OBJECTIVE QUESTIONSH

1. The correct order of decreasing stability of the carbanions is

(1) 그렇게 하는 사람이 하는 사람이 하는 사람들이 하는 사람들이 되었다면 하는 사람들이 살아보다면 하는 사람들이 하는 사람
(CH ₃) ₃ C, (CH ₃) ₂ CH, CH ₃ CH ₂ , C ₆ H ₅ CH ₂
(a) 1>2>3>4 (b) 4>3>2>1 (c) 4<1>2>3 (d) 1>2>4>3
2. Chlorine in vinyl chloride is not very reactive because:
(a) sp ² hybridized carbon has shorter bond length than sp ³ hybridized carbon
(b) C - Cl bond develops partial double bond character
(c) of resonance
(d) all are correct
3. The correct order of stability of the following carbocations is:
(a) $CH_3CH_2^{\dagger}CH_2 > CH_2 = CH - CH_2 > CH_2 = CHCCHCH_3$
> CH ₂ =CHC(CH ₃) ₂
(b) $CH_2 = CHCH_2^{+} > CH_3CH_2CH_2^{+} > CH_2CHC(CH_3)_2 > CH_2 = CHCHCH_3$
(c) $CH_2 = CHC(CH_3)_2 > CH_2 = CHCHCH_3 > CH_2 = CHCH_2 < CH_3CH_2CH_2$
(d) $CH_2 = CH - \dot{C}HCH_3 > CH_2 = CH_2\dot{C}(CH_3)_2 > CH_3CH_2 - C\dot{H}_2$
$> CH_2 = CHCH_2$
4. The electromeric effect involves:
 (a) a slight displacement of σ-electrons
(b) a slight displacement of π -electrons
(c) the complete transfer of σ-electrons
(d) the complete transfer of π -electrons
5. In which of the following pairs of carbocations, the first carbocation is more
stable than the second?
(a) $CH_2 = CH - \overset{\dagger}{C}H_2$ and $CH_2 = CH - CH_2 - \overset{\dagger}{C}H_2$
(b) CH ₃ —NH—CH ₂ and CH ₂ —OH
(c) CH ₃ —O—CH ₂ —CH ₂ and CH ₃ —O—CH ₂
(d) CH ₃ —CH—CH ₂ CH ₂ CH ₃ and CH ₃ CH ₂ —CH—CH ₂ CH ₃
6. Which of the following is the strongest nucleophile?
(a) $HC = C^-$ (b) $H_2C = CH^-$ (c) $CH_3 = CH_2^-$ (d) NH_2^-
7. The false statements among the following are:
(i) A primary carbocation is less stable than a tertiary carbocation
(ii) A secondary propyl carbocation is less stable than allyl carbocation
(iii) A tertiary free radical is more stable than a primary free radical
(iv) A isopropyl carbanion is more stable than ethyl carbanion
(a) (i) and (ii) (b) (ii) and (iii) (c) (i) and (iv) (d) (ii) and (iv)

- 8. The arrangement of (CH₃)₃C-, (CH₂)₂CH-, CH₃CH₂- when attached to benzene or an unsaturated group in increasing order of inductive effect is: (a) $(CH_3)_3C - < (CH_3)_2CH - < CH_3CH_2 -$ (b) $CH_3CH_2 - < (CH_3)_2CH - < (CH_3)_3C -$ (c) $(CH_3)_2CH - < (CH_3)_3C - < CH_3CH_2 -$ (d) $(CH_3)_3C - < CH_3CH_2 - < (CH_3)_2CH -$ 9. The most unlikely representation of resonance structures of p-nitrophenoxide ion is: (b) (c) (d) (a) 10. Point out the incorrect statement about resonance? (a) Resonance structure should have equal energy (b) In resonance structure, the constituent atoms must be in the same position (c) In resonance structures, there should not be same number of electron

 - pairs
 - (d) Resonance structures should differ only in the location of electrons around the constituent atoms
 - 11. The most stable free radical among the following is:
 - (a) C₆H₅CH₂CCH₂
- (b) C₆H₅CHCH₃

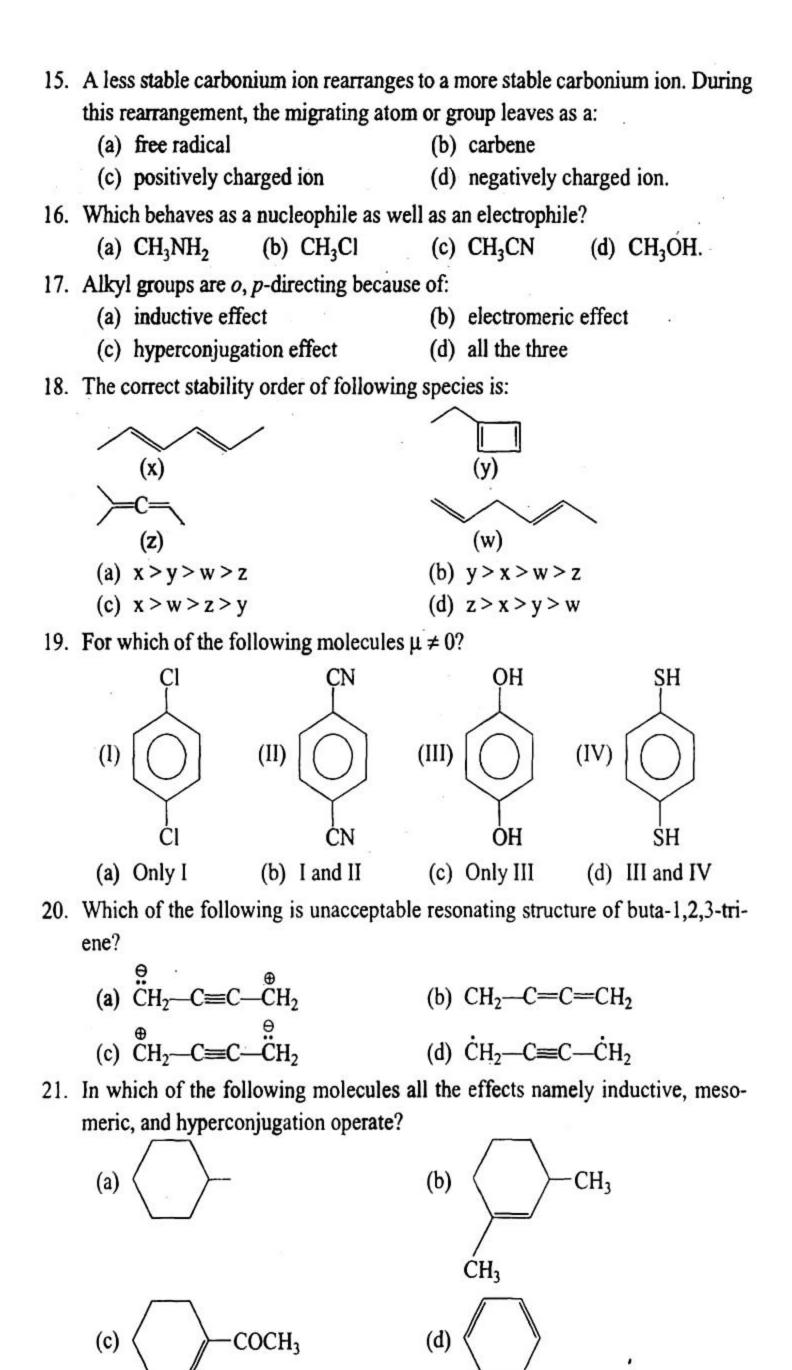
(c) CH₃CH₂

- (d) CH3CHCH3
- 12. Homolytic fission of C-C bond in ethane gives an intermediate in which carbon is:
 - (a) sp³-hybridized
- (b) sp²-hybridized

(c) sp-hybridized

- (d) sp^2d -hybridized
- 13. Among the following, the true property about
 - (a) non-planar

- (b) C⁺ is sp²-hybridized
- (c) electrophile can attack C+
- (d) does not undergo hydrolysis
- 14. Consider the following carbocations:
 - I. C₆H₅CH₂


II. C₆H₅CH₂CH₂

III. C₆H₅ČHCH₃

IV. $C_6H_5\dot{C}(CH_3)_2$

The correct sequence for the stability of these is:

- (a) II < I < III < IV
- (b) II < III < I < IV
- (c) III < I < II < IV
- (d) IV < III < I < II

22. The proper tautomeric structure for 2-aminopyridine (X) is:

(a)
$$N$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{3}$$

$$NH_{4}$$

$$NH_{5}$$

23. The correct basic strength order is:

24. In the given conformation, if C_2 is rotated about $C_2 - C_3$ bond anticlockwise by an angle of 120°, then the conformation obtained is:

- (a) fully eclipsed conformation
- (c) gauche conformation
- 25. SN1 reaction is faster in:

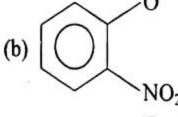
- (b) partially eclipsed conformation
- (d) staggered conformation

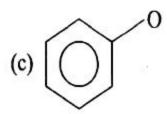
CH₃

26. Among the following compounds which can be dehydrated very easily?

- (c) CH₃—CH₂—CH₂—CH₂—CH₂—OH
- (d) CH_3 — CH_2 — CH_2 — CH_2 — OH_3
- 27. Which of the following statements is not characteristic of free radical chain reaction?
 - (a) It gives major product derived from most stable free radical
 - (b) It is usually sensitive to change in solvent polarity
 - (c) It proceeds in three main steps such as initiation, propagation, and termination
 - (d) It may be initiated by UV light
- 28. Most stable carbanion is:

(a)
$$CH_3^-$$
 (b) $CH_3CH_2^-$




- 29. Among the following the dissociation constant is highest for:
 - (a) C₆H₅OH

(b) C₆H₅CH₂OH

(c) CH₃C≡CH

- (d) CH₃NH₃⁺Cl⁻
- 30. Which one of the following compounds is most acidic?
 - (a) Cl-CH2-CH2-OH

- 31. Which one is electrophilic addition?
 - (a) CH_3 — CH_3 + Cl_2 \rightarrow C_2H_5Cl +HCl
 - (b) $CH_3CH = O + HCN \rightarrow (CH_3)_2C(OH)CN$
 - (c) $Br_2 \rightarrow Br^{\bullet} + Br^{\bullet}$
 - (d) $CH_2 = CH_2 + Br_2 \rightarrow CH_2BrCH_2Br$

32.	A compound has three chiral carbon atoms. Find the number of possible opti- cal isomers it can have:										
	(a) 3 (b) 2 (c) 8 (d) 4										
33. How many chiral isomers can be drawn from 2-bromo,3-chloro butane?											
	(a) 2 (b) 3 (c) 4 (d) 5										
34.	Number of isomers of C ₄ H ₁₀ is:										
	(a) 2 (b) 3										
	(c) 4 (d) Isomerism not exist										
35.	he number of possible isomers for compound C ₂ H ₃ Cl ₂ Br is:										
	(a) 2 (b) 3 (c) 4 (d) 5										
36.	The optically active tartaric acid is named as D-(+)- tartaric acid because it has										
	a positive:										
	(a) optical rotation and is derived from D-glucose										
	(b) pH in organic solvent										
	(c) optical rotation and is derived from D-(+) glyceraldehyde										
	(d) optical rotation only when substituted by deuterium										
37.	Among the following compounds (I-III), the correct order of reaction with										
	electrophilic reagent is:										
	OCH_3 NO_2										
20	(a) $II > III > I$ (b) $III < I < II$ (c) $I > II > III$ (d) $I = II > III$										
38.	Carbocation which is most stable is:										
	(a) $CH_3CH_2^+$ (b) CH_3^+										
	(c) $C_6H_5CH_2^+$ (d) $CH_3CH_2CH_2^+$										
39.	Which behaves both as a nucleophile and electrophile?										
	(a) CH_3NH_2 (b) CH_3Cl (c) CH_3CN (d) CH_3OH										
40.	40. The number of optical isomers of an organic compound having n asymmetric										
	carbon atoms will be:										
	(a) 2^{n+1} (b) n^2 (c) 2^n (d) 2^{n-1}										
41.	With a change in hybridization of the carbon bearing the charge, the stability										
	of a carbanion increase in the order:										
	(a) $sp < sp^2 < sp^3$ (b) $sp < sp^3 < sp^2$										
	(c) $sp^3 < sp^2 < sp$ (d) $sp^2 < sp < sp^3$										

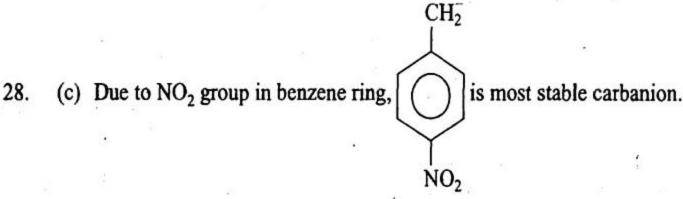
42.	The C-C bond length of the following molecules is in the order:										
	(a) $C_2H_6 > C_2H_4 > C_6H_6 > C_2H_2$										
	(b) $C_2H_2 < C_2H_4 < C_6H_6 < C_2H_6$										
	(c) $C_2H_6 > C_2H_2 > C_6H_6 > C_2H_4$										
	(d)	$C_2H_4 > C_2H_6$	> C ₂	$H_2 > C_6 H_6$	5			1			
43.	. In the reaction CH ₃ CHO + HCN → CH ₃ CH(OH)CN, a chiral center is pro-										
9	duced. This product would be:										
	(a) levorotatory) meso compound				
(c) dextrorotatory						racemic mixture					
44.	Cycl	ic hydrocarboi	the carbon and hydrogen in a single								
	plane. All the carbon-carbon bonds are of same length less than 1.54 Å, but										
more than 1.34 Å. The C-C bond angle will be:											
	(a)	109°28′	(b)	100°	(c)	180°	(d)	120°			
45.	45. How many structural isomers are possible for a compound with molecular for										
	mula	C_3H_7C1 ?						*			
	(a)	2	(b)	5	(c)	7	(d)	9			
			<u>H</u>]	NTS AN	D SOL	UTIONS	3				
1.	(b)										
2.	741241322N										
3.	(c)										
4.	(d)										
5.	(a)										
6.	(c)										
7.	(d)		,2								
8.	(a)	15									
9.	(c)				*						
10.	(a)										
11.	(b)										
12.	(b)							99			
13.	(b)										
14.	(a)										
15.	(d)										
16.	(c)										
17.	(c)				-						
18.	(c)	x is a conjuga		1 7 00	E4 15		57 5 02				
		z is a cumulat					system.				
		Hence, stabili	ty ord	ier is $x > v$	w > z > y	•					

19. (d) The net dipole moment is not zero.

- 20. (d) $CH_2 = C = C = CH_2 \longleftrightarrow \overset{\oplus}{C}H_2 \longrightarrow C = C \overset{\oplus}{C}H_2 \longleftrightarrow \overset{\oplus}{C}H_2 \longrightarrow C = C \overset{\oplus}{C}H_2$ $\dot{C}H_2 \longrightarrow C = C - \dot{C}H_2$ is unacceptable, as it has two unpaired electrons.
- 21. (c) C-CH₃ Has all effect inductive, measomeric, and hyperconjugation.

Hyperconjugation

- 22. (a)
- (d) The basicity order will be inversely proportional to resonance stability of lone pair.


24. (c)
$$H \xrightarrow{C} CH_3 H \xrightarrow{60^{\circ}} H_3C \xrightarrow{C} CH_3 H \xrightarrow{C} C \xrightarrow{C} CH_3 Gauche$$

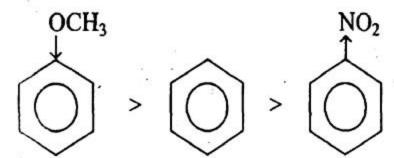
25. (c) SN¹ mechanism proceeds through carbocation intermediate.

26. (a)
$$CH_3$$
— CH_2 — CH_2 — CH_3 — CH_3 — CH_3 — CH_3 — CH_2 — CH_3 —

The more stable carbocation is generated. Thus more easily it will be dehydrated.

27. (b) This option is not characteristics of free radical chain reaction.

29. (d) Dissociation of proton from CH₃—NH₃Cl is very difficult due to -I effect of Cl and N⁺, while in C₆H₅OH, due to resonance stabilization of phenoxide ion, proton gets eliminated easily. Similarly, due to H-bonding in C₆H₅CH₂OH, it can be eliminated, and CH₃C≡CH show acidic character by triple bond by which proton can be dissociated.


Electron-withdrawing group increases acidic character due to -I and -R effects of NO₂. Hence, orthonitrophenol is most acidic.

- 31. (d) Halogenation on alkene occurs by electrophilic addition.
- 32. (c) The number of possible optical isomers = 2^n . (where *n* is the number of chiral C atoms) = $2^3 = 8$
- (c) 2-bromo,3-chloro butane has 2 chiral carbon atoms. Hence, it has 2² = 4 optical isomers.

35. (b) For C₂H₃Cl₂Br, three isomers are possible.

(c) D-(+)-tartaric acid has positive optical rotation and is derived from D-(+)glyceraldehyde.

37. (c) I > II > III

Methoxy group is electron releasing; thus it increases electron density of benzene nucleus. However, -NO₂ decreases electron density of benzene.

- 38. (c) Due to resonance, benzyl carbonium ion is most stable.
- 39. (c) CH₃CN behaves both as a nucleophile and electrophile.
- 40. (c) 2^n , where n is the number of asymmetric carbon atoms.
- (c) Stability of carbanions increases with increase in the s-character of hybrid orbitals of carbon bearing charge. Hence the correct order is sp³ < sp² < sp.
- 42. (b) $C_2H_2 < C_2H_4 < C_6H_6 < C_2H_6$ 1.20Å 1.34Å 1.39Å 1.54Å

43. (d)
$$CH_3CHO + HCN \rightarrow CH_3$$
— CH — CN
OH

Both d and l forms are obtained. Hence, product will be a racemic mixture.

- 44. (d) Molecule A is benzene, because in benzene bond length is between single and double bond.
- 45. (a) Two isomers CH₃—CH—CH₃ and Cl

CH₃-CH₂-CH₂Cl are possible for C₃H₇Cl.