **2.** When the reactants shown below undergo substitution, which of the products will form?

3. What is/are the expected solvolysis product(s) in the following reaction?

OH
$$CH_{3}$$

$$H_{2}O$$

$$CH_{3}$$

$$(2)$$

$$HO$$

$$CH_{3}$$

$$CH_{3}$$

$$(3)$$

$$CH_{3}$$

$$(4)$$

$$OH$$

$$CH_{3}$$

4. Which of the following on treatment with NaCN(aq) results in a chiral product?

5. In which of the following reaction, inversion of configuration at chiral carbon takes place?

(1) D
$$\stackrel{\text{I}}{\longrightarrow}$$
 H $\stackrel{\text{NaCN(aq)}}{\longrightarrow}$
(2) D $\stackrel{\text{H}}{\longrightarrow}$ H $\stackrel{\text{NaCN(aq)}}{\longrightarrow}$
(3) Br $\stackrel{\text{CH}_3}{\longrightarrow}$ Cl + NaS – CH₂CH₂CH₂–SNa $\stackrel{\text{NaSH(aq)}}{\longrightarrow}$
(4) $\stackrel{\text{NaSH(aq)}}{\longrightarrow}$

6. In which of the following reaction(s), reactant and product are correctly matched?

(4)
$$C_2H_5$$
 B_r $H + NaBr(aq)$ C_2H_5 B_r C_2H_5 B_r

(+)-dextro (±)-racemic

7. Pick out the alkyl bromides which proceed with retention of configuration in an S_N 2 reaction with $CH_3ONa(aq)$:

(1)
$$H_3C$$
 H Br
(2) H_3C H Br

$$(4) \begin{array}{c} H_3C \\ PhS \end{array} \begin{array}{c} H \\ Br \end{array}$$

8. Consider the following substitution reaction

$$S$$
 + NaOH(aq) S_N^2

The correct statement(s) is/are:

- (1) reaction occur at much faster rate than when substrate is 2-bromo-3, 3-dimethyl pentane
- (2) reaction occur with inversion of configuration
- (3) reaction occur with retention of configuration
- (4) E2 product is preferred over S_N2
- 9. Consider the following reaction

$$X$$
 Cl $+$ HCl \longrightarrow X

When a pure enantiomer of X is taken in the above reaction, correct completion regarding is/are

- (1) Four different dichlorocyclohexane are formed as significant products
- (2) a pair of enantiomers is formed
- (3) two pairs of diastereomers are formed
- (4) product mixture has zero specific rotation
- 10. Consider the reaction given below:

$$CH_3$$
 Cl + NaCN(aq) S_N^2
 CH_3 (1.0 equivalent)

The correct statement(s) applicable to the above reaction is/are:

- (1) Cl⁻ is substituted predominantly
- (2) Cl⁻ is a better leaving group
- (3) substitution of I⁻ in the above reaction required greater activation energy than for Cl⁻
- (4) addition of some NaI catalyse the substitution reaction
- 11. Which one of the following statements is true?
 - Major part of energy needed for the heterolysis of C-X bond in S_N1 reaction mechanism is obtained by the solvation of X⁻ by the polar protic solvent.
 - (2) Greater solvation of attacking nucleophile & poor solvation of transition state promotes the reaction by $S_{\rm N}2$ mechanism.

- (3) Increase in the number of phenyl ring at C of C–X causes a shift in mechanism from $S_N 2$ to $S_N 1$.
- (4) Allyl and benzyl halides undergo S_N1 reactions as they give resonance stabilized carbocation.
- 12. Which of the statements is correct?

(1)
$$\begin{tabular}{|c|c|c|c|} \hline Cl & Cl & \\ \hline \hline (1) & & \\ \hline \end{array}$$
 is more reactive than $\begin{tabular}{|c|c|c|c|} \hline \\ \hline \end{array}$ towards $S_N 1$

mechanism due to aromaticity.

- (2) Inversion of configuration takes place during $S_N 2$ mechanism at α -chiral carbon.
- (3) Formation of R-CI from R-OH by reaction with SOCI₂ is best method because byproducts are gases.
- (4) CH₄ can be prepared by decarboxylation of carboxylic acid.
- **13.** Which of the following reactions yield an alkyl halide?

(1)
$$CH_3CH_2OCH_2CH_3 \xrightarrow{Cl_2} hv$$

(3)
$$CH_3CH_2OCH_2CH_3 \xrightarrow{PCl_5}$$

14.
$$(CH_3-CH_2)_3-C-Br \xrightarrow{CH_3OH} (CH_3-CH_2)_3-C-O-CH_3 + CH_3-CH = C(CH_2-CH_3)_2$$

Pick out correct statement for given reaction.

- (1) Major product is $(CH_3-CH_2)_3-C-O-CH_3$
- (2) At low temperature reaction preceding through SN_1
- (3) On increasing temperature major product is $CH_3-CH = C(CH_2-CH_3)_2$
- (4) At high temp reaction preceding through E₂

Statement Type Question

- (1) If both Statement-I and Statement-II are correct and Statement-II is the correct explanation for Statement-I
- (2) If both Statement-I and Statement-II are correct and Statement-II is not the correct explanation for Statement-I
- (3) If Statement-I is correct and Statement-II is incorrect

- (4) If Statement-I is incorrect and Statement-II is correct
- **15. Statement 1:** Bromobenzene upon reaction with Br₂/Fe gives 1, 4-dibromobenze as the major product.

Statement 2: In bromobenzene, the inductive effect of the bromo group is more dominant than the mesomeric effect for directing the incoming electrophile.

16. Statement I: Aryl halides undergo nucleophilic substitution with ease.

Statement II: The carbon halogen bond in aryl halides has partial double bond character.

17. Statement I: If the mixture of $H = \frac{CH_3}{B}$ and C_2H_5

$$H \xrightarrow{CH_3} H$$
 Cl reacts with the excess of NaSH in DMF, C_2H_5

the molecularity of the SN^2 reaction will be two but not three

Statement II: In the SN² reaction two molecules e.g. R–X and Nu take part in the formation of transition state

18. Statement I: Aryl halides are extremely less reactive towards nucleophilic substitution reactions.

Statement II: In haloarenes the electron pairs of halogen atom are in conjugation with π electrons of the ring. More over due to more 'S' character of sp^2 carbon of ring, the C–X bond strength increases and cleavage becomes difficult.

19. Statement I: n-Butyl chloride has higher boiling point than n-butyl bromide.

Statement II: C-Cl bond is more polar than C-Br Bond.

20. Statement I: The London force of attraction and the dipole–dipole attraction (of C – X bond) are two types of forces which influence boiling point of alkyl halides.

Statement II: The London force is a surface attraction.

Statement I: Aryl halide cannot be prepared by Gabriel phthalamide method.

Statement II: Aryl halide does not give substitution reaction in ordinary condition.

Comprehension Type Question

Comprehension (Q. 22-24)

In an E2 reaction, following one step mechanism is involved.

As shown in the above mechanism, a β -proton anti to leaving group is abstracted by the alkoxide base. If a less bulky base is used, β -proton is eliminated giving most substituted, most stable product as the major product. On the other hand if a bulky base is used, β -proton is abstracted from β -carbon where there is least steric hindrance and this gives least substituted, although least stable, alkene as the major product.

22. What is the major product in the following elimination reaction?

$$(1) \begin{array}{c} H \\ Br \\ CH_3 \\ CH_2 \\ CH_$$

23. In the following reaction, how many elimination products would be formed in principle by E2 mechanism?

24. What is the major elimination product in the following reaction?

CH₃

$$CH_3$$
 CH_2D

CH₃
 CH_3
 CH_3
 CH_3
 CH_3
 CH_2D

CH₃
 CH_3
 CH_2D

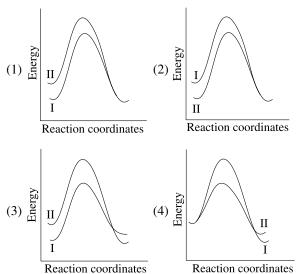
CH₃
 CH_3
 CH_2D

CH₃
 CH_3
 CH_3

Comprehension (Q. 25–27)

The general mechanism of a SN₂ reaction is as follows

$$CN + -C - X \rightarrow \begin{bmatrix} \delta - & & \\ NC - C & -X \end{bmatrix} \rightarrow NC - C + X$$


Factors that limit the rate of reaction are steric hindrance at α -carbon of substrate and strength of C–X bond. Any factor which stabilises transition state increases the rate of reaction.

25. Consider the following S_N 2 reaction

$$CH_3 - I + HO^- \xrightarrow{K_1} CH_3 - OH + I^-$$
 (I)

$$CH_3 - Cl + HO^- \xrightarrow{K_2} CH_3 - OH + Cl^-$$
 (II)

Which of the following energy diagram is correctly labeled?

- **26.** In the previous question, under identical reaction condition, i.e., temperature, concentration of substrate and nucleophile, the correct relationship between rate constant is
 - $(1) k_{\rm I} < k_{\rm II}$
- (2) $k_{I} = k_{II}$
- (3) $k_I > k_{II}$
- (4) $k_{I} = k_{II}$
- 27. Which of the following is not a correct representation of S_N2 reaction?

(1) Br-CH₂CH₂-Br + NaS-CH₂CH₂-SNa
$$\rightarrow$$
 S

(2) Br-CH₂CH₂CH₂CH₂-Br + NaS
$$\rightarrow$$
 S

(3)
$$CH_3CH_2OH + NaNH_2 \rightarrow CH_3CH_2NH_2$$

(4)
$$B_{r}$$
 + NaCN(aq) C_{N} (1.0 equivalent)

Column Matching Type Question

28. Match the following

Column-I

(A)
$$CH_3CH$$
— $CHCH_3 + HCl$ \longrightarrow CH_3 OH

(B)
$$CH_3CHCH_2CH_2OH + PCl_5 \longrightarrow CH_3$$

(C)
$$CH_3CH$$
— $CHCH_3 + PCl_3$ \longrightarrow CH_3 OH

 CH_2OH

(D)
$$CH_3CHCH_2CH_3 + SOCl_2 \longrightarrow$$

(1)
$$A \rightarrow r$$
; $B \rightarrow q$; $C \rightarrow p$; $D \rightarrow s$

(2)
$$A \rightarrow q$$
; $B \rightarrow p$; $C \rightarrow s$; $D \rightarrow r$

(3)
$$A \rightarrow s$$
; $B \rightarrow r$; $C \rightarrow q$; $D \rightarrow p$

(4)
$$A \rightarrow p$$
; $B \rightarrow s$; $C \rightarrow r$; $D \rightarrow q$

29. Make the correct match of the following from List-I and List-II.

List-I		List-II	
(A)	RCCOAg + Br ₂ $\xrightarrow{\text{CCl}_4}$ RBr + CO ₂ + AgBr	(P)	Carbylamine
(B)	+CHCl ₃ Potash isocyanide	(Q)	Hundiecker Reaction
(C)	$2R$ -COOAg + I_2 \longrightarrow RCOOR + CO_2 + AgI	(R)	Baurn Simonini Reaction
(D)	$2CH_3CI + HgF_2 \longrightarrow 2CH_3 - F + HgCl_2$	(S)	Swarts Reaction

Column-II

(p) CH₃CH—CHCH₃

(q) CH₃CHCH₂CH₂Cl

ĊH₃ Cl

(r) CH₃CCH₂CH₃

ĊH₃

(s) CH₃CHCH₂CH₃

CH₂Cl

CH₃ Cl

(1)
$$A \rightarrow R, B \rightarrow S, C \rightarrow Q, D \rightarrow P$$

(2)
$$A \rightarrow P, B \rightarrow R, C \rightarrow S, D \rightarrow R$$

(3)
$$A \rightarrow Q$$
, $B \rightarrow P$, $C \rightarrow R$, $D \rightarrow S$

(4)
$$A \rightarrow Q$$
, $B \rightarrow R$, $C \rightarrow S$, $D \rightarrow P$

30. Make the correct match of the following from List-I and List-II.

List-I		List-II		
(A)	Gammexane	(P)	Pesticide	
(B)	D.D.T.	(Q)	Insecticide	
(C)	Chloroform	(R)	Anesthetic Agent	
(D)	Westron	(S)	Solvent	

(1)
$$A \rightarrow Q$$
, $B \rightarrow R$, $C \rightarrow S$, $D \rightarrow P$

(2)
$$A \rightarrow P, B \rightarrow Q, C \rightarrow S, D \rightarrow R$$

- (3) $A \rightarrow R, B \rightarrow S, C \rightarrow Q, D \rightarrow P$
- (4) $A \rightarrow P, B \rightarrow Q, C \rightarrow R, D \rightarrow S$
- 31. Match the column-I with Column-II and mark the correct option from the codes given below

	Column-I		Column-II	
i.	S Br NaOH(aq)	p.	Net inversion of configuration in $S_N 2$ reaction	
ii.	HO H CH ₃ NaOH(aq)	q.	Net retention of configuration in S _N 2 reaction	
iii.	Br H NaCN(aq)	r.	Formation of achiral product	
iv.	O MeO−C−CH₂Br NaCN(aq)	S.	Neighbouring group participation	

Codes

	• • •		
1	11	111	1V

- (1) q, s
- (2) q, s q, s
- (3) p q, r S p
- (4) p, r

32. Match the reaction from Column-I with the type of mechanism from Column-II and mark the correct option from the codes given below.

Column-I			Column-II	
i.	CI NaOH(aq)	p.	S _N 1	
ii.	O NaOH(aq)	q.	S _N 2	
iii.	CI H ₂ O/Heat	r.	E2	
iv.	Ph C ₂ H ₅ ONa Heat	S.	E1cb	

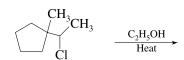
Codes

$$(1) p p, q p, q, r r, s$$

$$(2) \quad q \qquad \qquad q, \ r, \ s \qquad p \qquad \qquad p, \ q, \ r, \ s$$

$$(3) \quad s \qquad \qquad p \qquad \qquad r, \ s \qquad \quad p, \ q$$

33. Match the reactions in Column-I with the appropriate name in the Column-II.


Column-I

- (A) $C_2H_5OH + HCl \xrightarrow{ZnCl_2} C_2H_5Cl + H_2O$
- Column-II
- (p) Elimination reaction
- (B) $C_6H_5N_2^+Cl^- + HBr \xrightarrow{Cu} C_6H_5Br + N_2 + HCl$
- (q) Finkelstein reaction
- (C) $CH_3CHCH_2CH_3 \xrightarrow{alc.KOH} CH_3-CH = CHCH_3$
- (r) Groove's process
- (D) $CH_3CH_2CH_2CI+NaI \xrightarrow{Acetone} CH_3CH_2CH_2I +NaCl$ (s) Gattermann reaction

- (1) $A \rightarrow r$; $B \rightarrow s$; $C \rightarrow p$; $D \rightarrow q$
- (2) $A \rightarrow r$; $B \rightarrow p$; $C \rightarrow q$; $D \rightarrow s$
- (3) $A \rightarrow p$; $B \rightarrow q$; $C \rightarrow s$; $D \rightarrow r$
- (4) $A \rightarrow q$; $B \rightarrow s$; $C \rightarrow r$; $D \rightarrow p$

Single Digit Integer Type Question

34. Consider the following reaction,

In principle, how many different alkenes are possible by the above elimination reaction?

- 35. How many of the following are denser than water?
 - (i) CCl₄
 - (ii) CH₃CH₂CH₂CH₂Cl
 - (iii) Bromocyclohexane
 - (iv) Chlorocyclopentane
 - (v) 1,3-difluorocyclopentane
 - (vi) CH₃I
 - (vii) 1-fluorodecane
 - (viii) CH₂Br₂
 - (ix) CH₃Cl
 - (x) CHCl₃

36. Consider the following compound

$$\begin{array}{c|c} Cl & C \equiv C - Cl \\ \hline & Cl \\ \hline & Cl \\ \hline & CH_2 - OSO_2 CF_3 \end{array}$$

If the above compound is treated with excess of NaCN (aq), how many CN^- group would be incorporated by S_N2 reaction?

37. In the following reaction

$$\begin{array}{c|c} Cl & Cl \\ & & | \\ H_3C-C-C-C+CH_3 + NaCN(aq) \longrightarrow \\ & | & | \\ Cl & Cl \\ & (1.0 \text{ mol}) \end{array}$$

How many different dicyano products are expected?

38. In the reaction given below how many elimination products are formed in principle if reaction proceeds by E1cb mechanism?

$$\begin{array}{c|c} O & Br \\ \hline C_6H_5 & \hline \end{array} \begin{array}{c} C_2H_3OD \\ \hline C_2H_5OK \end{array}$$

EXERCISE 4

1. The reaction is a [AIEEE-2002]

 $(CH_3)_3 CBr + H_2O \longrightarrow (CH_3)_3 COH + HBr$

- (1) Substitution reaction
- (2) Debromination reaction
- (3) Rearrangement reaction
- (4) Elimination reaction
- 2. The correct order of the thermal stability of hydrogen halides (H–X) is [AIEEE-2005]
 - (1) HF > HCl > HBr > HI
 - (2) HI > HBr > HCl > HF
 - (3) HI > HCl < HF > HBr
 - (4) HCl < HBr > HBr < HI
- 3. Tertiary alkyl halides are practically inert to substitution by $S_{\rm N}2$ mechanism because of

[AIEEE-2005]

- (1) Instability
- (2) Insolubility
- (3) Steric hindrance
- (4) Inductive effect
- **4.** Alkyl halides react with dialkyl copper reagents to give [AIEEE-2005]
 - (1) Alkyl copper halides
 - (2) Alkenes
 - (3) Alkenyl halides
 - (4) Alkanes

- **5.** Elimination of HBr from 2-bromobutane results in the formation of [AIEEE-2005]
 - (1) Predominantly 2-butene
 - (2) Equimolar mixture of 1 and 2-butene
 - (3) Predominantly 2-butyne
 - (4) Predominantly 1-butene
- **6.** Among the following the one that gives positive iodoform upon reaction with I_2 and NaOH is

[AIEEE-2006]

(1) $C_6H_5CH_2CH_2OH$

- (2) CH₃-CHCH₂OH
- (3) PhCHOHCH₃
- (4) CH₃CH₂CH(OH)CH₂CH₃
- 7. Which of the following is the correct order of decreasing SN² reactivity? [AIEEE-2007]
 - (1) $RCH_2X > R_3CX > R_2CHX$
 - (2) $RCH_2X > R_2CHX > R_3CX$
 - (3) $R_3CX > R_2CHX > RCH_2X$
 - (4) $R_2CHX > R_3CX > RCH_2X$
- 8. The organic chloro compound, which shows complete stereochemical inversion during a S_N^2 reaction is: [AIEEE-2008]

- (1) (CH₃)₃CCl
- (2) (CH₃)₂CHCl
- (3) CH₃Cl
- $(4) (C_2H_5)_2CHC1$
- 9. Which of the following on heating with aqueous KOH, produces acetaldehyde? [AIEEE-2009]
 - (1) CH₃COCl
- (2) CH₂CH₂Cl
- (3) CH₂ClCH₂Cl
- (4) CH₃CHCl₂
- [AIEEE-2010] **10.** Consider the following bromides

The correct order of S_N1 reactivity is

- (1) A > B > C
- (2) B > C > A
- (3) B > A > C
- (4) C > B > A
- 11. By heating which mixture, propane nitrile will be obtained? [AIEEE-2011]
 - (1) Ethyl alcohol + KCN
 - (2) Propyl alcohol + KCN
 - (3) Ethyl chloride + KCN
 - (4) Propyl chloride + KCN
- 12. Compound A, (C₈H₉Br) gives a white precipitate when warmed with alcoholic AgNO3 oxidation of A gives an acid B, (C₈H₆O₄) B easily forms anyhydride on heating. Identify the compound A.

[JEE Main-2011]

(1)
$$CH_2Br$$
 (2) C_2H_5 Br (3) CH_2Br (4) CH_2-Br CH_3

13. Iodoform can be prepared from all except

[AIEEE-2012]

- (1) Isopropyl alcohol
- (2) 3-Methyl-2-butanone
- (3) Isobutyl alcohol
- (4) Ethyl methyl ketone

14.
$$C_2H_5Br \xrightarrow{AgCN} X \xrightarrow{Reduction} Y$$
; Here, Y is:

[JEE Main Online-2012]

- (1) n-propylamine
- (2) Isopropylamine
- (3) Ethyl methyl amine (4) Ethylamine

15. Copper wire test for halogens is known as:

[JEE Main Online-2012]

- (1) Duma's Test
- (2) Beilstein's Test
- (3) Lassigne's Test
- (4) Liebig's Test
- 16. Among the following the molecule with the lowest dipole moment is: [JEE Main Online-2012]
 - (1) CHCl₃
- (2) CH₂Cl₂
- (3) CCl₄
- (4) CH₃Cl
- 17. Beilstein test is used for estimation of which one of following elements? [JEE Main Online-2012]
 - (1) S
- (2) Cl
- (3) C and H
- (4) N
- 18. The conversion of benzene diazonium chloride to bromobenzene can be accomplished by

[JEE Main Online-2012]

- (1) Azo coupling reaction
- (2) Friedel-Crafts reaction
- (3) Reimer-Tiemann reaction
- (4) Gattermann reaction
- 19. Aryl fluoride may be prepared from arene diazonium chloride using [JEE Main Online-2013]
 - (1) HBF_4/Δ
- (2) $HBF_4/NaNO_2$, Cu, Δ
- (3) CuF/HF
- (4) Cu/HF
- 20. In Williamson synthesis of mixed ether having a primary and tertiary alkyl group if tertiary halide is used, then [JEE Main Online-2013]
 - (1) Rate of reaction will be slow due to slow cleavage of carbon-halogen bond
 - (2) Alkene will be the main product
 - (3) Simple ether will form instead of mixed ether
 - (4) Expected mixed ether will be formed
- 21. The Wurtz-Fittig reaction involves combination of

[JEE Main Online-2013]

- (1) Two molecules of aryl halides
- (2) One molecule of each of aryl halide and alkyl-halide
- (3) One molecule of each aryl-halide and phenol
- (4) Two molecules of alkyl-halides
- 22. Carbylamine forms from aliphatic or aromatic primary amine via which of the following

[JEE Main Online-2013]

- (1) Carbanion
- (2) Carbene
- (3) Carbocation
- (4) Carbon radical
- 23. A solution of (-)-chloro-1-phenylethane in toluene racemises slowly in the presence of a small amount of SbCl₅, due to the formation of

[JEE-Main-2013]

- (1) Carbanion
- (2) carbene
- (3) carbocation
- (4) free radical
- **24.** On heating an aliphatic primary amine with chloroform and ethanolic potassium hydroxide, the organic compound formed is: [JEE Main-2014]
 - (1) An alkane diol
- (2) an alkyl cyanide
- (3) an alkyl isocyanide
- (4) an alkanol
- **25.** In S_N2 reaction, the correct order of reactivity for the following compounds:

 CH_3Cl , CH_3CH_2Cl , $(CH_3)_2CHCl$ and $(CH_3)_3CCl$ is

[JEE Main-2014]

- (1) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl > (CH_3)_3CCl$
- (2) $CH_3CH_2Cl > CH_3Cl > (CH_3)_2CHCl > (CH_3)_3CCl$
- (3) $(CH_3)_2 CHCl > CH_3CH_2Cl > CH_3Cl > (CH_3)_3CCl$
- (4) $CH_3Cl > (CH_3)_2CHCl > CH_3CH_2Cl > (CH_3)_3CCl$
- **26.** In a nucleophilic substitution reaction:

 $R-Br + Cl^{-} \xrightarrow{DMF} R-Cl + Br^{-}$, which one of the following undergoes complete inversion of configuration? [JEE Main Online-2014]

- (1) $C_6H_5CHC_6H_5Br$
- (2) $C_6H_5CH_2Br$
- (3) C₆H₅CHCH₃Br
- (4) $C_6H_5CCH_3C_6H_5Br$
- 27. Chlorobenzene reacts with trichloro acetaldehyde in the presence of H_2SO_4

$$\begin{array}{c|c}
Cl & O \\
+ H-C-CCl_3 & H_2SO_4
\end{array}$$

The major product formed is:

[MEE Main Online-2014]

$$(1) CI \longrightarrow CI \longrightarrow CI$$

$$(2) \quad Cl \longrightarrow Cl \longrightarrow Cl$$

$$CH_2Cl$$

$$(3) CI \longrightarrow CH \longrightarrow CCI_3$$

(4)
$$CI \longrightarrow CH \longrightarrow CI$$

28. Conversion of benzene diazonium chloride to chlorobenzene is an example of which of the following reaction? [JEE Main Online-2014]

- (1) Claisen
- (2) Friedel-Craft
- (3) Sandmeyer
- (4) Wurtz
- **29.** The major product formed when 1, 1, 1-trichloro-propane is treated with aqueous potassium hydroxide is [JEE main Online-2014]
 - (1) Propyne
- (2) 1-Propanol
- (3) 2-Propanol
- (4) Propionic acid
- **30.** The major organic compound formed by the reaction of 1, 1, 1-trichloroethane with silver powder is

[JEE Main-2014]

- (1) acetylene
- (2) ethane
- (3) 2-butyne
- (4) 2-butene
- **31.** The synthesis of alkyl fluorides is best accomplished by [JEE main-2015]
 - (1) Free radical fluorination
 - (2) Sandmeyer's reaction
 - (3) Finkelstein reaction
 - (4) Swarts reaction
- 32. The order of reactivity of the following alkyl halides for a S_N 2 reaction is [IIT-2000]
 - (1) RF > RCl > R-Br > R-I
 - (2) R-F > R-Br > R-Cl > R-I
 - (3) R-Cl > R-Br > RF > RI
 - (4) R-I > R-Br > R-Cl > R-F
- 33. Identify the set of reagents/reaction of the following alkyl halides for a $S_N 2$ reaction is [IIT-2002]

$$CH_3CH_2$$
- $CH_2Br \xrightarrow{X} Product \xrightarrow{Y} CH_3$ - CH - CH_3

$$Br$$

(1) X = dilute aqueous NaOH, 20°C

Y = HBr/acetic acid, 20°C

(2) X = concentrated alcoholic NaOH, 80°C

Y = HBr/acetic acid, 20°C

(3) $X = dilute aqueous NaOH, 20^{\circ}C$

 $Y = Br_2/CHCl_3$, 0°C

(4) X = concentrated alcoholic NaOH, 80°C

 $Y = Br_2/CHCl_3$, 0°C

34. MeO
$$\sim$$
 CH₃H CH₃ \sim NO₂ [IIT-2005]

on hydrolysis in presence of acetone?

$$(A) \quad MeO \longrightarrow \begin{array}{c|c} CH_3H & CH_3 \\ \hline & & \\ \hline & & \\ H & OHCH_3 \end{array} \longrightarrow \begin{array}{c|c} NO_2 \\ \hline \end{array}$$

$$(B) \ \ \text{MeO} \longrightarrow \begin{array}{c|c} CH_3H & CH_3 \\ \hline \\ OHH & CH_3 \\ \hline \end{array} \longrightarrow \begin{array}{c|c} NO_2 \\ \hline \\ OHH & CH_3 \\ \hline \end{array}$$

- (1) A & B
- (2) Only B
- (3) Only C
- (4) A & C
- **35.** Match the Column-I with Column-II and mark the correct option from the codes given below. **[JEE Adv.-2006]**

Column-I

Column-II (p) E1 reaction

- (A) CH₃-CHBr-CD₃ on treatment with alc. KOH Gives CH₂=CH-CD₃ as the major product.
- (B) Ph-CHBr-CH₃-reacts Faster than Ph-CHBr-CD₃
- (q) E2 reaction(r) E1cb reaction
- (C) Ph–CH₂–CH₂Br on treatment with C₂H₅OD/C₂H₅O⁻ gives Ph–CD=CH₂ as the major product.

p, r, s

- (D) PhCH₂CH₂Br and PhCD₂CH₂Br react with same rate.
- (s) First order reaction

Codes

(4) q

A	В	C	D
(1) q	q	r	p, s
(2) p, s	p	q	r, s
(3) q	q, r	p, q, r	q

36. The reagent in form the following conversion is/are

[IIT-2007]

$$Br \xrightarrow{?} H = H$$

- (1) Alcoholic KOH
- (2) Alcoholic KOH followed by NaNH₂
- (3) Aqueous KOH followed by NaNH₂
- (4) Zn/CH₃OH
- 37. The major product of the following reaction is:

[IIT-2008]

$$\begin{array}{c} \text{Me} \quad \text{Br} \\ \text{F} \quad \begin{array}{c} \oplus \oplus \\ \text{PhSNa} \\ \end{array} \\ \text{NO}_2 \end{array}?$$

$$Me$$
 Br Me SPh SPh SPh SPh SPh NO_2 NO_2

- **38.** The total number of alkenes possible by dehydro-bromination of 3-bromo-3-cyclopentylhexane using alcoholic KOH is

[JEE Adv.-2011 (integer type)]

39. Match the chemical conversion in Column-I with the appropriate reagents in Column-II and select the correct answer using the code given below the lists

[JEE Adv.-2013]

Column-I

$$(A) \rightarrow Cl \longrightarrow =$$

$$(B) \rightarrow ONa \rightarrow OE$$

$$(D) \bigcirc \longrightarrow \bigcirc OH$$

Codes

- A C D В
- (1) q r \mathbf{S} p
- (2) r p S q
- (3) r S q p
- (4) r S q p

32. (3)

40. KI in acetone, undergoes S_N 2 reaction with each P, Q, R and S. The rates of the reaction vary as [JEE Adv. Only-2013]

Column-II

- (p) (I) Hg(OAc)₂; (ii) NaBH₄
- (q) NaOEt
- (r) Et-Br
- (s) (i) BH₃; (ii) H₂O₂/NaOH

- (1) P > Q > R > S
- (2) S > P > R > Q
- (3) P > R > Q > S
- (4) R > P > S > Q

ANSWER KEY

35. (3)

34. (4)

EXERCISE # 1

- 5. (1) 1. (4) 2. (3) 3. (1) 4. (4)
- 6. (1) 7. (4) 8. (3) 9. (4) 10. (2)
- 11. (3) 12. (1) 13. (1) 15. (3) 14. (3)
- 16. (4) 17. (1) 18. (1) 19. (3) 20. (1)
- 21. (2) 22. (2) 23. (3) 24. (1) 25. (2)
- 26. (2) 29. (2) 27. (2) 28. (3) 30. (1)
- 33. (2)
- 36. (4) 37. (1) 38. (1) 39. (2) 40. (1)

EXERCISE # 3

- 1. (1,2,4) 2. (1,2,3,4) 3. (1,2,4) 4. (1,3,4) 5. (1,4)
- 6. (1,3,4) 7. (1,2,3) 8. (1,3) 9. (1,3) 10. (1,2,4)
- 11. (1,2,4) 12. (2,3,4) 13. (2,3,4) 14. (1,3) 15. (2)
- 16. (4) 17. (2) 18. (1) 19. (4) 20. (2)
- 21. (2) 22. (3) 23. (4) 24. (4) 25. (2)
- 26. (3) 27. (3) 28. (1) 29. (3) 30. (4)
- 31. (1) 32. (2) 33. (1) 34. (8) 35. (6)
- 36. (3) 37. (4) 38. (4)

EXERCISE # 2

31. (1)

- 1. (2) 2. (4) 3. (2) 4. (2) 5. (1) 6. (3) 7. (1) 9. (3) 8. (4) 10. (2)
- 11. (2) 12. (2) 13. (2) 14. (1) 15. (2)
- 16. (3) 17. (2) 18. (1) 19. (3) 20. (4)
- 21. (1) 22. (1) 23. (2) 24. (2) 25. (4)
- 26. (1) 27. (4) 28. (3) 29. (2) 30. (3)
- 31. (4) 32. (1) 33. (1) 34. (3) 35. (2)

EXERCISE # 4

- 2. (2) 1. (1) 3. (3) 4. (4) 5. (1)
- 6. (3) 7. (2) 8. (2) 9. (4) 10. (2)
- 11. (3) 12. (4) 13. (3) 14. (3) 15. (2)
- 16. (3) 17. (2) 18. (4) 19. (1) 20. (2)
- 21. (2) 22. (2) 23. (3) 24. (3) 25. (1)
- 26. (3) 27. (3) 28. (3) 29. (4) 30. (3)
- 31. (4) 32. (4) 33. (2) 34. (1) 35. (1)
- 36. (2) 37. (1) 38. (5) 39. (1) 40. (2)

HINT AND SOLUTION

EXERCISE # 1

1. [4]

S_N2 Reaction does not involve rearrangement.

Product of (i) and (ii) reaction formed without rearrangement, so that both reaction involve $S_{\rm N}2$ mechanism.

2. [3]

(2)
$$CH_3CH_2CH_2C \equiv CH \xrightarrow{H_2} [A] \xrightarrow{Cl_2}$$

$$CH_3-CH_2-CH-CH$$

(3)
$$CH_3CH_2CH_2C = CH \xrightarrow{2HCl} CH_3 - CH_2 - CH_2 - C-CH_3$$

Cl Cl

(4)
$$CH_3CH_2CH = CHCH_3 \xrightarrow{HCl}$$

$$\begin{array}{c} \mathrm{CH_3\text{-}CH_2\text{-}CH\text{-}CH_2\text{-}CH_3} \\ \mathrm{Cl} \end{array}$$

3. [1]

HCl
$$A\alpha$$
—H $A\alpha$

4. [4]

$$CH_{2} \xrightarrow{COOH} \xrightarrow{\Delta} CH_{3} - C - OH \xrightarrow{Ag_{2}O} \xrightarrow{Tollens Reagent}$$

$$CH_{3} - C - O - Ag_{2}O$$

$$CH_{3} - C - O - Ag_{3}O$$

$$CH_{3} - Br$$

5. [1]

$$CH_2 \xrightarrow{Br_2/H_2O} CH_2-Br$$
 $CH_2 -Br$
 $CH_2 -Br$

'Markownikov's rule'

6. [1]

Rate of $S_N 1 \propto C^{\oplus}$ stability

Rate of
$$S_N 2 \propto \frac{1}{\text{Steric crowding}}$$

7. [4]

Nucleophilic strength ∝ size

$$\begin{array}{l} HCl \longrightarrow H^{^{+}} + Cl^{\Theta} \\ Hl \longrightarrow H^{^{+}} + l^{\Theta} \end{array} \begin{array}{l} Size^{\uparrow} \\ Base \ strength \downarrow \\ Nucleophilic \ strength \uparrow \end{array}$$

8. [3]

$$\begin{array}{c|c} & & & \\ & & \\ \hline & & \\$$

9. [4]

$$\text{CH}_3\text{-CH}_2\text{-CH}=\text{CH}_2\frac{\text{HBr}}{\text{H}_2\text{O}_2} \\ \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-Br}$$

$$\begin{tabular}{lll} CH_3-CH_2-CH_2-CH_2-CH_3-CH_2-CH_-CH_3$\\ & Br\\ & (chiral C-present) \\ \end{tabular}$$

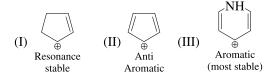
$$CH_3$$
- CH_2 - CH = CH_2 $\frac{HBr}{C_6H_5$ - O - O - C_6H_5

Antimarkownikoff addition

1-bromobutane

11. [3]

In given reaction configuration of product opposite as reactant, i.e., inversion takes place so that it must be SN_2 reaction.


$$\frac{dx}{dt} = k [substrate]^1 [OH^-]^1$$

12. [1]

Rate of SN₁ reaction ∞ stability of carbocation

13. [1]

Reactivity of SN_1 Reaction ∞ Stability of carbocation

II > I > II

14. [3]

 ${S_N}^2$ reaction of iodide ion converts the alkyl chloride to the more reactive alkyl iodide

$$R-Cl \xrightarrow{NaI} R-I$$
 (Finkeltein reaction)

$$R-I > R-Br > R-Cl > R-F$$

Reactivity ↓

15. [3]

16. [4]

$$\begin{array}{c} \text{CH}_3\text{-C-CH}_3 & \text{Aq. NaOH} \\ \text{Cl Cl} & & \text{OH OH} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_3\text{-C-CH}_3 \\ \text{OH OH} \\ \end{array}$$

$$\begin{array}{c} \text{Unstable} \\ \text{-H}_2\text{O} \\ \text{CH}_3\text{-C-CH}_3 \\ \\ \text{O} \\ \end{array}$$

17. [1]

In polar protic solvent 3° halide will give unimolecular substitution (SN₁)

18. [1]

In strangest base (t-Bu \overline{o}) β -elimination predominantly takes place.

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3}\text{-C-O}^{\Theta} + \text{CH}_{3}\text{-CH}_{2}\text{-CH}_{2}\text{-Br} \\ \text{CH}_{3} \qquad \qquad 1^{\circ} \text{ halide} \\ \text{t-butoxide ion} \\ \hline \xrightarrow{\text{(CH}_{3})_{3}\text{-C-OH, }40^{\circ}\text{C}} \text{CH}_{3}\text{-CH=CH}_{2} \end{array}$$

19. [3]

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3}\text{-CH}_{2} \\ \text{C} \\ \text{-Br+H-S}^{\Theta} \\ \hline \begin{array}{c} 50^{\circ}\text{C} \\ \hline \text{CH}_{3}\text{-OH} \\ \hline \text{S}_{N}2 \\ \text{inversion} \end{array} \\ \text{HS}^{\Theta}\text{-C} \\ \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2}\text{-CH}_{3} \\ \end{array}$$

20. [1]

Reactivity of alkyl halides,

$$R - I > R - Br > R - Cl > R - F$$

21. [2]

Retention takes place, i.e., configuration of product and reactant are same.

22. [2]

De-carboxylation followed by iodination takes place.

$$CHCl_{3} \xrightarrow{OH^{-}/H_{2}O} H-C \xrightarrow{OH} \xrightarrow{-H_{2}O} H-C-OH \xrightarrow{\overline{O}H} H-C-O^{\Theta}$$

$$O \qquad O$$

24. [1]

$$CHCl_{3} \xrightarrow{SbF_{5}} CHF_{2}Cl \xrightarrow{1070K} CF_{2}=CF_{2}(X) + 2HCl$$

25. [2]

$$2\text{NaOH} + \text{I}_2 \longrightarrow \text{NaOI} + \text{NaI} + \text{H}_2\text{O}$$

$$\downarrow \\ \text{NaI} + [\text{O}]$$

$$OH \longrightarrow I_2+2NaOH \longrightarrow O \longrightarrow CHI_3 + CH_3 - COONa$$

a = 4, (I₂ molecule used)b = 6 (NaOH molecule used)

$$\frac{a}{b} = \frac{4}{6} = 2:3$$

26, [2]

$$\text{CHCl}_3 \xrightarrow{\text{Conc. HNO}_3} \text{CNO}_2 \cdot \text{Cl}_3$$

$$\xrightarrow{\text{Chloropicrin}}$$

27. [2]

A will give positive iodoform test, so it must be 2-alkanol of $C_8H_{10}O$.

$$\begin{array}{c|c}
 & COONa \\
\hline
CH-CH_3 & I_2+2NaOH & CHI_3 + \\
OH & Yellow ppt & CHI_3 + \\
\end{array}$$

28. [3]

$$\begin{array}{c|cccc} Cl & Cl & Cl & CH_3 \\ \hline & & & & \\ \hline & & \\$$

Magnitude of equal vector at 180°, Cancelled by each other.

29. [2]

Boiling point ∞ molecular weight.

30. [1]

Stability of R-X

$$R-F > R-Cl > R-Br > R-I$$

E.N. \(\forall \) Polarity \(\forall \) stability \(\forall \)

31. [1]

Bond strength ∞ Electronegativity.

32. [3]

Boling point ∞ Molecular weight

$$\propto \frac{1}{\text{Branching (for isomer)}}$$

33. [2]

 $R-X \xrightarrow{Cu-wire} Green flame (A halogen may be present.)$

34. [4]

 1° halide undergoes SN reaction but aryl halides do not give SN reaction in ordinary condition.

35. [3]

$$Cl \xrightarrow{H} + O = CH - CHl_3 \xrightarrow{H_2SO_4} Cl \xrightarrow{CH - CCl} CH - CCl$$

36. [4]

Rate of Ar SN
$$\propto$$
 EWG $\propto \frac{1}{\text{ERG}}$

Thus presence of strong EWG increases the rate of hydrolysis.

$$\begin{array}{c|c} OCH_3 & OCH_3 & OCH_3 \\ \hline Cl & KNH_2 & \hline Elimations & Addition & NH_2 \\ \hline H & Benzyne & NH_2 & \hline \end{array}$$

(Elimination addition reaction Benzyne mechanism refer keyconcept)

38. [1]

$$CH_3$$
 OCH₃ KNH_3 No reaction

• Aryl substitution reaction takes place by benzyne mechanism; needed H at *ortho* position which is not present in option (1). So no reaction takes place.

39. [2]

Rate of nucleophilic substitution in Ar-Cl < R-Cl

40. [1]

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$$

In ordinary condition aryl halide do not give SN reaction

EXERCISE # 2

1. [2]

$$\begin{array}{c|c} & Li \\ \hline \\ Br \end{array} \begin{array}{c} Li \\ \hline \\ D \end{array}$$

2. [4]

$$CH_2$$
-Br R -O SN_2 Inversion R -O R -D R

3. [2]

$$\begin{array}{c} CH_{3} \\ CH_{2}Cl \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ SN_{1} \end{array}} \begin{array}{c} CH_{3} \\ CH_{2} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ \oplus \\ CH_{2} \end{array}} \begin{array}{c} CH_{3} \\ \oplus \\ CH_{2} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array}} \begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array}} \begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array}} \begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array}} \begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array}} \begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array}} \begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ \oplus \\ CH_{3} \end{array}} \xrightarrow{\begin{array}{c} CH_{$$

4. [2]

Rate of $S_N 1$ reaction α stability of $-C_1$

If carbocation is same, than

$$R-I > R-Br > R-Cl > R-F$$

 \therefore I > III > IV

5. [1]

Br
$$MgBr$$
 CH_3 $\Theta \oplus \Theta$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_4 CH_5 $CH_$

$$CH_{3}-CH_{2}-CH$$

$$CH_{3}-CH_{2}-CH$$

$$CH_{3}-CH_{2}-CH$$

$$CH_{3}-CH_{2}-CH$$

$$CH_{3}-CH_{2}$$

$$CH_{3}-CH_{2}$$

$$CH_{3}-CH_{3}$$

$$CH_{3}-CH_{2}$$

$$CH_{3}-CH_{3}$$

$$CH_{3}-CH_{3}$$

$$CH_{3}-CH_{3}$$

$$CH_{3}-CH_{3}$$

$$CH_{3}-CH_{3}$$

$$CH_{3}-CH_{3}$$

$$CH_{3}-CH_{3}$$

$$CH_{3}-CH_{3}$$

Since breaking of cyclic ether in alkaline media accompanied by SN₂, so that nucleophile added at least stericly hindred position.

6. [3]

Hence configiration of only 1st carbon will revert.

7. [1]

$$\begin{array}{c} \text{RCH=CH-CH}_2\text{-X} & \xrightarrow{y^\Theta} \text{R-CH=CH-CH}_2 \\ \\ \text{R-CH-CH=CH}_2 & \xrightarrow{y^\Theta} \text{R-CH-CH=CH}_2 \\ \\ \text{y} \end{array}$$

This reaction happened by stable carbocation so it is $S_N 1$ reaction.

8. [4]

9. [3]

$$\begin{array}{c|c} Me & Me \\ \hline & H & Na^{\oplus}SEt \\ Br & S_{N}2 \end{array}$$

10. [2]

Rate of Ar-SN \propto – M, – I

 \rightarrow Lone pair of \ddot{N} atom does not delocalize. So it works as -I group Thus it increases the rate of Ar–SN (aromatic nucleophlilic substitution) reaction.

11. [2]

$$\begin{array}{cccc}
NH & \xrightarrow{S_N 1} & NH & \oplus \\
B & & Aromatic
\end{array}$$

Rate of S_N1 reaction α stability of carbocation

12. [2]

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline & Cl & NaNH_2\text{-liq. NH}_3 \\ \hline & H & \\ \beta\text{-elimination} & (refer keyconcept) \end{array}$$

13. [2]

 α -carbon is achiral, hence retention of configuration at β -carbon.

14. [1]

For Cl(1), other two Cl present at either *ortho* or *para* position; so it works as Electron Withdrawing Group.

Rate of Ar– $S_N 2 \propto$ power of EWG

15. [2]

Dipole moment depends upon magnitude as well direction, and also it is calculated by the vector sum of two dipoles.

Angle (θ) ↑ dipole moment (μ) ↓

CH₃ Cl Cl Cl Cl Cl (I) (II) (III) (IV) (Polar)
$$(\theta = 120)$$
 $(\theta = 60)$ $(\theta = 180)$

16. [3]

 $\beta\text{-H}$ at the bridging carbon is anti to leaving group, lost in E2 reaction

17. [2]

$$\Delta G$$

Reaction Corrdinate

 Me
 H_2O
 OH_2
 H
 Me
 OH
 OH

Two intermediate formed carbocation and oxoniumion.

18. [1]

Cl
$$AgNO_3/C_2H_5OH$$
Ar–SN
$$Ar-SN$$
No reaction
$$Ar-SN$$

$$AgCl \downarrow \text{ white ppt}$$

19. [3]

- \rightarrow 1° halide will gives $S_{N}2$ reaction predominantly with SH ion.
- \rightarrow If alkyl halide is same then R–Br is more reactive than R–Cl.

20. [4]

$$\begin{array}{c} CH_3 \\ H \\ H \\ H \\ H \end{array}$$

$$\begin{array}{c} CH_3 - CH_2 - O^{\Theta} \\ CH_3 - CH_2 - OH \\ \text{heat} \\ E2 \\ \text{Anti elimination} \end{array}$$

21. [1]

Arylic substitution takes place by benzyne mechanism, for this presence of H-atom at ortho position must be essential which is available only in option (1).

22. [1]

$$\begin{array}{c|c} Cl & Cl \\ \hline & H_2SO_4 + SO_3 \\ \hline & Sulphonation \\ Cl & Ar-SE \\ \end{array}$$

23. [2]

$$C - CH_{2} - CH_{2}$$

24. [2]

OH
$$\begin{array}{c} & \downarrow 1:2 \stackrel{\bigoplus}{\text{H}} \text{shift} \\ & \downarrow C_6 \text{H}_5 - \stackrel{\bigoplus}{\text{CH}} - \text{CH}_2 - \text{CH}_3 \\ & \downarrow \text{Br}^{\ominus} \\ & \downarrow \text{C}_6 \text{H}_5 - \text{CH} - \text{CH}_2 - \text{CH}_3 \\ & \downarrow \text{Br} \\ & \downarrow \text{I-brano-1-phenyl propanea} \\ & \downarrow \text{C}_6 \text{H}_5 - \text{CH} - \text{CH}_2 - \text{CH}_3 \\ & \downarrow \text{Anti-markownikoff} \\ & \downarrow \text{C}_6 \text{H}_5 - \text{C}_7 - \text{C}_6 \text{H}_5 \\ & \downarrow \text{C}_6 \text{H}_5 - \text{C}_7 - \text{C}_6 \text{H}_5 \\ & \downarrow \text{Br} \\ & \downarrow \text{C}_6 \text{H}_5 - \text{C}_7 - \text{C}_7 - \text{C}_7 \\ & \downarrow \text{Benzylic substitution} \\ & \downarrow \text{Br} \\ & \text{Via stable } (\text{C}_6 \text{H}_5 - \text{CH} - \text{CH}_2 - \text{CH}_3) \text{ radical} \\ \end{array}$$

26. [1]
$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

28. [3]

Allyl bromide (I) is most reactive among the given halides as pi bonds from alylic position stabilizes the transition state. Vinyl iodide (II) is least reactive due double bond character. Electron withdrawing inductive effect of CH₃O⁻ increase reactivity of (IV) over (III)

29. [2]

HO⁻ is stronger nucleophile than CH₃COO⁻. Hence, lower is the activation energy of (i) than (ii).

30. [3]

(III) forms tertiary carbocation, hence most reactive, (I) is the least reactive as highly unstable carbocation is formed at bridge head carbon of bicyclic compound.

31. [4]

In ordinary condition aryl halide do not give SN reaction.

32. [1]

Rate of $Ar-S_N 2 \propto Electron Withdrawing Group (-NO₂)$

33. [1]

Density ∞ Molecular weight

34. [3]

Reactivity of $S_N 1$ reaction ∞ stability of carbocation

$$\infty$$
 ERG $\propto \frac{1}{\text{EWG}}$

35. [2]

Theory based.

EXERCISE # 3

1. [1, 2, 4]

Reaction proceeds by E1 mechanism.

$$\begin{array}{c|c} & & & \\ \hline & & \\ \hline & & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline$$

2. [1, 2, 3, 4]

H₂O (Protic Solvent)

Hence SN₁ reaction takes place

(I) gives (1) and (2) while (II) gives (3) and (4).

3. [1, 2, 4]

Br

$$CH_3$$
 H_2O
 CH_3
 H_2O
 CH_3
 H_2O
 CH_3
 H_2O
 CH_3
 CH_3

4. [1, 3, 4]

$$H$$
 CN
 CH_3
 H
 CN
 CH_3
 H
 CN
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Rest 1, 3, 4 give chiral product

5. [1, 4]

In both option (1) and option (4) α -carbon is chiral, hence $S_N 2$ reaction will lead to inversion of configuration. In option (2), α -carbon is achiral, configuration of chiral β -carbon will not be affected. In option (3) $S_N 2$ reaction occur twice at the same α -carbon hence, double inversion will give not retention of configuration.

6. [1, 3, 4]

In both option (1) and option (4) products have inverted configuration but at α -carbon only. In option (2) product has inverted configuration at both α and β -carbons, hence not true in S_N^2 reaction. In case of option (4), an equilibrium will be established with K=1.

$$CH_3$$
 $C = H + Br$
 $K = 1$
 C_2H_5
 B_1
 C_3H_5
 B_1
 CH_3
 CH_3
 CH_3
 CH_5

At equilibrium both enantiomers exist in equal amounts giving racemic mixture.

7. [1, 2, 3]

All will react via cyclic sulphonium ion intermediate involving $S_{\rm N}2$ reaction twice giving over all retention of configuration.

8. [1, 3]

Due to neighbouring group participation, reaction occurs at much faster rate than 2-bromo-3, 3-dimethylpentane. Also it involves $S_{\rm N}2$ reaction twice, overall retention of configuration is observed.

9. [1, 3]

10. [1, 3, 4]

Steric hindrance plays the most important role in $S_{\rm N}2$ reaction. Hence, although Cl is poorer leaving group than I, Cl is substituted predominantly in the above reaction due to less steric hindrance at α -carbon. Addition of NaI replace Cl by I and substitution becomes easier.

$$I \xrightarrow{CH_3} CI \xrightarrow{+ \text{NaCN(aq)}} \underbrace{S_{\text{N}2} \xrightarrow{CH_3}}_{I \xrightarrow{CH_3}} CN$$

11. [1, 3, 4]

Theory based

12. [2, 3, 4]

Theory based.

13. [2, 3, 4]

(1)
$$CH_3CH_2OCH_2CH_3 \xrightarrow{Cl_2} C_2Cl_5-O-C_2Cl_5$$

Not alkyl halide

(2)
$$CH_3CH_2OCH_2CH_3 \xrightarrow{conc. HI} CH_3-CH_2-OH +$$

(3)
$$CH_3CH_2OCH_2CH_3 \xrightarrow{PCl_5} 2CH_3-CH_2-Cl+POCl_3$$

(4)
$$CH_3CH_2OH \xrightarrow{SOCl_2} CH_3-CH_2-Cl+SO_2+HCl$$

14. [1, 3]

$$\begin{array}{c|c} CH_3 & CH_3 \\ CH_2 & CH_2 \\ CH_3-CH_2-C-Br & CH_3-OH \\ CH_2 & CH_3-CH_2-C=CH-CH_3 \\ CH_2 & E_1 \ reaction\ predominantly\ takes\ palce \\ CH_3 & CH_3 & CH_3 \\ CH_3 & CH_$$

15. [2]

16. [4]

Aryl halide do not give nucleophilic substitution in ordinary condition to because partial double bond character develop due to resonance.

17. [2]

refer key concept.

18. [1]

refer key concept.

19. [4]

Boiling point ∝ molecular weight. So R–Br has higher b.pt. than R–Cl.

20. [2]

refer key concept.

21. [2]

In aryl halide C–X bond have partial double bond character due to resonance, so bond energy increase thus removal of X as leaving group is difficult in ordinary condition. Hence aryl halide do not give substitution reaction easily.

22. [3]

Only deuterium is present at anti position of a β -carbon, it is abstracted by base, although giving less substituted alkene as the major product. On tertiary β -carbon, hydrogen is not available in *anti* position to leaving group.

23. [4]

Br
$$C_2H_5O^ E2$$
 $Cis + trans$
 CH_2

24. [4]

Bulky base takes β -H from least hindered β -carbon, giving least substituted alkene as the major product.

25. [2]

Products are same in both reaction, hence same potential energies of products are shown, Also I^- is better leaving group, has lower activation energy in S_N^2 reaction as indicated by curve-I in diagram.

26. [3]

Since I^- is better leaving group, $k_I > k_{II}$

27. [3]

Following neutralisation is preferred over S_N^2 reaction:

$$CH_3$$
— CH_2 — $OH + NaNH_2$ — \rightarrow

$$CH_3$$
— CH_2 — $O^- Na^+ NH_3$

28. [1]

(A)
$$CH_3CH$$
— $CHCH_3$
 \xrightarrow{HCl}
 $Via\ 1, 2H^{\Theta}$ shift $CH_3CCH_2CH_3(r)$
 CH_3
 CH_3
 CH_3

(B)
$$CH_3CHCH_2CH_2OH \xrightarrow{PCl_5} CH_3CHCH_2CH_2Cl (q)$$

 $CH_3 CH_3$

(C)
$$CH_3CH$$
— $CHCH_3 \xrightarrow{PCl_3} CH_3CH$ — $CHCH_3(p)$
 $CH_3 OH CH_3 CI$

(D)
$$CH_3CHCH_2CH_3 \xrightarrow{SOCl_2} CH_3-CH-CH_2CH_3(s)$$

29. [3]

Theory based.

30. [4]

Theory based.

31. [1]

- (i) Due to 'S' at β -position, neighbouring group participation occur giving net retention (twice inversion).
- (ii) $S_N 2$ at a-carbon gives inversion and product is meso diol.
- (iii) Only S_N2 hence inversion
- (iv) Show neighbouring group effect

Hence, (i) \rightarrow (q, s); (ii) \rightarrow (p, r); (iii) \rightarrow (p); (iv) \rightarrow (r, s)

32. [2]

(i) Given halide is a primary, predominantly undergo $S_{\rm N}2$ reaction.

$$(i) \rightarrow (q)$$

(ii) Given halide is secondary, can undergo $\rm S_N 2$ reaction. Also, E2 reaction leads to a conjugated system. Also, it any react by E1cb mechanism because it forms resonance stabilised carbanion.

$$(ii) \rightarrow (q, r, s)$$

(iii) It is a 3° halide and in the presence of weak base H_2O , weak nucleophile H_2O , it may undergo unimolecular substitution (S_N1) and elimination (E1) reaction.

$$(iii) \rightarrow (p)$$

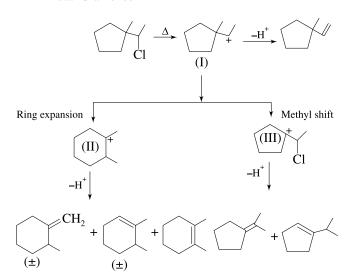
(iv) It may form a stable benzylic carbocation after hydride shift, hence any react by S_N1mechanism. Also, it is a secondary halide, may undergo S_N2 reaction. It may also react by E2 reaction at it gives conjugated system. Carbanion, formed at β-C will be stabilized by resonance from ring, hence may undergo E1cb mechanism.

$$(iv) \rightarrow (p, q, r, s)$$

33. [1]

(A)
$$C_2H_5OH + HC1 \xrightarrow{ZnCl_2} C_2H_5Cl + H_2O$$

(B)
$$C_6H_5N_2^+Cl^- + HBr \xrightarrow{Cu} C_6H_5Br +$$


(C)
$$CH_3CHCH_2CH_3 \xrightarrow{\text{alc. KOH}} CH_3-CH = CHCH_3$$

Rr reaction

(D)
$$CH_3CH_2CH_2Cl+NaI \xrightarrow{Acetone} CH_3CH_2CH_2I \xrightarrow{Frenkelstein reaction} + NaCl$$

34. [8]

Total 8 alkenes

35. [6]

Only (ii), (iv), (vii) and (ix) are less dense than water. Alkyl bromides, alkyl iodides and all alkyl halides containing two or more halogen atoms.

36. [3]

Only the circled groups are substituted in S_N2

$$Cl \qquad C \equiv C - Cl$$

$$Cl \qquad C$$

37. [4]

Any of the two Cl can be substituted by CN as:

38. [4]

$$C_6H_5$$
 $C_{is + trans}$
 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5

EXERCISE # 4

1. [1]

Replacement of Br by –OH group takes place. So that it is substitution reaction.

2. [2]

Reactivity of HX is HI > HBr > HCl > HF

3. [3]

Reactivity of
$$S_N 2 \propto \frac{1}{\text{steric hindrance}}$$

Reactivity order 1° halide > 2° halide > 3° halide.

4. [4]

$$\begin{array}{l} R_2CuLi \,+\, R'X \longrightarrow R - R' \,+\, R - Cu \,+\, LiX \\ \text{(Dialkyl copper lithium)} \qquad \text{(alkane)} \end{array}$$

5. [1]

Stability of (I) > (II) hence (I) is predominant.

6. [3]

$$\begin{array}{c} \text{Ph-CH-CH}_3 \xrightarrow{\text{(o)}} \text{Ph-C-CH}_3 \xrightarrow{\text{I}_2 + \text{NaOH}} \text{Ph-C-O-Na} + \text{CHI}_3 \\ | & | & | & | \\ \text{OH} & \text{O} & \text{O} \end{array}$$

7. [2]

Reactivity of
$$S_N 2 \propto \frac{1}{\text{steric hindrance}}$$

Reactivity order 1° halide > 2° halide > 3° halide.

8. [3]

Nucleophilic substitution bimolecular (S_N2) prefers less sterically hindered site to attack. Lesser the steric hindrance, faster is the S_N2 reaction. So ease of reaction is $1^{\circ} > 2^{\circ} > 3^{\circ}$.

 $S_N 2$ involves inversion of configuration stereo, chemically.

Since 1° alkyl halides are preferred to S_N2 reactions, therefore CH₃Cl undergoes complete stereochemical inversion.

9. [4]

$$CH_{3}\text{-}CH \stackrel{Cl}{\stackrel{aq \ KOH}{Cl}} \xrightarrow{CH_{3}\text{-}CH} \stackrel{OH}{\stackrel{OH}{\stackrel{OH}{CH}}}$$

10. [2]

The reactivity of $S_N 1$ reaction depends upon the stability of the intermediate, carbocation formed during these reactions. The stability order of the carbocation formed from the given species is

$$Me$$
 > Me + Me > Me CH_2

Allylic carbocation (stabilizes through resonance due to conjugation) 2° carbocation (stabilizes by hyperconjugation due to 5α -H atoms)

1° carbocation (stabilizes by hyperconjugation due to 2α-H-atom)

Hence, the reactivity order of the given bromide towards $S_{\rm N}1$ reaction is

11. [3]

$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-Cl} \xrightarrow{\text{KCN}} \quad \text{CH}_3\text{-CH}_2\text{-CN} \\ \text{Ethyl chloride} & \text{Propane nitrile} \end{array}$$

12. [4]

Compound A gives a precipitate with alcoholic AgNO₃ (here white is misprinting because the colour of ppt. is light yellow), so it must contain Br in side chain.

On oxidation, it gives $C_8H_6O_4$, which shows the presence of two alkyl chains attached directly with the benzene nucleus.

Since compound B gives anhydride on heating, the two alkyl substituent must occupy adjacent (1, 2) position.

Thus, A must be

And the reactions are as follows

$$\begin{array}{c|c} CH_2Br & CH_2-OR \\ \hline CH_3 & Alcoholic \\ \hline AgNO_3 & CH_3 \\ \hline & CH_3 \\$$

Phthalic anhydride

13. [3]

$$\begin{array}{c|c} CH_3 & \stackrel{L/KOH}{\longrightarrow} + \text{ve test} \\ \hline OH \\ Isopropyl alcohol 2-alkanol \\ \hline CH_3 \\ \hline CH_3 - CH - CH - CH_3 \\ \hline OH \\ \hline CH_3 \\ \hline CH_3 - CH - CH_2 - OH \longrightarrow - \text{ve test} \\ \hline Isobutyl alcohol \\ \end{array}$$

$$CH_3$$
- C + CH_2 - CH_3 +ve test
 0

Ethyl methyl ketone

2-alkanol or methyl ketone will give positive iodoform test, isobutyl alcohol is not 2-alkanol type, hence gives negative iodoform test.

14. [3]

$$CH_3$$
- CH_2 -Br $\xrightarrow[\text{Covalent}]{AgCN}$ CH_3 - CH_2 - $N \equiv C$

Reduction Zn-Hg/HCl
$$\rightarrow$$
 CH₃-CH₂-NH-CH₃
Ethyl methyl amine

15. [2]

Copper wire test for halogens is known as Beilstein's Test

16. [3]

$$CCl_4 \stackrel{Cl}{\Rightarrow} C \qquad \mu = 0$$

Equal and opposite dipole cancelled by each other.

17. [2]

Beilstein test is used for estimation of Cl.

$$R-C1$$
 $\xrightarrow{\text{Cu-wire}}$ Green flame

18. [4]

$$Ph-N=N-Cl \xrightarrow{Cu/HBr} Ph-Br$$
Gattermann reaction

19. [1]

$$N \equiv N - CI$$

$$\frac{\text{HBF}_4/\Delta}{\text{Balz schiemann reaction}}$$

20. [2]

Tertiary alkyl halide mainly give β -elimination reaction so alkene will be formed as major product.

21. [2]

$$\begin{array}{c|c}
Cl & R \\
+ R- Cl & Na-ether \\
\hline
Alkyl halide \\
Aryl halide
\end{array} + 2NaCl$$

22. [2]

R-NH₂
$$\xrightarrow{\text{CHCl}_3/\text{KOH}}$$
 R-N∓C
CHCl₃ + KOH \longrightarrow $\overset{\dots}{\text{CCl}_2}$ + KCl + H₂O

α-elimination (dichloro carbene)

23. [3]

The given compound, (–)– chloro-1-phenylethane in the presence of $SbCl_5$ forms a carbocation.

Cl-CH-CH₃
$$\xrightarrow{\text{SbCl}_5}$$
 [Ph-CH-CH₃] SbCl₆

Since, the carbocation is a planar species, therefore it can be attacked by SbCl₆ either from the front or back side of the carbocation with equal ease. As a result, 50:50 mixture of two enantiomers of 1-choro-1-phenylethane undergoes racemisation due to the formation of a carbocation intermediate.

$$\begin{array}{c} [\text{Ph-CH-CH}_3] \text{ SbCl}_6^- \longrightarrow \text{Ph-CH-CH}_3 + \text{SbCl}_5 \\ & \downarrow \\ \text{Cl} \\ [\text{d and } l \text{ forms}] \end{array}$$

24. [3]

$$R-NH_2 \xrightarrow{CHCl_3/KOH} R-N \mp C + KCl + H_2O$$
Alkyl isocyanide

$$\text{CH-CH}_3 + \text{KOH} \longrightarrow \overset{..}{\text{C}}\text{Cl}_2 + \text{KCl} + \text{H}_2\text{O}$$

α-elimination (dichloro carbene)

25. [1]

Reactivity of
$$S_N 2 \propto \frac{1}{\text{steric hindrance}}$$

Reactivity order 1° halide > 2° halide > 3° halide.

26. [3]

When alkyl halide having chiral carbon then only complete inversion takes place.

In option 3 C_6H_5 – $\overset{*}{C}$ H– CH_3 hence it gives complete

inversion of configuration

27. [3]

28. [3]

$$\begin{array}{c|c}
N \equiv N - Cl & Cl \\
\hline
2 & Cl & CuCl \\
\hline
(sandmayer reation) & Cl
\end{array}$$

29. [4]

$$CH_{3}-CH_{2}-C \stackrel{Cl}{\stackrel{Cl}{\leftarrow}} \stackrel{aq \ KOH}{\longrightarrow} CH_{3}-CH_{2}-C \stackrel{OH}{\stackrel{OH}{\rightarrow}} OH$$

$$\stackrel{-H_{2}O}{\longrightarrow} CH_{3}-CH_{2}-C-OH$$

$$\stackrel{OH}{\longrightarrow} O$$
(Propanoic acid)

30. [3]

$$\begin{array}{c}
Cl \\
Cl-C-CH_3 \xrightarrow{Ag} CH_3-C \equiv C-CH_3-_6AgCl \\
Cl \\
Cl \\
Cl
\end{array}$$

(1, 1, 1-trichliroethane 2 mole)

31. [4]

Alkyl fluorides can be prepared by action of mercurous fluoride or antimony trifluorides (inorganic fluorides) on corresponding alkyl halide. It is known as Swarts reaction.

32. [4]

Reactivity of alkyl halide ∞ power of leaving group.

$$\frac{\operatorname{I}^\Theta\operatorname{Br}^\Theta\operatorname{Cl}^\Theta\operatorname{F}^\Theta}{\operatorname{size} \downarrow \operatorname{Base strength} \uparrow \operatorname{leaving tendency} \downarrow}$$

33. [2]

$$\begin{array}{c} \text{CH}_3\text{--CH}_2\text{--Br} \xrightarrow[\text{NaOH, } 80^{\circ}\text{C}]{\text{Conc. alc.}} \text{CH}_3\text{--CH=CH}_2 \\ \text{\beta-elimination} \\ \text{(x)} \end{array}$$

$$\xrightarrow{\text{HBr/ acetic acid, } 20^{\circ}\text{C}} \text{CH}_{3} \xrightarrow{\text{CH-CH}_{3}} \text{Rr}$$

34. [1]

$$CH_3O \xrightarrow{\qquad \qquad CH_3H \qquad CH_3} NO_2 \xrightarrow{\qquad \qquad } NO_2 \xrightarrow{\qquad \qquad }$$

$$CH_3O \xrightarrow{CH_3H} CH_3 \\ + \xrightarrow{H} CH_3$$

$$CH_3O$$
 \longrightarrow $+$ CH_3 \longrightarrow NO_2 \longrightarrow $+$ CH_3

Stabilized by +R effect of -OCH₃

(I)
$$\xrightarrow{\text{H}_2\text{O}}$$
 K

(II)
$$\xrightarrow{\text{H}_2\text{O}}$$
 L

35. [1]

(A)
$$CH_3$$
– $CHBr$ – $CD_3 \xrightarrow{Alc. KOH} CH_2$ = CH – CD_3

E2 reaction is a single-step reaction in which both deprotonation from β -C and loss of leaving group from α -C occur simultaneously in the rate-determining step. C–D bond is stronger than C–H bond. C–H is preferably broken in elimination.

(B) Ph-CHBr-CH₃ reacts faster than Ph-CHBr-CD₃ in E2 reaction because in latter case, stronger C-D bond is to be broken in the rate determining step.

(C)
$$Ph-CH_2-CH_2Br \xrightarrow{C_2H_5OD} Ph-CD=CH_2$$

(D) Both PhCH₂CH₂Br and PhCD₂CH₂Br will react at same rate in E1 reaction because C–H bond is broken in fast non-determining.

Thus, (A)
$$\rightarrow$$
 q; (B) \rightarrow q; (C) \rightarrow r; (D) \rightarrow p, s

36. [2]

$$Br \xrightarrow{Alcoholic} Br \xrightarrow{NaNH_2} H \Longrightarrow H$$

37. [1]

Nucleophile PhS $^-$ substitute the Br $^-$ through $S_N 2$ mechanism with inversion of configuration at α -C

38. [5]

The substrate has three different types of B–H, therefore, first, three structural isomers of alkenes are expected as

The last two alkenes (II) and (III) are also capable of showing geometrical isomerism; hence, two geometrical isomers for each of them will be counted giving a total of five isomers

39. [1]

	Column-I	Column-II	Explanation
(A)	→ CI → >=	NaOEt	OEt (strong nucleo- phile) causes dehy- drohalogenation of 3° alkyl halide
(B)	ONa OEt	Et-Br	3° butoxide undergoes $S_N 2$ reaction with 1° alkyl halide
(C)	OH OH	(i) Hg(OAc) ₂ ; (ii) NaBH ₄	Mercuration— demercuration adds H ₂ O by Markownikoff's rule without rearran-gement
(D)	OH OH	(i) BH ₃ ; (ii) H ₂ O ₂ / NaOH	Hydroboro-oxidation adds H ₂ O by anti- Markownikoff's rule

40. [2]

Acetone is an aprotic solvent and can dissolve both the nucleophile and the substrate and thus $S_N 2$ reaction is favoured. Also rate of $S_N 2 \propto -I$ power. Also

$$S_N 2 \xrightarrow{1^{\circ} 2^{\circ} 3^{\circ}} Alkyl \text{ halides}$$

S	CI	1° alkyl halide but (C-Cl). BE is decreased by electron withdrawing [C $_{6}H_{5}CO$] group, (a case of l-effect). Thus, maximum rate in SN2 reaction
Q	├— CI	2° alkyl halide, rate is minimum
Р	CH ₃ –CI	1° alkyl halide
R	CI	1° allylic halide but allylic 1° carbocation is resonance stabilised in SN1 reaction

Thus, reactivity order is S > P > R > Q