TANGENT & NORMAL DPP - 1

1.	If	the	line	ax	+	by	+	C	=)	0	is	a	normal	to	the	curve	ху	=	1,	then-
----	----	-----	------	----	---	----	---	---	----	---	----	---	--------	----	-----	-------	----	---	----	-------

(A) a, $b \in R$

(B) a > 0, b > 0

(C) a < 0, b > 0 or a > 0, b < 0 (D) a < 0, b < 0

If the tangent to the curve $f(x) = x^2$ at any point (c, f(c)) is parallel to line joining the points 2. (a, f(a)) and (b,f(b)) on the curve, then a,c,b are in-

(A) H.P. (B) G.P. (C) A.P.

(D) A.P.andG.P. both

3. The graphs $y = 2x^3 - 4x + 2$ and $y = x^3 + 2x - 1$ intersect in exactly 3 distinct points. The slope of the line passing through two of these points

(A) is equal to 4 (B) is equal to 6 (C) is equal to 8 (D) is not unique

For the curve $x + t^2 - 1$, $y = t^2 - t$, the tangent line is perpendiuclar to x- axis, where 4.

(A) t = 0 (B) $t = \infty$ (C) $t = \frac{1}{\sqrt{3}}$ (D) $= t - \frac{1}{\sqrt{3}}$

The slope of the tangent to the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ at the point (2, -1) is 5.

(B) $\frac{6}{7}$

(C) -6

(D) none

6. Angle between the tangents to the curve $y = x^2 - 5x + 6$ at the point (2, 0) and (3, 0) is

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{6}$

(C) $\frac{\pi}{4}$

(D) $\frac{\pi}{3}$

The equation of the tangent at the point p(t), where t is any parameter, to the parobola $y^2 = 4ax$ is 7.

(A) $yt = x + at^2$ (B) $y = xt + at^2$ (C) y = tx (D) $y = x + \frac{a}{t}$

The values of a for which $y = x^2 + ax + 25$ touches the axis of x are 8. (B) ± 10 $(A) \pm 5$ $(C) \pm 15$ (D) none

Multiple Correct

Equation of a tangent to the curve $y \cot x = y^3 \tan x$ at the point where the abscissa is $\frac{\pi}{4}$ is 9.

(A) $4x + 2y = \pi + 2$

(B) $4x - 2y = \pi + 2$

(C) x = 0

(D) y = 0

Match the column

10. match the following columns

	Column - I	Co	Column - II			
(A)	The equation of the tangent to the curve $y = e^x$ at $x = 0$ is	(P)	y = x - 1			
(B)	The equation of the normal to the curve $x + y = x^y$, where it cuts the x-axis is	(Q)	y = x + 1			
(C)	The equation of the normal to the curve $y = x^2 - x $ at $x = -2$ is	(R)	y = 2x + 2			
(D)	The equation of the tangent to the curve $y = x^4 + 2e^x$ at $(0, 2)$ is	(S)	3y = x + 8			

TANGENT & NORMAL DPP - 2

1.	STATES	1200 March 10 March 1	2 + 2x. Then the point the same rate, are	nts on the curve are the x and y				
	(A) $\left(\frac{-3}{4}, \frac{-1}{2}\right)$	(B) $\left(\frac{-1}{2}, \frac{-3}{4}\right)$	(C) $\left(\frac{3}{4}, \frac{1}{2}\right)$	(D) $\left(\frac{1}{2}, \frac{3}{4}\right)$				
2.	The length of subt	angent at the point (B) 2a		$ay^2 = (a+x)^2$ (3a-x) is- (D) 6a				
3.	If M (x_0, y_0) is $3x + 2y + 1 = 0$, th (A) 3	the point on the cuenthe value of $(x_0 + (B) - 3)$	irve 3x ² - 4y ² = 72 - y _o) is equal to (C) 9	2, which is nearest to the line (D) - 9				
4.	The normal to the curve, $x^2 + 2xy - 3y^2 = 0$, at $(1, 1)$: (A) meets the curve again in the fourth quadrant. (B) does not meet the curve again. (C) meets the curve again in the second quadrant. (D) meets the curve again in the third quadrant.							
5.	The point on the cu given by	rve $y^2 = x$, the tange	ent at which values a	n angle of 45° with x-axis will be				
	(A) $\left(\frac{1}{2}, \frac{1}{4}\right)$	(B) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(C) (2 ,4)	(D) $\left(\frac{1}{4}, \frac{1}{2}\right)$				
6.			e parallel to the y-axi (C) (1, 1)	s, then the point of contact is (D) none				
7.	If the parametric ed	uation of curve is giv	$ven by x = e^t cot, y = e^t cot$	= e ^t sint, then the tangent to the				
	curve at the point $t = \frac{\pi}{4}$ values with the axis of the angle is							
	(A) 0	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$				
8.		x = 0 has a vertical t (B) at no point	1977-27	(D) (1, 0)				

9. The tangent to the curve $y = e^{2x}$ at the pont (0 ,1) meets the x-axis of

(A) (0,a) (B) (2,0) (C) $\left(-\frac{1}{2},0\right)$ (D) none

Match the following columns The tangent $y = ax^2 + bx + 10$ at (1, 2) is parallel to the normal at the point (2, 3) on the curve $y = x^2 + 6x + 20$. Then

	Column - I	Column - II			
(A)	The value of a is	(P)	7.9		
(B)	The value of b is	(Q)	-15.9		
(C)	The value of 2a + b is	(R)	-8		
(D)	The value of a + b is	(S)	-0.1		

1.	The line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $x^2 + y^2 = 1$ at the point					
	(A) (a, b)	(B) $\left(\frac{1}{b}, \frac{1}{a}\right)$	(C) $\left(a, \frac{a}{b}\right)$	(D) $\left(\frac{1}{a}, \frac{1}{b}\right)$		
2.	If the tangent at P(1, 1) on $y^2 = x(2, -x)$	² meets the curve ac	gain at Q then point Q is		
	(A) (-1, 2)	(B) $\left(\frac{9}{4}, \frac{3}{8}\right)$	(C) (4, 4)	(D) none		
3.	through the origin is	s equal to		4 the tangent of at which passes		
	(A) (2, 14) (-2, 2)	(B) (2, 14) (-2, -2)	(C) (2, 14) (2, 2)	(D) none		
4.	If the tangent (1, 1)) on $y^2 = x(2 - x)^2$ me	ets the curve again a	at P, then P is		
	(A) (-1, 2)	(B) (4, 4)	(C) $\left(\frac{9}{4}, \frac{3}{8}\right)$	(D) none		
5.	The number of poin the axes is	ts on the curve x ^{3/2} +	$y^{3/2} = a^{3/2}$ where th	e tangents are equally inclined to		
	(A) 1	(B) 2	(C) 4	(D) none		
6.	The point on the cu	$rve \sqrt{x} + \sqrt{y} = 2a^2 at v$	which the tangent is e	equally inclined to the axies is		
	(A) (4a ⁴ , 0)	(B) (0, 4a ⁴)	(C) (a^4, a^4)	(D) none		
7.	The area of the tria	angel formed by the t	angent to the curve	$y = \frac{8}{4 + x^2}$ at $x = 2$ and the co-		
	ordinate axes is					
	(A) 2 sq. units	(B) 4 sq. units	(C) 8 sq. units	(D) $\frac{7}{2}$ sq. units		
8.	Any tangent at a po	int P(x, v) to the ellips	se $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ meets	the co-ordinate axes in the points		
30000A-107051						
		he area of the triangle (B) $(0, \sqrt{8})$		ne point P is (D) none		

Multiple Correct

9. The tangent to the curve $y = x^2 + 3x$ will pass through the point (0, -9) if it is at the point (A)(3, 18) (B)(1, 4) (C)(-4, 4) (D)(-3, 0)

Match the columns

10. Match the following columns Let the equation of the curve is $y = x^3 + 3x + 4x - 1$ at x = 0

	Column - I	Column - II			
(A)	The length of the tangent is	(P)	4		
(B)	The length of the normal is	(Q)	4-Jan		
(C)	The length of the sub-tangent is	(R)	√7		
(D)	The length of the sub-normal is	(S)	$\sqrt{17}/4$		

TANGENT & NORMAL DPP - 4

1.	The co-ordinates of the point P on the curve $y^2 = 2x^3$, the tangent at which is perpendicular to the line $4x - 3y + 2 = 0$ are gvien by					
	(A) (2, 4)	(B) (0, 0)	(C) $\left(\frac{1}{8}, -\frac{1}{16}\right)$	(D) none		
2.	If $y = 4x - 5$ is a tan (A) $a = 2$, $b = -7$	ngent to the curve y^2 (B) $a = -2$, $b = 7$	= ax ³ + b at (2, 3) th (C) a = -2, b = -7	nen (D) a = 2, b = 7		
3.	then (a, b) is	e curve xy + ax + by (B) (-1, 2)		ed at an angle tan^{-1} 2 to axis of x (D) (1, 2)		
4.	A function $y = f(x) h$ (2, 1) and at this po	25 29 29	ive f'(x) = 6x - 1. If th aph is y = 3x - 1, the	ne graph passes through the point n the funciton is		
5.			oint (3, 4) makes an a	angle $\frac{3\pi}{4}$ with the positive x-axis,		
	then $g'(3)$ is equal to $(A) -1$		(C) 4/3	(D) 1		
6.	T	normal to the curve $(B) y = 0$	구 마다 그리고 아니는 그리고 아니는 그리고	(D) $x - y = 0$		
7.	The normal to the co		if asinθ a θ alsways (C) (0, a)	passes through the fixed point (D) none		
8.	If the normal to the o	curve $y = f(x)$ at the po	oint 3, 4) makes an an	gle $\frac{3\pi}{4}$ with the +ve x-axis f'(3) is		
	(A) -1	(B) $-\frac{3}{4}$	(C) $\frac{4}{3}$	(D) 1		
9.	The point on the cur axes is	rve whee the normal	to the curve $9y^2 = x^3$	makes equal intercepts with the		
	(A) $\left(4,\frac{8}{3}\right)$	(B) $\left(-4,\frac{8}{3}\right)$	(C) $\left(4, -\frac{8}{3}\right)$	(D) none		
10.	The normal at any p	ooint $P\left(ct,\frac{c}{t}\right)$ on the c	curve $xy = c^2$ meets t	the curve at $Q\left(ct_1, \frac{c}{t_1}\right)$ then t_1 is		
	(A) -t	(B) $\frac{1}{t^2}$	(C) $-\frac{1}{t^3}$	(D) none		