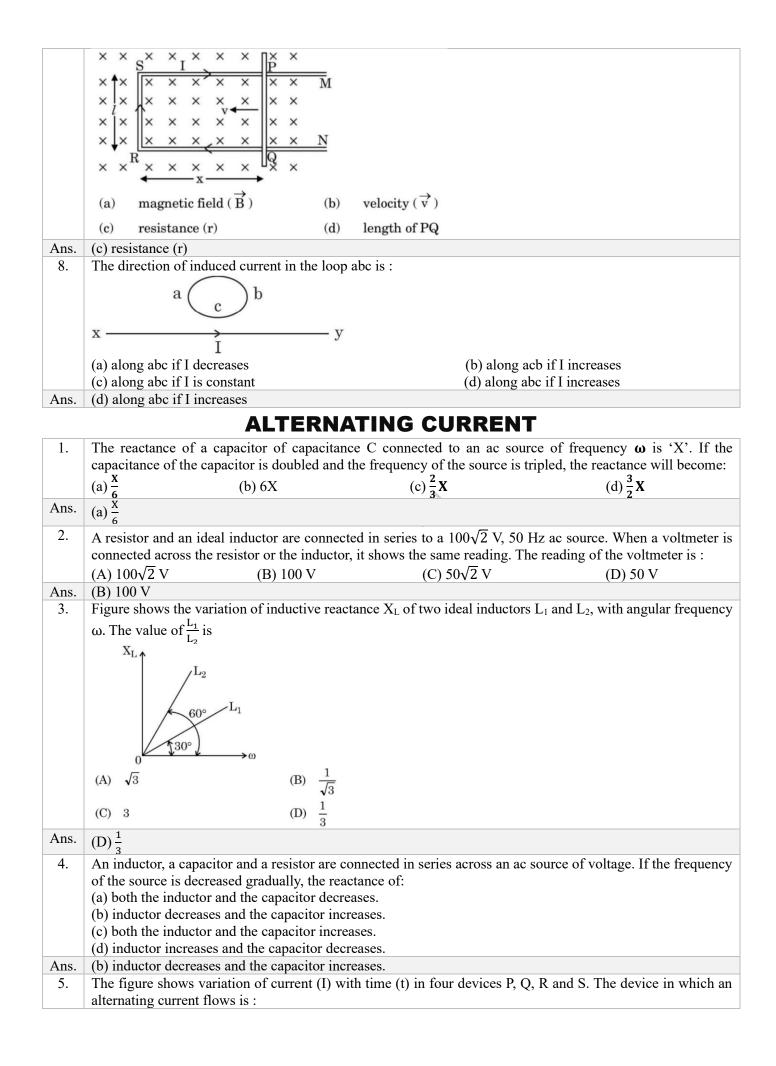

ELECTROSTATICS

1.	A thin plastic rod is bent magnitude of the electric		ius R. It is uniformly charged	with charge density λ . The
	$(A) \frac{\lambda}{2\varepsilon_0 R} \\ (C) \frac{\lambda}{4\pi\varepsilon_0 R}$	(B) Zero	0	
	$(C) \frac{\lambda}{\lambda}$	$(D) \frac{\lambda}{4\epsilon_0 I}$	-	
Ans.	$\frac{(e^{-1})^{4\pi\epsilon_0 R}}{(B) \text{ Zero}}$	4ε ₀ Ι	{	
2.		pacitance 1 µF, are connec	ted in parallel to a source of 10	0 V. The total energy stored
2.	in the system is equal to:	, are connec		o vi ine total energy stored
	(A) 10^{-2} J	(B) 10 ⁻³ J	(C) 0.5×10 ⁻³ J	(D) 5.0×10 ⁻² J
Ans.	(D) 5.0×10 ⁻² J			
3.	travel equal distances in a		aarge but different masses m_P at time t_P and t_Q respectively. Neg	
	the ratio $\left(\frac{t_p}{t_q}\right)$ is:			
	$(A)\frac{m_p}{m_q}$	(B) $\frac{m_q}{m_p}$	(C) $\sqrt{\frac{m_p}{m_q}}$	(D) $\sqrt{\frac{m_q}{m_p}}$
Ans.	$(A) \frac{m_{p}}{m_{q}}$ $(C) \sqrt{\frac{m_{p}}{m_{q}}}$			
4.		es q_1, q_2, q_3 such that \sum	$q \neq 0$. Then equipotentials at	a large distance, due to this
	group are approximately : (A) Plane		(B) Spherical surface	
	(C) Paraboloidal surface		(D) Ellipsoidal surface	
Ans.	(B) Spherical surface			
5.		ively. Assuming that kine	ated in an electric field. The po tic energies of the proton at po	
	(A) -1.6×10^{-18} J	10	(C) Zero	(D) $0.8 \times 10^{-18} \text{ J}$
Ans.	(B) 1.6 ×10 ⁻¹⁸ J			
6.	potential energy of the sys	tem is-	A third charge -2q is placed n	nidway between them. The
	$(A) \frac{q^2}{2\pi c_1 a}$	(B) $-\frac{6q^2}{8\pi\epsilon_0 a}$	$(C) - \frac{7q^2}{8\pi\epsilon_0 a}$	$(D) \frac{9q^2}{8\pi\epsilon_0 a}$
Ans.	(A) $\frac{q^2}{8\pi\epsilon_0 a}$ (C) $-\frac{7q^2}{8\pi\epsilon_0 a}$	onega	onega	onega
7.	brought in contact with a	third identical ball B3 and	e given -7 pC and +4 pC char I then separated. If the final ch	
	the initial charge on B ₃ wa (A) -2 pC	(B) -3 pC	(C) -5 pC	(D) -15 pC
Ans.	(B) -3 pC	(2) 5 PC	(0) 0 pc	
8.			rt electric dipole on its axis, e e will be:	xperiences a force F. If the
	$(A)\frac{F}{16}$	$(B)\frac{F}{q}$	$(C)\frac{F}{4}$	$(D)\frac{F}{2}$
Ans.	$(B)\frac{F}{2}$	ö	4	۷
9.	In the process of charging	of a capacitor. the current	t produced between the plates of	of the capacitor is:
	(a) $\mu_0 \frac{d\phi_E}{dt}$	(b) $\frac{1}{\mu_0} \frac{\mathrm{d}\phi}{\mathrm{d}}$		
	$(c) \qquad \epsilon_0 \frac{d\phi_E}{dt}$	(d) $\frac{1}{\varepsilon_0} \frac{d\phi}{dt}$	E t	
	where symbols have their	usual meanings.		
Ans.	(c) $\epsilon_0 \frac{d\phi_E}{dt}$			

10. The magnitude of the electric field due to a point charge object at a distance of 4.0 n charged object the electric field of magnitude, 16 N/C will be at a distance of				N/C. From the same
	(a) 1 m	(b) 2 m	(c) 3 m	(d) 6 m
Ans.	(c) 3 m			
11.	P is proportional to			
	(A) $\frac{1}{x^2}$	$(B)\frac{1}{x^3}$	$(C)\frac{1}{x^4}$	(D) $\frac{1}{x^{1/2}}$
Ans.	$(A)\frac{1}{x^2}$			A '
12.	2. An electron experiences a force $(1.6 \times 10^{-16} \text{ N})$ i in an electric field \overrightarrow{E} . The electric field \overrightarrow{E} is :			
	(a) $(1.0 \times 10^3 \frac{N}{C})^{\circ}$	(b) $-(1\cdot 0 \times$		
	(c) $(1.0 \times 10^{-3} \frac{N}{C})$ [^] i	(d) $-(1\cdot 0 \times$	$10^{-3} \frac{\mathrm{N}}{\mathrm{C}})\hat{\mathrm{i}}$	
Ans.	$(b) \qquad - (1{\cdot}0 \times 10^3 \ \frac{N}{C}) {\stackrel{\circ}{i}} \\$			
13.	Which one of the followin (a) Electric field	ng is <i>not</i> a scalar quantity? (b) Voltage	(c) Resistivity	(d) Power
Ans.	(a) Electric field			
	(a) $\frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{d^2}$ (c) Zero	(b) $\frac{1}{4\pi \varepsilon_0} \frac{q_1}{(d-1)}$ (d) $\frac{1}{4\pi \varepsilon_0} \frac{1}{[d-1)}$.	
Ans.	(c) Zero	0 [4		
15.	An electric dipole of leng	th 2 am is placed at an angle		
		\times 10 ⁻³ Nm, the magnitude of	of 30° with an electric field 2 x 1 either charge of the dipole, is	-
A	$(A) 4 \mu C$			0 ⁵ N/C. If the dipole (D) 2 mC
Ans.	(A) 4 μC	× 10 ⁻³ Nm, the magnitude of (B) 7 μC	either charge of the dipole, is (C) 8 mC	(D) 2 mC
Ans. 16.	(A) 4 μC Two long parallel wires k	× 10 ⁻³ Nm, the magnitude of (B) 7 μ C ept 2 m apart carry 3A curren	either charge of the dipole, is	(D) 2 mC
	(A) 4 μCTwo long parallel wires kon one wire due to the other	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A currenter is	either charge of the dipole, is (C) 8 mC nt each, in the same direction. The	(D) 2 mC force per unit length
	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attraction	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A curren her is ctive	either charge of the dipole, is (C) 8 mC nt each, in the same direction. The (B) 4.5 x 10 ⁻⁷ N/m, re	(D) 2 mC force per unit length epulsive
	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attrac (C) 9 x 10 ⁻⁷ N/m, repulsiv No option is correct. [Aw	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A current ther is ctive re ard one mark to each student	either charge of the dipole, is (C) 8 mC nt each, in the same direction. The (B) 4.5 x 10 ⁻⁷ N/m, re (D) 9 x 10 ⁻⁵ N/m, attr	(D) 2 mC force per unit length epulsive
16. Ans.	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attract (C) 9 x 10 ⁻⁷ N/m, repulsiv No option is correct. [Aw According to Marking sci	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A current ther is ctive re ard one mark to each stude theme	reither charge of the dipole, is (C) 8 mC nt each, in the same direction. The (B) 4.5 x 10 ⁻⁷ N/m, re (D) 9 x 10 ⁻⁵ N/m, attr nt]	(D) 2 mC force per unit length epulsive active
16.	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attract (C) 9 x 10 ⁻⁷ N/m, repulsiv No option is correct. [Aw According to Marking sec The capacitors, each of 4	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A current ner is ctive re ard one mark to each stude <i>heme</i> uF are to be connected in such	either charge of the dipole, is (C) 8 mC nt each, in the same direction. The (B) 4.5 x 10 ⁻⁷ N/m, re (D) 9 x 10 ⁻⁵ N/m, attr	(D) 2 mC force per unit length epulsive active
16. Ans.	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attract (C) 9 x 10 ⁻⁷ N/m, repulsiv No option is correct. [Aw <i>According to Marking so</i> The capacitors, each of 4 p is 6 μ F. This can be achie	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A current ner is ctive re ard one mark to each stude <i>heme</i> uF are to be connected in such	reither charge of the dipole, is (C) 8 mC nt each, in the same direction. The (B) 4.5 x 10 ⁻⁷ N/m, re (D) 9 x 10 ⁻⁵ N/m, attr nt]	(D) 2 mC force per unit length epulsive active
16. Ans.	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attract (C) 9 x 10 ⁻⁷ N/m, repulsiv No option is correct. [Aw <i>According to Marking sc</i> The capacitors, each of 4 is 6 μ F. This can be achie (A) All three in parallel	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A current ner is ctive re ard one mark to each stude <i>heme</i> uF are to be connected in such	reither charge of the dipole, is (C) 8 mC nt each, in the same direction. The (B) 4.5 x 10 ⁻⁷ N/m, re (D) 9 x 10 ⁻⁵ N/m, attr nt]	(D) 2 mC force per unit length epulsive active
16. Ans.	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attract (C) 9 x 10 ⁻⁷ N/m, repulsiv No option is correct. [Aw <i>According to Marking so</i> The capacitors, each of 4 is 6 μ F. This can be achie (A) All three in parallel (B) All three in series	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A current ner is ctive <i>re</i> ard one mark to each stude <i>heme</i> uF are to be connected in such ved by connecting	reither charge of the dipole, is (C) 8 mC Int each, in the same direction. The (B) 4.5 x 10 ⁻⁷ N/m, re (D) 9 x 10 ⁻⁵ N/m, attr (D) 9 x 10 ⁻⁵ N/m, attr (D) 9 x 10 ⁻⁵ N/m, attr	(D) 2 mC force per unit length epulsive active
16. Ans.	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attract (C) 9 x 10 ⁻⁷ N/m, repulsiv No option is correct. [Aw <i>According to Marking sc</i> The capacitors, each of 4 µ is 6 µF. This can be achie (A) All three in parallel (B) All three in series (C) Two of them connected	× 10 ⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A current ner is ctive re ard one mark to each stude <i>heme</i> uF are to be connected in such	reither charge of the dipole, is (C) 8 mC Int each, in the same direction. The (B) 4.5 x 10 ⁻⁷ N/m, re (D) 9 x 10 ⁻⁵ N/m, attr (D) 9 x 10 ⁻⁵ N/m, attr (D) 9 x 10 ⁻⁵ N/m, attr (D) 9 x 10 ⁻⁵ N/m, attr	(D) 2 mC force per unit length epulsive active
16. Ans.	(A) 4 μ C Two long parallel wires k on one wire due to the oth (A) 4.5 x 10 ⁻⁵ Nm ⁻¹ , attract (C) 9 x 10 ⁻⁷ N/m, repulsiv No option is correct. [Aw <i>According to Marking sc</i> The capacitors, each of 4 p is 6 μ F. This can be achie (A) All three in parallel (B) All three in series (C) Two of them connected (D) Two of them connected	 × 10⁻³ Nm, the magnitude of (B) 7 μC ept 2 m apart carry 3A currenter is extive ard one mark to each stude <i>heme</i> uF are to be connected in such ved by connecting ed in series and the combinati 	<pre>iteither charge of the dipole, is</pre>	(D) 2 mC force per unit length epulsive active

CURRENT ELECTRICITY


	(a) ne AV _d (b) $\frac{nAVd}{e}$ (c) $\frac{nVd}{eA}$ (d) ne V	/d		
Ans.	(d) ne Vd			
		HARGES ANI		7
1.	A loop carrying a current I clockwi The tendency of the loop will be to (A) move along x-axis (C) shrink		in a uniform magnetic field (B) move alor (D) expand	-
Ans.	(C) shrink			
2.	A 10 cm long wire lies along y-axis (5 mT) \hat{j} - (8 mT) \hat{K} exists in the r (A) (0.8 mN) \hat{i} (B)			. A magnetic field $\vec{B} =$ (D) - (80 mN) î
Ans.	(B) - (0·8 mN) î			
3.	A galvanometer of resistance G Ω galvanometer is 0.1% of I A, the re (A) $\frac{G}{999} \Omega$ (B) $\frac{1}{100}$		s:	the current through the (D) $\frac{G}{100.1} \Omega$
Ang	$(1)_{999}$ (1) $(1)_{1}$	000	(0) 1001	(10) 100.1
Ans.	$(B)\frac{G}{1000}\Omega$			
4.	A wire of length 4.4 m is bent round moment of the loop will be: (A) 0.7 Am^2 (B) 1	l in the shape of a circular .54 Am ²	loop and carries a current (C) 2.10 Am ²	of 1.0 A. The magnetic (D) 3.5 Am ²
Ans.	(B) 1.54 Am^2			
5.	A circular coil of radius 10 cm is p unit vector normal to the surface of		j). The magnetic flux link	
Ans.	(C) 31.4 μWb A 2.0 cm segment of wire, carryin			
	(A) $(0.12 \text{ nT}) \hat{j}$	(B) $-(0.10 \text{ nT}) \hat{j}$		
	(C) $-(0.24 \text{ nT})\hat{k}$	(D) (0.24 nT) k		
Ans.	$(C) - (0.24 \text{ nT})^k$			
7.	A circular loop of wire, carrying a is subjected to a uniform magnetic (A) move along x-axis (B)			ding with the origin. It (D) remain stationary
Ans.	(D) remain stationary			•
8.	A current carrying circular loop of n field B such that its plane is normal to B is closest to :	to B. The work done in ro	tating this loop by 45° abou	t an axis perpendicular
A		0.3 MB	(C) -1.7 MB	(D) 1.7 MB
Ans. 9.	(B) 0.3 MB A straight wire is kept horizontally west, the magnetic field at a point a	bove the wire will point	towards	
	(A) East (B) V	West	(C) North	(D) South
Ans.	(C) North	······································		
10.	The magnetic susceptibility for a di (A) small and negative (B) small an		negative (D) large and pos	itive

Ans.	(A) small and negative		
11.		onverted into an ammeter of range (0-1 A) us	sing a resistance of 0.1 Ω .
	The ammeter will show full scale deflect $(A) = 0.1 \text{ mA}$		$(\mathbf{D}) 0 1 \dots 0$
Ans.	(A) 0.1 mA (B) 1 mA (B) 1 mA	(C) 10 mA	(D) 0.1 mA
Alls. 12.			R . 1 . 1
12.		rrent I. Another circular loop B of radius $r = \frac{1}{2}$	$\frac{1}{20}$ is placed concentrically
	in the plane of A. The magnetic flux link (A) P		$(\mathbf{D}) \mathbf{D}^2$
Ang	(A) R (B) \sqrt{R}	(C) $R^{3/2}$	(D) \mathbb{R}^2
Ans. 13.	(B) \sqrt{R}	cribes a circular path of radius R in a mag	natic field. If it mass and
15.	charge were 2m and $\frac{q}{2}$ respectively, the ra	· · · ·	neue neio. Il ît mass and
	L 2		
	$(A)\frac{R}{4} \qquad (B)\frac{R}{2}$	(C) 2R	(D) 4R
Ans.	(D) 4R		
14.	Which of the following pairs is that of pa		
Ans.	(A) Copper and Aluminium(C) Lead and Iron	(B) Sodium and Calciu (D) Nickel and Cobalt	
15.		nverted into a voltmeter of range (0-2 V) u	
_	6	f range (0-10 V), the resistance required will	e
	(A) $4.8 \text{ k} \Omega$ (B) $5.0 \text{ k} \Omega$	(C) 5.2 k Ω	(D) 5.4 k Ω
Ans.	(C) 5.2 k Ω		
16.		the north or south pole of a bar magnet. It w	will be :
	(a) repelled by both the poles.(b) attracted by both the poles.		
	(c) repelled by the north pole and attracted	ed by the south pole.	
	(d) attracted by the north pole and repelle	• •	
Ans.	(a) repelled by both the poles.		
17.		rallel to each other in the same direction. T	hey
	(a) attract each other.	(b) repel each other.	1
Ans.	(c) neither attract nor repel.(b) repel each other.	(d) force of attraction or repulsion dependent	nds upon speed of beams.
18.		steady current 'I'. The current is uniformly	distributed across its area
		of magnetic field B_1 at a/2 and B_2 at distance	
	(a) 1/2 (b) 1		(d) 4
Ans.	(b) 1		
19.		represents the variation of the magnitude of	
		of radius 'a', as a function of distance 'r' from	i me centre of me whe ?
	^B ↑ ^B ↑	BA BA	
	$0 \stackrel{\frown}{\underset{a}{\longrightarrow}} r \qquad 0 \stackrel{\frown}{\underset{a}{\longrightarrow}} r$	$0 \stackrel{\frown}{\underset{a}{\overset{\frown}{\overset{\frown}{a}}}}_{a} \rightarrow 0 \stackrel{\frown}{\underset{a}{\overset{\frown}{\overset{\frown}{a}}}}_{a} \rightarrow r$	
	(a) (b)	(c) (d)	
Ans.	P. (2)		
	$0 \xrightarrow{\iota}_{a} \xrightarrow{r}_{r}$		
	(c)		
20.		ge q moving with a uniform velocit	ty
		n with a magnetic field $\overrightarrow{B} = B_0 \hat{j}$. After	
	some time, an electric field $\mathbf{E} = \mathbf{E}$	$\mathbf{E}_0 \hat{\mathbf{j}}$ is also switched on in the region	n.
	The resulting path described by th	e particle will be :	
	B Fair accounce of the		

	(a) a circle in x-z	plane	(b) a parabola in x-y plane			
	(c) a helix with co	nstant pitch	(d) a helix with increasing pitch			
Ans.	(d) a helix with in	creasing pitch				
21.	An electron enters a uniform magnetic field with speed v. It describes a semicircular path and comes out of					
	the field. The fina	l speed of the electron is :				
	(a) Zero	(b) v	(c) v/2	(d) 2v		
Ans.	(b) v					
22.	The magnetic field	d lines near a substance are a	s shown in the figure. The substance is :			
			\rightarrow			
	(a) Copper	(b) Iron	(c) Sodium	(d) Aluminium		
Ans.	(a) Copper					
23.	Which of the follo	wing has its permeability les	ss than that of free space?			
	(A) Copper	(B) Aluminium	(C) Copper chloride	(D) Nickel		
Ans.	(A) Copper					
24.	A square shaped of	coil of side 10 cm, having 1	00 turns is placed perpendicular to a ma	agnetic field which is		
	increasing at 1 T/s	. The induced emf in the coil	l is			
	(A) 0.1 V	(B) 0.5 V	(C) 0.75 V	(D) 1.0 V		
Ans.	(D) 1.0 V					

ELECTROMAGNETIC INDUCTION

1	
1.	Which of the following quantity/quantities remains same in primary and secondary coils of an ideal
	transformer ? Current, Voltage, Power, Magnetic flux
	(A) Current only (B) Voltage only (C) Power only (D) Magnetic flux and Power both
Ans.	(D) Magnetic flux and Power both
2.	The current in a coil of 15 mH increases uniformly from zero to 4 A in 0.004 s. The emf induced in the coil
	will be :
	(A) 22.5 V (B) 17.5 V (C) 15.0 V (D) 12.5 V
Ans.	(C) 15.0 V
3.	Consider a solenoid of length <i>l</i> and area of cross-section A with fixed number of turns. The self-inductance of
	the solenoid will increase if:
	(A) both 1 and A are increased (B) 1 is decreased and A is increased
	(C) l is increased and A is decreased (D) both l and A are decreased
Ans.	(B) I is decreased and A is increased
4.	A coil of N turns is placed in a magnetic field B such that B is perpendicular to the plane of the coil. B changes
	with time as $B = B_0 \cos\left(\frac{2\pi}{T}t\right)$ where T is time period. The magnitude of emf induced in the coil will be
	maximum at
	(A) $t = \frac{nT}{8}$ (B) $t = \frac{nT}{4}$ (C) $t = \frac{nT}{2}$ (D) $t = nT$
	Here, $n = 1, 2, 3, 4,$ (B) $t = \frac{nT}{4}$
Ans.	(B) $t = \frac{nT}{2}$
5.	Two coils are placed near each other. When the current in one coil is changed at the rate of 5 A/s, an emf of 2 $\frac{1}{2}$
5.	mV is induced in the other. The mutual inductance of the two coils is
•	(A) 0.4 mH (B) 2.5 mH (C) 10 mH (D) 2.5 H
Ans.	(A) 0.4 mH
6.	A circular coil of radius 8.0 cm and 40 turns is rotated about its vertical 25 diameter with an angular speed of
	$\frac{25}{\pi}$ rad s-1 in a uniform horizontal π magnetic field of magnitude 3.0×10^{-2} T. The maximum emf induced in
	the coil is :
	(a) 0.12 V (b) 0.15 V (c) 0.19 V (d) 0.22 V
Ans.	(c) 0.19 V
7.	Figure shows a rectangular conductor PSRQ in which movable arm PQ has a resistance 'r' and resistance of
.	PSRQ is negligible. The magnitude of emf induced when PQ is moved with a velocity V does <i>not</i> depend on:
	Tore is negligible. The magnitude of emit induced when I Q is moved with a velocity v does not depend on.

			P Q R R f f f f f f f f	
		(b) Q	(c) R	(d) S
Ans.	(d) S			
6.	An ac voltage $v = v_0 \sin \omega t$ is instantaneous current in the circu (a) X is a capacitor and $Xc = \sqrt{2}$	uit is $I = I_0 \sin(\omega t + \frac{1}{2})$	$\frac{\pi}{4}$). Then, which of the followin (b) X is an inductor	ng is correct ? and $X_L = R$
	(c) X is an inductor and $X_L = \sqrt{2}$	R	(d) X is a capacitor	and $X_c = R$
Ans.	(d) X is a capacitor and $X_c = R$			
7.	 Which of the following statement (A) If the frequency of the source (B) If the net reactance (X_L - X_C) by 45°. (C) At resonance, the voltage dreated of (D) At re	e is increased, the im) of circuit becomes op across the inducto	pedance of the circuit first dec equal to its resistance, then the r is more than that across the c	reases and then increases. e current leads the voltage apacitor.
Ama	(Δ) If the frequency of the government			

Ans. (A) If the frequency of the source is increased, the impedance of the circuit first decreases and then increases.

ELECTROMAGNETIC WAVES

1.	In the four regions I II	, III and IV, the electric fields are	described as:	
1.	Region I : $Ex = E_0 \sin \theta$		described as.	
	Region II : $Ex = E_0 \sin I$ Region II : $Ex = E_0$	(KZ-WI)		
	Region III : $Ex = E_0$ Region III : $Ex = E_0 \sin \theta$			
	Region IV : $Ex = E_0 \cos \theta$			
		nt will exist in the region:		
		(B) IV	(C) II	(D) III
A mg	(A) I	(B) I V	(C) II	(D) III
Ans.	(A) I		. 1 .	
2.		with wavelength 10 nm are calle		
	(A) Infrared waves	(B) Ultraviolet rays	(C) Gamma rays	(D) X-rays
Ans.	(B) Ultraviolet rays	· 1 4 1 · 1 4 C		
3.		wing has the highest frequency?		
	(A) Infrared rays	(B) Gamma rays	(C) Radio waves	(D) Microwaves
Ans.	(B) Gamma rays			
4.		etween electric field E and magn	netic field B in an electromag	gnetic wave propagating
	along z-axis is-		π	-
	(A) Zero	(B) π	$(C)\frac{\pi}{2}$	$(D)\frac{\pi}{4}$
	(A) 2010	(\mathbf{D}) \mathbf{n}	$\left(\mathcal{C} \right)_{2}$	$(D)_4$
Ans.	(A) Zero		(0) 2	(D) 4
Ans. 5.	(A) Zero	aves used to purify water are	(0) 2	
	(A) Zero		(C) X-rays	(D) Gamma rays
	(A) Zero The electromagnetic wa	aves used to purify water are		
5.	 (A) Zero The electromagnetic wa (A) Infrared rays (B) Ultraviolet rays 	aves used to purify water are	(C) X-rays	(D) Gamma rays
5. Ans.	 (A) Zero The electromagnetic wa (A) Infrared rays (B) Ultraviolet rays 	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of	(C) X-rays	(D) Gamma rays
5. Ans.	 (A) Zero The electromagnetic wa (A) Infrared rays (B) Ultraviolet rays E and B represent the electron of the elec	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of	(C) X-rays	(D) Gamma rays
5. Ans.	 (A) Zero The electromagnetic wa (A) Infrared rays (B) Ultraviolet rays E and B represent the e of propagation of the w 	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of ave is along	(C) X-rays `an electromagnetic wave res	(D) Gamma rays
5. Ans. 6.	 (A) Zero The electromagnetic wa (A) Infrared rays (B) Ultraviolet rays (B) Ultraviolet rays E and B represent the e of propagation of the w (a) B (c) E×B 	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of ave is along	(C) X-rays `an electromagnetic wave res (c) E×B	(D) Gamma rays
5. Ans. 6. Ans.	 (A) Zero The electromagnetic wa (A) Infrared rays (B) Ultraviolet rays (B) Ultraviolet rays E and B represent the e of propagation of the w (a) B (c) E×B 	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of ave is along (b) E	(C) X-rays `an electromagnetic wave res (c) E×B	(D) Gamma rays
5. Ans. 6. Ans.	 (A) Zero The electromagnetic wa (A) Infrared rays (B) Ultraviolet rays E and B represent the e of propagation of the w (a) B (c) E×B The electromagnetic rate 	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of ave is along (b) E diations used to kill germs in wat	(C) X-rays `an electromagnetic wave res (c) E×B er purifiers are called:	(D) Gamma rays spectively. The direction (d) B×E
5. Ans. 6. Ans. 7.	 (A) Zero The electromagnetic was (A) Infrared rays (B) Ultraviolet rays (B) Ultraviolet rays (C) E×B (C) E×B (A) Infrared waves (A) Ultraviolet rays 	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of ave is along (b) E diations used to kill germs in wat	(C) X-rays `an electromagnetic wave res (c) E×B er purifiers are called:	(D) Gamma rays spectively. The direction (d) B×E
5. Ans. 6. Ans. 7. Ans.	 (A) Zero The electromagnetic was (A) Infrared rays (B) Ultraviolet rays (B) Ultraviolet rays (C) E×B (C) E×B (A) Infrared waves (A) Ultraviolet rays 	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of ave is along (b) E diations used to kill germs in wat (b) X-rays	(C) X-rays `an electromagnetic wave res (c) E×B er purifiers are called:	(D) Gamma rays spectively. The direction (d) B×E
5. Ans. 6. Ans. 7. Ans.	 (A) Zero The electromagnetic wa (A) Infrared rays (B) Ultraviolet rays E and B represent the e of propagation of the w (a) B (c) E×B The electromagnetic rate (a) Infrared waves (d) Ultraviolet rays The electromagnetic was 	aves used to purify water are (B) Ultraviolet rays electric and the magnetic field of rave is along (b) E diations used to kill germs in wat (b) X-rays	(C) X-rays `an electromagnetic wave res (c) E×B ter purifiers are called: (c) Gamma rays	(D) Gamma rays spectively. The direction (d) B×E (d) Ultraviolet rays

9.	Which one of the following electromagnetic radiation has the least wavelength ?				
	(A) Gamma rays	(B) Microwaves	(C) Visible light	(D) X-rays	
Ans.	(A) Gamma rays				

RAY OPTICS AND WAVE OPTICS

1.	The focal lengths of the objective and the eyepiece of a compound microscope are 1 cm and 2 cm respectively. If the tube length of the microscope is 10 cm, the magnification obtained by the microscope for most suitable viewing by relaxed eye is: (A) 250 (B) 200 (C) 150 (D) 125	7.	A Young's double-slit experiment set up is kept in a medium of refractive index (4/3). Which maximum in this case will coincide with the 6 th maximum obtained if the medium is replaced by air? (A) 4 th (B) 6 th (C) 8 th (D) 10 th
2.	For a concave mirror of focal length 'f', the minimum distance between the object and its real image is:(A) zero(B) f(C) 2f(D) 4f	8.	(C) 6(D) 10A ray of monochromatic light propagating in air, is incident on the surface of water. Which of the following will be the same for the reflected and refracted rays?(A) Energy carried(B) speed(C) Frequency(D) wavelength
3.	A beam of light travels from air into a medium.Its speed and wavelength in the medium are1.5 × 10 ⁸ m/s and 230 nm respectively. Thewavelength of light in air will be(A) 230 nm(B) 345 nm(C) 460 nm(D) 690 nm	9.	In the wave picture of light, the intensity I of light is related to the amplitude A of the wave as: (A) I $\alpha \sqrt{A}$ (B) I αA (C) I αA^2 (D) I $\alpha 1/A^2$
4.	In a single-slit diffraction experiment, the width of the slit is halved. The width of the central maximum, in the diffraction pattern, will become: (A) half (B) twice (C) four times (D) one-fourth	10.	In a Young's slit experiment, the fringe width is found to be β . If the entire apparatus is immersed in a liquid of refractive index μ , the new fringe width will be: (A) β (B) $\mu\beta$ (C) β/μ (D) β/μ^2
5.	 According to Huygen's principle, the amplitude of secondary wavelets is (A) equal in both the forward and the backward directions. (B) Maximum in the forward direction and zero in the backward direction. (C) Large in the forward direction and small in the backward direction. (D) Small in the forward direction. 	11.	In a Young's double-slit experiment, the screen is moved away from the plane of the slits. What will be its effect on the following? (i) Angular separation of the fringes. (ii) Fringe-width. (A) Both (i) and (ii) remain constant (B) (i) remains constant, but (ii) decreases (C) (i) remains constant, but (ii) increases (D) Both (i) and (ii) increase.
6.	A plane wavefront is incident on a concave mirror of radius of curvature R. The radius of the refracted wavefront will be:		
	(A) 2R (B) R (C) R/2 (D) R/4		

SEMICONDUCTOR

1.	 Ge is doped with As. Due to doping, (A) the structure of Ge lattice is distorted. (B) the number of conduction electrons increases. (C) the number of holes increases. (D) the number of conduction electrons decreases. 	8.	An n-type semiconducting Si is obtained by doping intrinsic Si with:(A) A1(B) B(C) P(D) In
2.	 When a p-n junction diode is subjected to reverse biasing: (A) the barrier height decreases and the depletion region widens. (B) the barrier height increases and the depletion region widens. (C) the barrier height decreases and the depletion region shrinks. (D) the barrier height increases and the depletion region shrinks. 	9.	The threshold voltage for a p-n junction diode used in the circuit is 0.7 V. The type of biasing and current in the circuit are: (A) Forward biasing, 0 A (B) Reverse biasing, 0 A (C) Forward biasing, 5 mA (D) Reverse biasing, 2 mA
3.	 When an intrinsic semiconductor is doped with a small amount of trivalent impurity, then: (A) its resistance increases. (B) it becomes a p-type semiconductor. (C) there will be more free electrons than holes in the semiconductor. (D) dopant atoms become donor atoms. 	10.	Si is doped with a pentavalent element. The energy required to set the additional electron free is about:(A) 0.01 eV(B) 0.05 eV(C) 0.72 eV(D) 1.1 eV
4.	$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	11.	In an extrinsic semiconductor, the number density of holes is 4×10^{20} m ⁻³ . If the number of density of intrinsic carriers is 4×10^{20} m ⁻³ , the number density of electrons in it is (A) 1.8×10^9 m ⁻³ (B) 2.4×10^{10} m ⁻³ (C) 3.6×10^9 m ⁻³ (D) 3.2×10^{10} m ⁻³
5.	A pure Si crystal having 5×10^{28} atoms m ⁻³ is doped with 1 ppm concentration of antimony. If the concentration of holes in the doped crystal is found to be 4.5×10^9 m ⁻³ , the concentration (in m ⁻³) of intrinsic charge carriers in Si crystal is about (A) 1.2×10^{15} (B) 1.5×10^{16} (C) 3.0×10^{15} (D) 2.0×10^{16}	12.	$\begin{array}{c} \mbox{At a certain temperature in an intrinsic}\\ \mbox{semiconductor, the electrons and holes}\\ \mbox{concentration is } 1.5 \times 10^{16} \ m^{-3}. \ When it is doped\\ \mbox{with a trivalent dopant, hole concentration}\\ \mbox{increases to } 4.5 \times 10^{22} \ m^{-3}. \ \mbox{In the doped}\\ \mbox{semiconductor, the concentration of electrons}\\ \mbox{(ne) will be:}\\ \mbox{(A) } 3 \times 10^6 \ m^{-3} \ \mbox{(B) } 5 \times 10^7 \ m^{-3}\\ \mbox{(C) } 5 \times 10^9 \ m^{-3} \ \mbox{(D) } 6.75 \times 10^{38} \ m^{-3} \end{array}$
6.	 If a p-n junction diode is reverse biased, (A) the potential barrier is lowered. (B) the potential barrier remains unaffected. (C) the potential barrier is raised (D) the current is mainly due to majority carriers. 	13.	The formation of depletion region in a p-n junction diode is due to (A) movement of dopant atoms (B) diffusion of both electrons and holes (C) drift of electrons only (D) drift of holes only
7.	 During the formation of a p-n junction: (A) diffusion currents keep increasing (B) drift current remains constant (C) both the diffusion current and drift current remain constant. (D) diffusion current remains almost constant but drift current increases till both currents become equal. 	14.	An ac source of voltage is connected in series with a p-n junction diode and a load resistor. The correct option for output voltage across load resistance will be: (a) $t_{(c)}$ (b) $t_{(c)}$ (c)

MODERN PHYSICS (DUAL NATURE OF RADIATION AND MATTER, ATOMS AND NUCLEI)

1.	The transition of electron that gives rise to the formation of the second spectral line of the Balmer series in the spectrum of hydrogen atom corresponds to: (A) $n_f = 2$ and $n_i = 3$ (B) $n_f = 3$ and $n_i = 4$ (C) $n_f = 2$ and $n_i = 4$ (D) $n_f = 2$ and $n_i = \infty$	6.	Two beams, A and B whose photon energies are $3 \cdot 3$ eV and $11 \cdot 3$ eV respectively, illuminate a metallic surface (work function $2 \cdot 3$ eV) successively. The ratio of maximum speed of electrons emitted due to beam A to that due to beam B is: (A) 3 (B) 9 (C) $\frac{1}{3}$ (D) $\frac{1}{9}$
2.	A proton and an alpha particle having equal velocities approach a target nucleus. They come momentarily to rest and then reverse their directions. The ratio of the distance of closest approach of the proton to that of the alpha particle will be: $(A) \frac{1}{2}$ (B) 2 $(C) \frac{1}{4}$ (D) 4	7.	Energy levels A, B and C of an atom correspond to increasing values of energy i.e. $E_A < E_B < E_C$. Let 1, 2 and 3 be the wavelengths of radiation corresponding to the transitions C to B, B to A and C to A, respectively. The correct relation between $\lambda_1 \lambda_2$ and λ_3 is: (A) $\lambda_1^2 + \lambda_2^2 = \lambda_3^2$ (B) $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} = \frac{1}{\lambda_3}$ (C) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ (D) $\lambda_1 + \lambda_2 = \lambda_3$
3.	An alpha particle approaches a gold nucleus in Geiger-Marsden experiment with kinetic energy K. It momentarily stops at a distance d from the nucleus and reverses its direction. Then d is proportional to: $(A) \frac{1}{\sqrt{K}}$ (B) \sqrt{K} $(C) \frac{1}{K}$ (D) K	8.	The work function for a photosensitive surface is3·315eV.The cut-off wavelength forphotoemission of electrons from this surface is:(A) 150 nm(B) 200 nm(C) 375 nm(D) 500 nm
4.	Which one of the following is the correct graph between the maximum kinetic energy (Km) of the emitted photoelectrons and the frequency of incident radiation (v) for a given photosensitive surface? (A) (B) (C) (D)	9.	The variation of the stopping potential (V ₀) with the frequency (v) of the incident radiation for four metals A, B, C and D is shown in the figure. For the same frequency of incident radiation producing photoelectrons in all metals, the kinetic energy of photoelectrons will be maximum for metal $V_0 \uparrow A B C D$ U
5.	An electron makes a transition from n = 2 level to n = 1 level in the Bohr model of a hydrogen atom. Its period of revolution: (A) increases by 87.5% (B) decreases by 87.5% (C) increases by 43.75% (D) decreases by 43.75%	10.	The radius (r _n) of n th orbit in Bohr model of hydrogen atom varies with n as (a) r _n α n (b) r _n $\alpha \frac{1}{n}$ (c) r _n α n ² (d) r _n $\alpha \frac{1}{n^2}$

11.	 In Balmer series of Hydrogen atom, as the wavelength of spectral decreases, they appear (A) equally spaced and equally intense. (B) further apart and stronger in intensity. (C) closer together and stronger in intensity. (D) closer together and weaker in intensity. 	18.	The energy of an electron in the ground state of hydrogen atom is -13.6 eV. The kinetic and potential energy of the electron in the first excited state will be(A) -13.6 eV, 27.2 eV(B) -6.8 eV, 13.6 eV(C) 3.4 eV, -6.8 eV(D) 6.8 eV, -3.4 eV
12.	The radius of the nth orbit in Bohr Model of hydroegn atom is proportional to: $(A) \frac{1}{n^2}$ $(B) \frac{1}{n}$ $(C) n^2$ $(D) n$	19.	The potential energy between to nucleons inside a nucleus is minimum at a distance of about(A) 0.6 fm(B) 1.6 fm(C) 2.0 fm(D) 2.8 fm
	The quantum nature of light explains the observations on Photoelectric effect as- re is a minimum frequency of incident radiation ow which no electrons are emitted. maximum kinetic energy of photoelectrons depend y on the frequency of incident radiation. en the metal surface is illuminated, electrons are cted from the surface after sometime. e photoelectric current is independent of the intensity incident radiation.	20.	The diagram shows four energy level of an electron in Bohr model of hydrogen atom. Identity the transition in which the emitted photon will have the highest energy. n = 4 n = 3 II n = 2 IV n = 1 (A) I (B) II (C) III (D) IV
14.	The mass density of a nucleus of mass number A is: (A) proportional to A ^{1/3} (B) proportional to A ^{2/3} (C) proportional to A ³ (D) independent of A	21.	A hydrogen atom makes a transition from n = 5 to n = 1 orbit. The wavelength of photon emitted is λ . The wavelength of photon emitted when it makes a transition from n = 5 to n = 2 orbit is (A) $\frac{8}{7}\lambda$ (B) $\frac{16}{7}\lambda$ (C) $\frac{24}{7}\lambda$ (D) $\frac{32}{7}\lambda$
15.	The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium nucleus is (A) radioactive (B) unstable (C) easily fissionable (D) more stable nucleus than its neighbours	22.	A graph is plotted between the stopping potential (on y-axis) and the frequency of incident radiation (on x-axis) for a metal. The product of the slope of the straight line obtained and the magnitude of charge on an electron is equal to: (A) h (B) $\frac{h}{c}$ (C) $\frac{2h}{c}$ (D) $\frac{h}{2c}$
16.	Light of frequency 6.4 × 10 ¹⁴ Hz is incident on a metal of work function 2.14 eV. The maximum kinetic energy of the emitted electrons is about: (A) 0.25 eV (B) 0.51 eV (C) 1.02 eV (D) 0.10 eV	23.	The ratio of maximum frequency and minimum frequency of light emitted in Balmer series pf hydrogen spectrum, in Bohr's model is: $(A) \frac{11}{9}$ $(B) \frac{9}{5}$ $(C) \frac{11}{7}$ $(D) \frac{16}{7}$
17.	Photons of energy 3.2 eV are incident on a photosensitive surface. If the stopping potential for the emitted electrons is 1.5 V, the work function for the surface is: (A) 1.5 eV (D) 1.7 eV	24.	A proton and an alpha particle have the same kinetic energy. The ratio of de Broglie wavelengths associated with the proton to that with the alpha particle is:
	(A) 1.5 eV (C) 3.2 eV (D) 4.7 eV		(A) 1 (B) 2 (C) $2\sqrt{2}$ (D) $\frac{1}{2}$

25.	The potential energy of an electron in the second excited state in hydrogen atom is:(A) -3.4 eV(B) -3.02 eV(C) -1.51 eV(D) -6.8 eV	29.	The difference in mass of ⁷ X nucleus and total mass of its constituent nucleons is 21.00 u. The binding energy per nucleon for this nucleus is equal to the energy equivalent of:(A) 3 u(B) 3.5 u(C) 7 u(D) 21 u
26.	The energy of a photon of wavelength λ is(A) hc λ (B) hc/ λ (C) λ /hc(D) λ h/c	30.	The ratio of the nuclear densities of two nuclei having mass number 64 and 125 is $(A) \frac{64}{125}$ (B) $\frac{4}{5}$ $(C) \frac{5}{4}$ (D) 1
27.	Hydrogen atom initially in the ground state, absorbs a photon which excites it to n = 5 level.The wavelength of the photon is: (A) 975 nm(B) 740 nm (D) 95 nm(C) 523 nm(D) 95 nm		Which of the following figure represents the variation of particle momentum and associated de Broglie wavelength ? 1) $P \uparrow $ 2) $P \uparrow $ $\rightarrow \lambda$ 3) $P \uparrow $ 4) $P \uparrow $ $\rightarrow \lambda$
28.	The waves associated with a moving electron anda moving proton have the same wavelength λ. Itimplies that they have the same:(A) momentum(B) angular momentum(C) speed(D) energy		Which one of the following metals does not exhibit emission of electrons from its surface when irradiated by visible light?(A) Rubidium(B) Sodium(C) Cadmium(D) Caesium