JEE (MAIN & ADV.), MEDICAL + BOARD, NDA, IX & X

Enjoys unparalleled reputation for best results in terms of percentage selection

UNIT - 1: PROGRESSION AND SERIES [JEE - MAIN CRASH COURSE]

Arithmetic Progression (AP)

If a is the first term and d is the common difference, then AP can be written as

$$a, a + d, a + 2d, ..., a + (n-1)d, ...$$

nth term: $T_n = a + (n-1) d = l$ (last term), where $d = T_n - T_{n-1}$.

*n*th term from last: $T_n' = l - (n-1)d$.

Sum of n terms of an AP

The sum S_n of n terms of an AP with first term "a" and common difference "d" is

$$S_n = \frac{n}{2} [2a + (n-1)d] \text{ or } S_n = \frac{n}{2} [a+l]$$

where l = last term = a + (n - 1)d.

Thus, in general, sum of n terms of AP is $S_n = An^2 + Bn$.

Some important facts about AP

- If a fixed number is added or subtracted to each term of a given AP, then the resulting sequence is also an AP, and its common difference remains same.
- If each term of an AP is multiplied by a fixed constant or divided by a fixed non-zero constant, then the resulting sequence is also an AP.
- 3. If x_1, x_2, x_3, \dots and y_1, y_2, y_3, \dots , are two AP's then $x_1 \pm y_1, x_2 \pm y_2, x_3 \pm y_3 + \dots$ are also AP's
- 4. Three terms in AP should preferably be taken as a d, a, a + d and four terms as a 3d, a d, a + d, a + 3d.
- 5. In AP, $a_n = (1/2) (a_{n-k} + a_{n+k})$, for $k \le n$.
- 6. In AP, $a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \cdots$

Insertion of Arithmetic Means

If between two given numbers a and b we have to insert n numbers $A_1, A_2, ..., A_n$ such that $a, A_1, A_2, ..., A_n$, b form an

AP, then we say that $A_1, A_2, ..., A_n$ are arithmetic means between a and b.

Geometric Progression (GP)

If a is the first term and r is the common ratio, then GP can be written as a, ar, ar^2 , ar^3 , ar^4 , ..., ar^{n-1} .

nth term: $T_n = ar^{n-1} = l$ (last term),

where
$$r = \frac{T_n}{T_{n-1}}$$
, $n \ge 2$.

*n*th term from last: $T_n' = \frac{l}{r^{n-1}}$.

Sum of n terms of a GP

The sum of n terms of a GP with first term "a" and common ratio "r" is given by

$$S_n = a \left(\frac{r^n - 1}{r - 1} \right)$$
 or $S_n = a \left(\frac{1 - r^n}{1 - r} \right)$, $r \neq 1$

Some important facts about GP

- If each term of a GP is multiplied or divided by some fixed non-zero number, then the resulting sequence is also a GP.
- 2. If x_1 , x_2 , x_3 , ..., and y_1 , y_2 , y_3 , ..., are two GP's then x_1y_1 , x_2y_2 , x_3y_3 , ..., and $\frac{x_1}{y_1}$, $\frac{x_2}{y_2}$, $\frac{x_3}{y_3}$..., are also GP's.

- 3. If x_1 , x_2 , x_3 , ... is a GP of positive terms then $\log x_1$, $\log x_2$, $\log x_3$, ... is an AP and vice versa.
- 4. Three numbers in GP can be taken as alr, a, ar and four terms in GP as a/r^3 a/r, ar, ar^3 . This presentation is useful if product of terms is involved in the problem, otherwise terms should be taken as a, ar, ar^2
- 5. In GP, a_1 , a_2 , a_3 ,..., a_{n-1} , a_n : $a_1a_n = a_2a_{n-1} = a_3a_{n-2} = \cdots$ or product of equidistant terms from start and end is same.

Insertion of Geometric Means

Let a and b be two given numbers. If n numbers G_1 , G_2 , ..., G_n are inserted between a and b such that the sequence a, G_1 , G_2 , ..., G_n , b is a GP. Then the numbers G_1 , G_2 , ..., G_n are known as n geometric means (GM's) between a and b.

Harmonic Progression (HP)

A sequence $a_1, a_2, a_3, \dots, a_n, \dots$ of non-zero numbers is called a harmonic progression or a harmonic sequence, if the sequence $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \dots, \frac{1}{a_n}, \dots$ is an arithmetic progression.

nth term of an HP The *n*th term of an HP is the reciprocal of the *n*th term of the corresponding AP. Thus, if $a_1, a_2, a_3, ..., a_n$, is an HP and the common difference of the corresponding AP is d, i.e., $d = \frac{1}{a_{n+1}} - \frac{1}{a_n}$, then

the *n*th term of the HP is given by $a_n = \frac{1}{\frac{1}{a_1} + (n-1)d}$

In other words, nth term of an HP is the reciprocal of the nth term of the corresponding AP.

Insertion of Harmonic Means

Let a, b be two given non-zero numbers. If n numbers H_1 , H_2 , ..., H_n are inserted between a and b such that the sequence a, H_1 , H_2 , H_3 , ..., H_n , b is an HP, then H_1 , H_2 , ..., H_n are called n harmonic means between a and b. Now, a, H_1 , H_2 , ..., H_n , b are in HP.

$$\Rightarrow \frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_n}, \frac{1}{b}$$
 are in AP

Harmonic means of two given numbers a and b is $H = \frac{2ab}{a+b}.$

AM, GM, and HM of two positive real numbers

Let A, G, and H be arithmetic, geometric, and harmonic means of two positive numbers a and b, Then,

$$A = \frac{a+b}{2}$$
, $G = \sqrt{ab}$ and $H = \frac{2ab}{a+b}$

These three means possess the following properties:

- 1. $A \ge G \ge H$.
- 2. A, G, H form a GP, i.e., $G^2 = AH$.
- 3. If A and G be the AM and GM between two positive numbers, then the numbers are $A \pm \sqrt{A^2 G^2}$.
- 4. The equation having a and b as its roots in $x^2 2Ax + G^2 = 0$.
- 5. If A, G, H are arithmetic, geometric, and harmonic means of three given numbers a, b, and c, then the equation having a, b, c as its roots is $x^3 3Ax^2 + \frac{3G^3}{H}x G^3 = 0$.

Sigma (Σ) Operator

Properties of sigma notations

- 1. $\sum_{r=1}^{n} (T_r \pm T_r') = \sum_{r=1}^{n} T_r \pm \sum_{r=1}^{n} T_r' \text{ (sigma operator is)}$
- distributive over addition and subtraction)

 2. $\sum_{r=1}^{n} 1 = 1 + 1 + 1 + \cdots n \text{ times} = n$
- 3. $\sum_{r=1}^{n} aT_r = a \sum_{r=1}^{n} T_r \text{ (where } a \text{ is constant)}$