Chapter 9

Coordination Compounds

Solutions

SECTION - A

			020110		`		
			Objective Type	Que	stions		
(Cla	ssification of Ligands and	l Nor	nenclature of Coordir	nation	n Compounds)		
1.	IUPAC name of H ₂ [PtCl ₆] i						
	(1) Dihydrogen hexachlorid	-	` ,	(2)	Hexachloridoplatinio	, ,	
	(3) Dihydrogen hexachlorid	dopla	tinic (IV) acid	(4)	Hexachloridoplatinu	m (IV) acid
Sol.	Answer (2)						
	IUPAC name of H ₂ [PtCl ₆] =	⇒ He	exachloridoplatinate (IV) acid	l.		
2.	Naming of ligand in [M(en)	₂] ⁿ⁺ s	starts with				
	(1) Di	(2)	Bi	(3)	Bis	(4)	Any of these
Sol.	Answer (3)						
	en is ethylene diamine \Rightarrow	an o	rganic compound. Her	e it is	s used as a ligand so	o 'bis'	will be used.
3.	Which of the following has	prim	ary valency "2"?				
	(1) [Co(NH ₃) ₅ Cl]Cl	(2)	[Co(NH ₃) ₄ Cl ₂]Cl	(3)	$[Co(NH_3)_3Cl_3]$	(4)	[Co(H ₂ O) ₄ Cl ₂]Cl
Sol.	Answer (1)						
	$[Co(NH_3)_5CI]CI \Rightarrow [Co(NH_3)_5CI]CI$	l ₃) ₅ Cl	$]Cl^+ \Rightarrow Co^{2+}$				
4.	Ligand to form a complex	which	n is used to treat hard	water	•		
	(1) NH ₃	(2)	ОХ	(3)	en	(4)	EDTA
Sol.	Answer (4)						
	EDTA is used to treat hard and Mg ²⁺ present in the ha			chela	ating ligand and form	ıs stal	ole complexes with Ca ²⁺
5.	Which of the following is n	ot bio	dentate ligand?				
	(1) acac	(2)	OX	(3)	en	(4)	dien
Sol.	Answer (4)						
	Dien is not a bidentate liga	and.					

- 6. Which of the following is flexidentate?
 - (1) CO

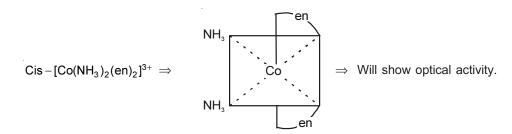
(2) en

- (3) EDTA
- (4) CI

Sol. Answer (3)

EDTA is a flexidentate because it has 6 binding sites.

(Isomerism in coordination compounds)


- 7. Which of the following will show optical activity?
 - (1) $Cis [Co(NH_3)_2(en)_2]^{3+}$

(2) $Trans - [Co(NH_3)_2(en)_2]^{3+}$

(3) $[Co(NH_3)_6]^{3+}$

(4) Trans – [Co(H₂O)₄Cl₂]⁺

Sol. Answer (1)

- 8. How many optical isomers are possible for [MABCD]?
 - (1) 1

(2) 2

(3) 3

(4) Zero

Sol. Answer (4)

$$[MABCD] \Rightarrow D \cap M \cap B$$

$$D \cap M \cap C \cap B$$
No any optical isomers.

- 9. Number of geometrical isomers possible for [MABCDEF] is
 - (1) 6

(2) 10

- (3) 15
- (4) 12

Sol. Answer (3)

 $[MABCDEF] \Rightarrow 6$ different ligands

Possbile geometrical isomers = ${}^{6}C_{4} = \frac{6!}{4!2!} = 15$.

- 10. [Ni(gly)₂] shows two stereoisomers. Those are
 - (1) Geometrical

(2) Optical

(3) Does not show isomerism

(4) Both (1) & (2)

Sol. Answer (2)

- 11. Which octahedral coordination compound will show maximum conductivity in aqueous solution if all NH₃ act as ligands?
 - (1) CoCl₃.6NH₃
 - (2) CoCl₃.5NH₃
 - (3) CoCl₃.4NH₃
 - (4) All will have same conductivity as every compound has got 3Cl

Sol. Answer (1)

If all NH_3 acts as ligand, then in case of $CaCl_3 \cdot 6NH_3$, 3 Cl^- ions will be outside the co-ordination sphere and participate in the enhancement of conductivity.

(Bonding in coordination compounds)

- 12. Which is a diamagnetic complex?
 - (1) $[Fe(H_2O)_6]^{3+}$
- (2) $[Fe(H_2O)_6]^{2+}$
- (3) [Fe(CN)₆]³⁻
- (4) [Fe(CN)₆]⁴⁻

Sol. Answer (4)

 $[\text{Fe(CN)}_{\text{6}}]^{\text{4-}} \Rightarrow \text{Fe}^{\text{2+}} \Rightarrow 3\text{d}^{\text{6}} \Rightarrow \boxed{1 \ 1 \ 1} \qquad \Rightarrow \text{Zero unpaired electron}$

- (· · CN⁻ is a strong field ligand)
- ⇒ Magnetic moment is zero
- ⇒ Diamagnetic.
- 13. The hybridization of 'Cr' in the complex $[Cr(NO_2)_4(NH_3)_2]^-$ is
 - (1) sp^3d^2
- (2) $sp^{3}d$
- (3) d^2sp^3
- (4) sp^3

Sol. Answer (3)

$$[Cr(NO_2)_4(NH_3)_2]^- \Rightarrow Cr^{3+} \Rightarrow 3d^3$$

- $\Rightarrow \boxed{1 | 1 | 1}$

- $\Rightarrow d^2sp^3$.
- 14. The geometry of [Ni(CO)₄] and [PdCl₄]²⁻ respectively are
 - (1) Both are tetrahedral

(2) Both are square planar

(3) Square planar and tetrahedral

(4) Tetrahedral and square planar

Sol. Answer (4)

$$[Ni(CO)_4] \Rightarrow sp^3 \Rightarrow Tetrahedral$$

$$[PdCl_{d}]^{2-} \Rightarrow dsp^{2} \Rightarrow Square planar$$

- 15. Write the increasing order of the value is CFSES (Δ_0) for the following species
 - I. $[Co(NH_3)_6]^{3+}$
 - II. $[Rh(NH_3)_6]^{3+}$
 - III. $[Ir(NH_3)_6]^{3+}$
 - (1) ||| < || < |
- (2) | < || < |||
- (3) || < | < ||
- (4) | < ||| < ||

Sol. Answer (2)

With the increase of the size of central metal ion, *d-d* splitting increases.

- ⇒ CFSE increases
- ⇒ The correct order should be

- 16. Which of the following is correct statement?
 - (1) [Ti(H₂O)_e]³⁺ is coloured complex
 - (2) $[Si(H_2O)_6]^{4+}$ is colourless complex
 - (3) d d transition is not possible in $[Si(H_2O)_6]^{4+}$ complex
 - (4) All of these

Sol.	Answer (4) $ [\mathrm{Ti}(\mathrm{H_2O})_6]^{3^+} \Rightarrow \mathrm{Purple\ colour} \\ [\mathrm{Si}(\mathrm{H_2O})_6]^{4^+} \Rightarrow \mathrm{Colourless}, \ \mathrm{b} \\ \Rightarrow \ \mathrm{All\ the\ statements\ are\ c} $	ecause no any transition								
	. , 3,3 - 3	_			(4)	[Pt(NH ₃) ₆]Cl ₄				
301.	I. Answer (4) [Pt(NH ₃) ₆]Cl ₄ has highest conductance because there are 4 Cl ⁻ ions in the primary valency and they are responsible for the enhanced molar conductance.									
18.	Which of the following is the	high spin complex?								
	(1) $[Cr(gly)_3]$	2) [CoBr ₂ Cl ₂ (SCN) ₂] ³⁻	(3)	[Fe(CN) ₆] ³⁻	(4)	Na[PtBrCl(NO ₂) ₂ (NH ₃) ₂]				
Sol.	Answer (2)	2 2 2		· ·						
	$[{\rm CoBr_2Cl_2(SCN)_2}]^{3-}$ will form the d-electrons to be paired.	spin complex because Br	and	Cl⁻ are weak field liga	ands	and they will not compell				
19.	The coordination number and	d magnetic moment of the	com	plex [Cr(C ₂ O ₄) ₂ (NH ₃)	₂] [–] res	spectively is				
	(1) 6, 3.87 BM	2) 4, 3.87 BM	(3)	6, 3.46 BM	(4)	4, 1.73 BM				
Sol.	Answer (1)									
	$[\mathrm{Cr}(\mathrm{C_2O_4})_2(\mathrm{NH_3})_2]^- \Rightarrow \mathrm{Cr^{3+}}$	\Rightarrow 3d ³								
	Octahedral complex \Rightarrow Co-o	rdination number = 6								
	Magnetic moment = $\sqrt{3(3+)}$	2) BM								
	$=\sqrt{3\times5}$ I	ВМ								
	$=\sqrt{15}$ BM	1 = 3.87 BM								
20.	If the value of C.F.S.E. for "N	Ni" is Δ_\circ then it is for Pd sl	hould	l be						
		2) $0.5 \Delta_0$		1.5 Δ ₀	(4)	2 Δ ₀				
Sol.	Answer (3)			Ü		·				
21	The value of 'spin only' mag	notic moment follows the	corr	act order?						
۷۱.	(1) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$			[MnCl ₄] ²⁻ > [Fe(CN	\ 14- >	• [CoCl 1 ² -				
	(3) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-}$	1		$[MnCl_4]^{2-} > [CoCl_4]^2$	•	•				
Sol.	Answer (4)	[4]	(-)	[4]	Ľ	-(,/61				
	$[MnCl_4]^{2-} \Rightarrow Mn^{2+} \Rightarrow 3d^5$	⇒	$\bigg] \Rightarrow $	Five unpaired elec	trons					
	$\Rightarrow \mu = \sqrt{5(5+2)} = \sqrt{35} \; BM$	= 5.92 BM								
	$[COCl_4]^{2-} \Rightarrow Co^{2+} \Rightarrow 3d^7$	⇒ [1 1 1 1 1 1 1 1 1 1	$\bigg] \Rightarrow $	Three unpaired ele	ctron	S				
	$\Rightarrow \mu = \sqrt{3(3+2)} = \sqrt{15} \; BM$	= 3.87 BM								
	$[{\rm Fe(CN)}_6]^{4-} \Rightarrow {\rm Fe^{2+}} \Rightarrow {\rm 3d}$	$^{6} \Rightarrow \boxed{1 1 1 1}$:	⇒ μ = 0						
	The correct order is $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$									

	(1) Zero	(2)	One	(3)	Four	(4)	Five				
Sol.	Answer (2)										
	Blue vitriol \Rightarrow CuSO ₄ ·5H ₂ O										
	In this structure, there is 1 hydrogen bonded water molecule (fact).										
23.	If Δ_0 is the crystal field stabilisation energy of a ligand and P is the energy required for electron pairing in an orbital, then ligand is called weak ligand if										
	(1) $\Delta_0 > P$	(2)	$\Delta_0 < P$	(3)	$\Delta_0 = P$	(4)	Unpredictable				
Sol.	Answer (2)										
	If pairing energy (p) is g of metal ion and the liga				e ligand would not b	e abl	e to pair the d-electrons				
24.	The complex compound	pearing	g square planar geomet	ry is							
	(1) Ni(CO) ₄	(2)	$[Ni(CN)_4]^{2-}$	(3)	$[Mn(CN)_6]^{3-}$	(4)	[MnCl ₄] ²⁻				
Sol.	Answer (2)										
	$[\mathrm{Ni}(\mathrm{CN})_4]^2 \xrightarrow{-} \exists d^8 \Rightarrow $	1 1	11 11								
	$\Rightarrow c$	lsp ²									
	$\Rightarrow \$$	Square	planar								
25.	The complex compound	having	maximum magnetic mo	ment	is						
	(1) [CoF ₆] ³⁻	(2)	[Cr(NH ₃) ₆] ³⁺	(3)	[FeF ₆] ³⁻	(4)	[Mn(CN) ₆] ⁴⁻				
Sol.	Answer (3)										
	$[\text{FeF}_6]^{3-} \Rightarrow \text{Fe}^{3+} \Rightarrow 3$	$d^5 \Rightarrow$	111111	(·.· F	⁼⁻ is a weak field liga	and)					
	⇒ Five unpaired electro	ns									
	$\Rightarrow \mu = \sqrt{5(5+2)}$ BM =	√35 B	M = 5 92 BM								
	→ μ √ο(ο + 2) 2	V00 D	0.02 5								
26.	$CFSE(\Delta_0)$ for metal ion in	d ⁷ cor	nfiguration in presence	of str	ong ligand field is						
	(1) $-0.6 \Delta_0$	(2)	$-0.8 \Delta_0$	(3)	$-1.6 \Delta_0$	(4)	$-1.8 \Delta_0$				
Sol.	Answer (4)										
	d ⁷ configuration in strong	g field l	igand,								
	1 1 1 1 1 =	⇒ 1/	1 1 1 e _g								
	CFSE = $(-0.4 \times 6 + 0.6)$	Δ_0	29 9								
	$= (-2.4 + 0.6)\Delta_0$, 0									
	$= -1.8 \Delta_0$										
27.	In case of high spin situa	ition									
	(1) $\Delta_0 = P$	(2)	$\Delta_0 > P$	(3)	$\Delta_0 < P$	(4)	$\Delta_0.P = 1$				
Sol.	Answer (3)										

In case of high spin complexes $\Delta_{\bf 0} < {\it P}.$

22. How many hydrogen bonded water molecules are present in blue vitriol?

28.	The EAN of Fe in	[Fe(CN) _e] ³⁻ is

(1) 26

(2) 35

(3) 38

(4) 29

Sol. Answer (2)

$$EAN = 26 - 3 + 6 \times 2 = 35$$

- 29. Which of the following is not π -acid ligand?
 - (1) CO

(2) F⁻

(3) C₂H₄

(4) NO⁺

Sol. Answer (2)

 F^- is not π -acid ligand.

- 30. The complex compound in which metal is not present in zero oxidation state?
 - (1) $Mn_2(CO)_{10}$

(2) [Ni(CO)₄]

(3) $[Cr(C_6H_6)_2]$

(4) $K[PtCl_3(C_2H_4)]$

Sol. Answer (4)

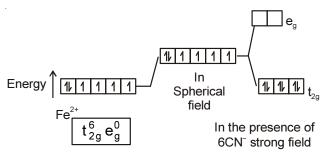
In K[PtCl $_3$ (C $_2$ H $_4$)], Cl $^-$ is in -1 oxidation state and here Pt is in +4 state.

SECTION - B

Previous Years Questions

1. What is the correct electronic configuration of the central atom in $K_{d}[Fe(CN)_{6}]$ based on crystal field theory?

[NEET-2019]


- (1) $t_{2q}^4 e_q^2$
- (2) $t_{2q}^6 e_q^0$
- (3) $e^3 t_2^3$
- (4) $e^4 t_2^2$

Sol. Answer (2)

 $K_{4}[Fe(CN)_{6}]$

Fe ground state: [Ar]3d⁶4s²

Fe²⁺: 3d⁶4s⁰

2. Iron carbonyl, Fe(CO)₅ is

[NEET-2018]

- (1) Tetranuclear
- (2) Mononuclear
- (3) Dinuclear
- (4) Trinuclear

Sol. Answer (2)

Based on the number of metal atoms present in a complex, they are classified into mononuclear, dinuclear, trinuclear and so on.

eg: Fe(CO)₅: mononuclear

Co₂(CO)₈: dinuclear

Fe₃(CO)₁₂: trinuclear

Hence, option (2) should be the right answer.

3. The type of isomerism shown by the complex $[CoCl_2(en)_2]$ is

[NEET-2018]

(1) Geometrical isomerism

(2) Coordination isomerism

(3) Linkage isomerism

(4) Ionization isomerism

Sol. Answer (1)

In [CoCl₂(en)₂], Coordination number of Co is 6 and this compound has octahedral geometry.

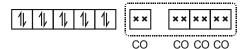
Trans-form (optically inactive)

cis-form (optically active)

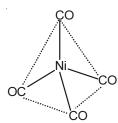
- · As per given option, type of isomerism is geometrical isomerism.
- 4. The geometry and magnetic behaviour of the complex [Ni(CO)₄] are

[NEET-2018]

- (1) Square planar geometry and diamagnetic
- (2) Tetrahedral geometry and diamagnetic
- (3) Tetrahedral geometry and paramagnetic
- (4) Square planar geometry and paramagnetic


Sol. Answer (2)

Ni(28): [Ar]3d8 4s2


·· CO is a strong field ligand

Configuration would be:

sp³-hybridisation

For, four 'CO'-ligands hybridisation would be sp³ and thus the complex would be diamagnetic and of tetrahedral geometry.

5. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the **correct** code. [NEET-2018]

	Column I		Column II			
a.	Co ³⁺	i.	√8 BM			
b.	Cr ³⁺	ii.	$\sqrt{35}$ BM			
c.	Fe ³⁺	iii.	$\sqrt{3}$ BM			

d.
$$Ni^{2+}$$
 iv. $\sqrt{24}$ BM v. $\sqrt{15}$ BM a b c d (1) iv v ii ii iv (2) i ii iii iv (3) iii v i ii iii iii iii (4) iv i ii ii iii

Sol. Answer (1)

 $Co^{3+} = [Ar] 3d^6$, Unpaired e⁻(n) = 4

Spin magnetic moment = $\sqrt{4(4+2)} = \sqrt{24}$ BM

 $Cr^{3+} = [Ar] 3d^3$, Unpaired e⁻(n) = 3

Spin magnetic moment = $\sqrt{3(3+2)} = \sqrt{15}$ BM

 $Fe^{3+} = [Ar] 3d^5$, Unpaired $e^{-}(n) = 5$

Spin magnetic moment = $\sqrt{5(5+2)} = \sqrt{35}$ BM

 $Ni^{2+} = [Ar] 3d^8$, Unpaired e⁻(n) = 2

Spin magnetic moment = $\sqrt{2(2+2)} = \sqrt{8}$ BM

- 6. Correct increasing order for the wavelengths of absorption in the visible region for the complexes of Co³⁺ is **[NEET-2017]**
 - (1) $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$
- (2) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$
- (3) $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$
- (4) $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(H_2O)_6]^{3+}$

Sol. Answer (1)

The order of the ligand in the spectrochemical series H₂O < NH₃ < en

Hence, the wavelength of the light observed will be in the order $[Co(H_2O)_6]^{3+} < [Co(NH_3)_6]^{3+} < [Co(en)_3]^{3+}$

Thus, wavelength absorbed will be in the opposite order i.e., $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$

- 7. The correct order of the stoichiometries of AgCl formed when AgNO₃ in excess is treated with the complexes : CoCl₃·6NH₃, CoCl₃·5NH₃, CoCl₃·4NH₃ respectively is **[NEET-2017]**
 - (1) 1 AgCl, 3 AgCl, 2 AgCl

(2) 3 AqCl, 1 AqCl, 2 AqCl

(3) 3 AgCl, 2 AgCl, 1 AgCl

(4) 2 AgCl, 3 AgCl, 1 AgCl

Sol. Answer (3)

Complexes are respectively $[Co(NH_3)_6]Cl_3$, $[Co(NH_3)_5Cl]Cl_2$ and $[Co(NH_3)_4Cl_2]Cl_3$

8. An example of a sigma bonded organometallic compound is

[NEET-2017]

- (1) Ruthenocene
- (2) Grignard's reagent
- (3) Ferrocene
- (4) Cobaltocene

Sol. Answer (2)

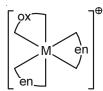
Grignard's reagent *i.e.*, RMgX is σ -bonded organometallic compound.

Pick out the correct statement with respect [Mn(CN)₆]³⁻

[NEET-2017]

- (1) It is sp^3d^2 hybridised and octahedral
- (2) It is sp^3d^2 hybridised and tetrahedral
- (3) It is d^2sp^3 hybridised and octahedral
- (4) It is dsp^2 hybridised and square planar

Sol.	Answer (3)									
	$[Mn(CN)_6]^{3-}$									
	$Mn(III) = [Ar]3d^4$									
	CN⁻ being strong field ligand forces pairing of electrons									
	This gives $t_{2g}^4 e_g^0$									
	$\therefore Mn(III) = [Ar]$									
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
	∵ Coordination number of Mn = 6									
	∴ Structure = octahedral									
	$[Mn(CN)_6]^{3-} =$									
	[Ar] $1\nu \uparrow \uparrow \times $									
10.	The correct increasing order of trans-effect of the follo	owing	species is		INFI	ET(Phase-2)-2016]				
	(1) $NH_3 > CN^- > Br^- > C_6H_5^-$. NI⊔	[_ (i mass _/ _s is)				
			$CN^{-} > C_6H_5^{-} > Br^{-} > C_6H_5^{-} > Br^{-} > C_6H_5^{-} > C_$	_						
	(3) $Br^- > CN^- > NH_3 > C_6H_5^-$	(4)	$CN^- > Br^- > C_6H_5^-$	> IN□ ₃						
Sol.	Answer (2)									
	Fact.									
11.	Which of the following has longest C – O bond length			1 CO	is 1.1	28 A) [NEET-2016]				
	(1) [Mn(CO) ₆] ⁺	(2)								
	(3) [Co(CO) ₄] ⁶	(4)	[Fe(CO) ₄] ²⁻							
Sol.	Answer (4)									
	Due to increase in -ve charge on metal atom bond le	ngth	of C – O bond increa	ses.						
12.	The name of complex ion, $[Fe(CN)_6]^{3-}$ is					[Re-AIPMT-2015]				
	(1) Tricyanoferrate (III) ion	(2)	Hexacyanidoferrate	(III) io	n					
	(3) Hexacyanoiron (III) ion	(4)	Hexacyanitoferrate (III) ior	1					
Sol.	Answer (2)									
	$[Fe(CN)_6]^{3-}$: Hexacyanidoferrate(III) ion.									
13.	The hybridization involved in complex $[\mathrm{Ni}(\mathrm{CN})_4]^{2-}$ is (A	t. No	. Ni = 28)			[Re-AIPMT-2015]				
	(1) $a^{\ell}sp^{2}$ (2) $a^{\ell}sp^{3}$	(3)	dsp ²	(4)	sp³					
Sol.	Answer (3)									
	The shape of $[Ni(CN)_4]^{2-}$ is square planar, where CN^{-}	is a	strong ligand and the	hybri	disati	on of Ni is dsp ² .				
14.	The sum of coordination number and oxidation number en is ethylenediamine) is	r of th	ne metal M in the con	nplex	[M(en) ₂ (C ₂ O ₄)]Cl (where [Re-AIPMT-2015]				


(3) 9

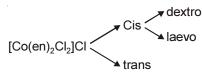
(4) 6

(2) 8

(1) 7

Sol. Answer (3)

Coordination number of M is 6.

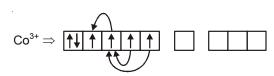

Oxidation state of M is 3.

- :. Sum of coordination number and oxidation number of the metal M is 9.
- 15. Number of possible isomers for the complex [Co(en)₂Cl₂]Cl will be (en = ethylenediamine) [Re-AIPMT-2015]
 - (1) 3

2) 4

- (3) 2
- (4)

Sol. Answer (1)



16. Which of these statements about [Co(CN)₆]³⁻ is true?

[AIPMT-2015]

- (1) [Co(CN)₆]³⁻ has no unpaired electrons and will be in a high-spin configuration
- (2) [Co(CN)₆]³⁻ has no unpaired electrons and will be in a low-spin configuration
- (3) [Co(CN)₆]³⁻ has four unpaired electrons and will be in a low-spin configuration
- (4) [Co(CN)₆]³⁻ has four unpaired electrons and will be in a high-spin configuration

Sol. Answer (2)

 $[Co(CN)_{6}]^{3-} \Rightarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \bullet \bullet \bullet$

- 17. Cobalt(III) chloride forms several octahedral complexes with ammonia. Which of the following will not give test for chloride ions with silver nitrate at 25°C?

 [AIPMT-2015]
 - (1) CoCl₃.6NH₃
- (2) CoCl₃.3NH₃
- (3) CoCl₃.4NH₃
- (4) CoCl₃.5NH₃

Sol. Answer (2)

The compound will be [Co(NH₃)₃Cl₃]

18. Magnetic moment 2.84 B.M. is given by (At. nos, Ni = 28, Ti = 22, Cr = 24, Co = 27)

[AIPMT-2015]

(1) Co2+

(2) Ni²⁺

- (3) Ti³⁺
- (4) Cr²

Sol. Answer (2)

Magnetic moment $\mu = \sqrt{n(n+2)}$ B.M.

It has two unpaired electrons.

							[AIPMT-2014]
Sol.	(1) $[Mn(H_2O)_6]^{3+}$ Answer (2)		[Fe(H ₂ O) ₆] ³⁺	(3)	$[Co(H_2O)_6]^{2+}$	(4)	[Co(H ₂ O) ₆] ³⁺
	$Fe^{+3} = d^5 = t_{2g}^3 e_g^2$, CFSE =	= 0.					
20.	Which of the following com	plexe	s is used to be as an a	nticar	ncer agent?		[AIPMT-2014]
	(1) mer - $[Co(NH_3)_3CI_3]$	(2)	cis - $[PtCl_2(NH_3)_2]$	(3)	cis - K ₂ [PtCl ₂ Br ₂]	(4)	Na ₂ CoCl ₄
Sol.	Answer (2)						
	Fact.						
21.	A magnetic moment of 1.73	BM 9	will be shown by one ar	nong	the following		[NEET-2013]
	(1) [Ni(CN) ₄] ²⁻	(2)	TiCl ₄	(3)	[CoCl ₆] ⁴⁻	(4)	$[Cu(NH_3)_4]^{2+}$
Sol.	Answer (4)						
	Magnetic moment $\mu = \sqrt{n(}$	n + 2	n = number of unp	aired	electrons]		
	$\Rightarrow \sqrt{n(n+2)} = 1.732$						
	⇒ n = 1						
	In case of $[Cu(NH_3)_4]^{2+} \Rightarrow Cu$	$u^{2+} \Rightarrow$	$3d^9 \Rightarrow \boxed{1 \ 1 \ 1 \ 1}$, 1	$ ight] \Rightarrow$ One unpaired ele	ectron	\Rightarrow n = 1 \Rightarrow μ = 1.73 BM
22.	An excess of AgNO ₃ is ad number of moles of AgCl pro			olutio	on of dichlorotetraaq	uachr	omium(III) chloride. The
	(1) 0.002	(2)	0.003	(3)	0.01	(4)	0.001
Sol.	Answer (4)						
23.	Which one of the following i	is an o	outer orbital complex ar	nd ex	hibits paramagnetic l	oehav	riour ?
	· ·		•		, ,		[AIPMT (Prelims)-2012]
	(1) [Cr(NH ₃) ₆] ³⁺	(2)	[Co(NH ₃) ₆] ³⁺	(3)	[Ni(NH ₃) ₆] ²⁺	(4)	
Sol.	Answer (3)						0 0
	$[\mathrm{Ni}(\mathrm{NH_3})_6]^{2^+} \Rightarrow \mathrm{Ni}^{2^+} \Rightarrow 3$	3d ⁸ =	⇒ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	fo	rms outer orbital con	nplex	
	⇒ Two unpaired electrons	$s \Rightarrow F$	Paramagnetic behaviour				
24.	Red precipitate is obtained of following statements is not			ethylo	glyoxime is added to a	ammo	niacal Ni(II). Which of the [AIPMT (Mains)-2012]
	(1) Red complex has a squ	ıare p	lanar geometry	(2)	Complex has symm	etrica	l H-bonding
	(3) Red complex has a tetr	ahed	ral geometry	(4)	Dimethylglyoxime fu	unctio	ns as bidentate ligand
					dimethylglyoxime =	= H₃C H₃C	C-C = N OH OH
							\mathcal{L}

19. Among the following complexes the one which shows zero crystal field stabilization energy (CFSE) is

Sol. Answer (3)

In this process [Ni(DMG)₂] complex is formed and the structure of this complex is square planar due to dsp² hybridization

- ⇒ Statement (3) is incorrect.
- 25. Low spin complex of d6-cation in an octahedal field will have the following energy

 $(\Delta_0 = \text{crystal field splitting energy in an octahedral field, P = electron pairing energy)}$

[AIPMT (Mains)-2012]

(1)
$$\frac{-12}{5}\Delta_0 + P$$

(2)
$$\frac{-12}{5}\Delta_{o} + 3P$$
 (3) $\frac{-2}{5}\Delta_{o} + 2P$ (4) $\frac{-2}{5}\Delta_{o} + P$

(3)
$$\frac{-2}{5}\Delta_0 + 2F$$

$$\left(\frac{-2}{5}\Delta_{o} + P\right)$$

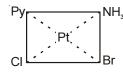
Sol. Answer (2)

$$\text{Low spin d}^6 \Rightarrow \begin{array}{|c|c|c|}\hline & & & & & & & & \\ \hline t_{_{2g}} & & & & & & \\ \hline 1 & & & & & & \\ \hline \end{array} \qquad \begin{array}{|c|c|c|}\hline & & & & & & \\ \hline & & & & & & \\ \hline \end{array}$$

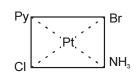
There are 3 pairs ⇒ Pairing energy = 3P

$$CFSE = -\frac{2}{5} \times 6 = -\frac{12}{5} \Delta_0$$

$$\therefore \text{ Total energy} = -\frac{12}{5}\Delta_0 + 3P$$


26. The complex, [Pt (Py) (NH₃) Br Cl] will have how many geometrical isomers?


(AIPMT (Prelims)-2011]


(2) 3

Sol. Answer (2)

Geometrical isomers, possible for the complex, [Pt (Py) (NH₂) Br Cl]

3 \Rightarrow

- 27. The complexes [Co(NH₃)₆][Cr (CN)₆] and [Cr (NH₃)₆] [Co(CN)₆] are the examples of which type of isomerism? [AIPMT (Prelims)-2011]
 - (1) Geometrical isomerism

(2)Linkage isomerism

(3) Ionization isomerism

(4)Coordination isomerism

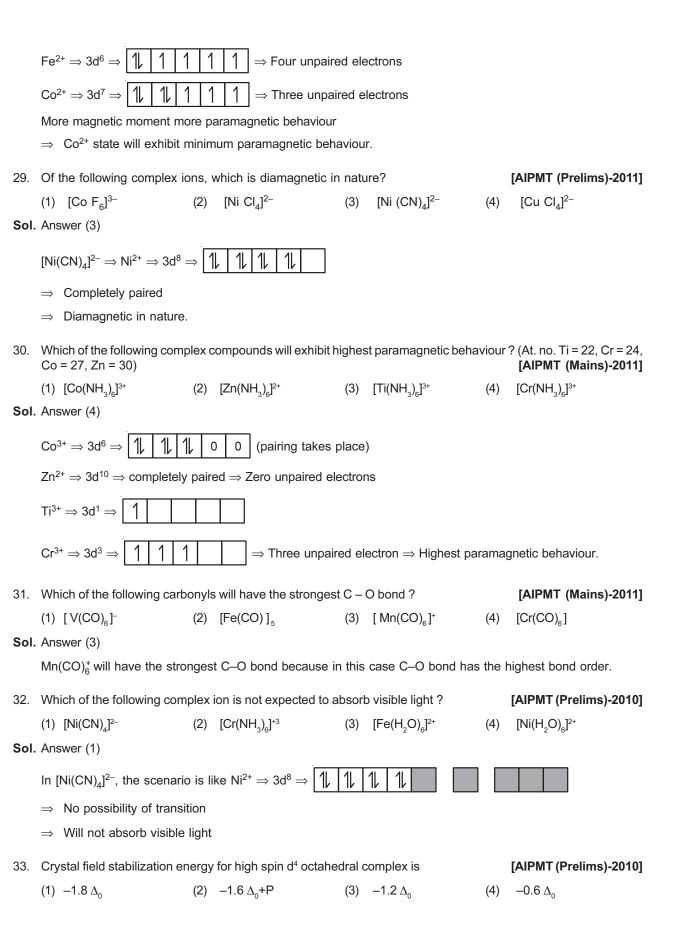
Sol. Answer (4)

The given species have co-ordination isomerism.

28. The d-electron configurations of Cr²⁺, Mn²⁺, Fe²⁺ and Co²⁺ are d⁴, d⁵, d⁶ and d⁷ respectively. Which one of the following will exhibit minimum paramagnetic behaviour? (At. Nos. Cr = 24, Mn = 25, Fe = 26, Co = 27)

[AIPMT (Prelims)-2011]

(1)
$$[Cr(H_2O)_6]^{2+}$$


(2)
$$[Mn (H_2O)_6]^{2+}$$
 (3) $[Fe (H_2O)_6]^{2+}$ (4) $[Co(H_2O)_6]^{2+}$

(4)
$$[Co(H_2O)_6]^2$$

Sol. Answer (4)

H₂O is a moderate field ligand

$$Cr^{2+} \Rightarrow 3d^4 \Rightarrow \boxed{1 \ 1 \ 1 \ 1} \Rightarrow Four unpaired electrons$$
 $Mn^{2+} \Rightarrow 3d^5 \Rightarrow \boxed{1 \ 1 \ 1 \ 1} \Rightarrow Five unpaired electrons$

Sol. Answer (4)

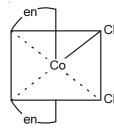
$$\begin{split} [\text{Co(CN)}_6]^{3-} &\Rightarrow \text{Co}^{3+} \ \Rightarrow 3\text{d}^6 \ \Rightarrow \boxed{1 \hspace{-0.2cm} 1 \hspace{-0.2cm} 1 \hspace{-0.2cm} 1 \hspace{-0.2cm} 1} \quad \boxed{e_{\scriptscriptstyle g}} \\ \text{CFSE} &= -0.4 \times 6 \ \Delta_0 \\ &= -2.4 \ \Delta_0 \end{split}$$

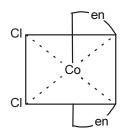
- 41. Which one of the following aqua complexes will exhibit the minimum paramagnetic behaviour? Atomic number. Cr = 24, Mn = 25, Fe = 26, Ni = 28) [AIPMT (Prelims)-2007]
 - (1) $[Cr(H_2O)_6]^{2+}$
- (2) $[Mn(H_2O)_6]^{2+}$
- (3) $[Fe(H_2O)_6]^{2+}$
- (4) $[Ni(H_2O)_6]^{2+}$

Sol. Answer (4)

42. Which of the following will give a pair of enantiomorphs?

[AIPMT (Prelims)-2007]


(1) [Pt(NH₃)₄][PtCl₆]


 $(2) \quad [Co(NH_3)_4Cl_2]NO_2$

(3) [Cr(NH₃)₆][Co(CN)₆]

(4) $[Co(en)_2 Cl_2]Cl$ (en = NH₂CH₂CH₂NH₂)

Sol. Answer (4)

43. [Co(NH₃)₄(NO₂)₂]Cl exhibits

[AIPMT (Prelims)-2006]

- (1) Linkage isomerism, ionization isomerism and optical isomerism
- (2) Linkage isomerism, ionization isomerism and geometrical isomerism
- (3) Ionization isomerism, geometrical isomerism and optical isomerism
- (4) Linkage isomerism, geometrical isomerism and optical isomerism
- Sol. Answer (2)

[Co(NH₃)₄(NO₂)₂]Cl can show linkage, ionization and geometrical isomerism.

- 44. [Cr(H₂O)₆]Cl₃ (at. no of Cr = 24) has a magnetic moment of 3.83 BM, the correct distribution of 3d electrons in the chromium of the complex is [AlPMT (Prelims)-2006]
 - (1) $3d_{x^2-y^2}^1, 3d_{z^2}^1, 3d_{xz}^1$

(2) $3d_{xy}^{1}, 3d_{x^{2}-y^{2}}^{1}, 3d_{yz}^{1}$

(3) $3d_{xy}^{1}, 3d_{zy}^{1}, 3d_{xz}^{1}$

(4) $3d_{xy}^{1}, 3d_{yz}^{1}, 3d_{z^{2}}^{1}$

Sol. Answer (3)

 μ = 3.83 BM \Rightarrow Number of unpaired electrons = 3

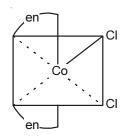
$$\text{In } [\text{Cr}(\text{H}_2\text{O})_{\text{e}}]\text{CI}_3 \Rightarrow \text{Cr}^{3+} \Rightarrow 3\text{d}^3 \Rightarrow \boxed{\begin{array}{c|c} 1 & 1 & 1 \\ \hline d_{xy} & d_{yz} & d_{xz} \end{array}}$$

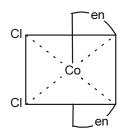
- 45. Which one of the following is an inner orbital complex as well as diamagnetic in behaviour? (Atomic No. : Zn = 30, Cr = 24, Co = 27, Ni = 28) [AIPMT (Prelims)-2005]
 - (1) $[Zn(NH_3)_6]^{2+}$
- (2) $[Cr(NH_3)_6]^{3+}$
- (3) $[Co(NH_3)_a]^{3+}$
- (4) $[Ni(NH_2)_a]^{2+}$

$$[\operatorname{Co}(\operatorname{NH}_3)_6]^{3+} \Rightarrow \operatorname{Co}^{3+} \Rightarrow \operatorname{3d}^6 \Rightarrow \boxed{1 \quad 1 \quad 1 \quad 0 \quad 0} \qquad \boxed{0 \quad 0 \quad 0}$$

- ⇒ Zero unpaired electrons ⇒ Diamagnetic
 - ⇒ Low spin inner-orbital complex
- 46. Which one of the following is expected to exhibit optical isomerism? (en = ethylenediamine)

[AIPMT (Prelims)-2005]


(1) cis -[Pt (NH₃)₂Cl₂]


(2) trans -[Co (en)₂ Cl₂]⁺

(3) trans -[Pt (NH₃)₂ Cl₂]

(4) cis -[Co(en), Cl₂]+

Sol. Answer (4)

- 47. A co-ordination complex compound of cobalt has the molecular formula containing five ammonia molecules, one nitro group and two chlorine atoms for one cobalt atom. One mole of this compound produces three mole ions in an aqueous solution. On reacting this solution with excess of AgNO₃ solution, we get two moles of AgCl as precipitate. The ionic formula for this complex would be
 - (1) $[Co(NH_3)_5(NO_2)] Cl_2$

(2) $[Co(NH_3)_5Cl][Cl(NO_2)]$

(3) $[Co(NH_3)_4(NO_2)CI](NH_2)CI$

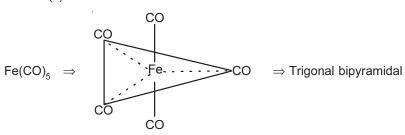
(4) $[Co(NH_3)_5][(NO_2)_2Cl_2]$

Sol. Answer (1)

- 2 moles of AgCl means there are 2Cl^- ions in the primary valency.
- S, $[Co(NH_3)_5(NO_2)]Cl_2$.
- 48. IUPAC name of $[Pt(NH_3)_3 (Br) (NO_2)CI] CI$ is
 - (1) Triamminebromochloronitroplatinum (IV) chloride
- (2) Triamminebromonitrochloroplatinum (IV) chloride
- (3) Triamminechlorobromonitroplatinum (IV) chloride
- (4) Triamminenitrochlorobromoplatinum (IV) chloride

Sol. Answer (1)

IUPAC name of [Pt(NH₃)₃ (Br) (NO₂)CI] CI = Triamminebromochloronitroplatinum (IV) chloride.


- 49. Shape of Fe(CO)₅ is
 - (1) Octahedral

(2) Square planar

(3) Trigonal bipyramidal

(4) Square pyramidal

Sol. Answer (3)

50.	Which of the following will	give n	naximum number of is	omer	s?		
	(1) $[Co(NH_3)_4Cl_2]$	(2)	[Ni(en) (NH ₃) ₄] ²⁺	(3)	[Ni (C ₂ O ₄) (en) ₂] ²⁻	(4)	[Cr (SCN) ₂ (NH ₃) ₄] ⁺
Sol.	Answer (4)						
	$ [\mathrm{Cr} \; (\mathrm{SCN})_2 \; (\mathrm{NH_3})_4]^+ \; \mathrm{is} \; [\mathrm{Maximum \; number \; of \; isomethic \; }]_4 $		type complex and he	ere S	CN⁻ is an ambider	ntate I	igand. So, this will give
51.	Coordination number of Ni	in [Ni	$(C_2O_4)_3]^{4-}$ is				
	(1) 3	(2)	6	(3)	4	(4)	2
Sol.	Answer (2)						
	[Ni $(C_2O_4)_3$] ^{4-,} $C_2O_4^{2-}$ is a	bider	ntate ligand. So, it forn	ns oc	tahedral complex w	ith co-	ordination number 6.
52.	Which of the following orga	anome	etallic compounds is σ	and a	π bonded?		
	(1) $[Fe(\eta^5 - C_5H_5)_2]$	(2)	$K[PtCl_3(n^2 - C_2H_4)]$	(3)	[Co(CO) ₅ NH ₃] ²⁺	(4)	Fe(CH ₃) ₃
Sol.	Answer (3)		·		ů č		
	$[Co(CO)_5NH_3]^{2+}$ forms σ ar	nd π b	onded complexes (str	ucture	∍).		
50	14/1:1	10					
53.	Which statement is incorre		a a natio				
	 (1) Ni(CO)₄ - tetrahedral, p (2) Ni(CN)₄⁻² - square plan 						
	(3) $Ni(CO)_4$ – tetrahedral,						
	(4) $[Ni(CI)_4]^{-2}$ – tetrahedral						
Sol.	Answer (1)	i, paic	amagnesie				
	Ni(CO) ₄ is diamagnetic in i	nature) .				
54.	Atomic number of Cr and F			26, w	nich of the following	is pai	ramagnetic?
			[Fe(CO) ₅]				
Sol.	Answer (4)		-		-		
	$[\operatorname{Cr(NH}_3)_6]^{3+} \! \Rightarrow \! \operatorname{Cr}^{3+} \Rightarrow 3 \mathrm{d}^3$	\Rightarrow Th	ree unpaired electrons	$s \Rightarrow F$	Paramagnetic.		
55.	The hypothetical complex of	chloro	diaquatriammine cob	alt (III) chloride can be re	prese	nted as
	(1) $[CoCl(NH_3)_3(H_2O)_2]Cl_2$			(2)	$[Co(NH_3)_3(H_2O)Cl_3]$		
	(3) $[Co(NH_2)_3(H_2O)_2CI]$			(4)	$[Co(NH_3)_3(H_2O)_3]Cl$	3	
Sol.	Answer (1)						
50	Chloro diaquatriammine co						
56.	According to IUPAC nome		ire sodium nitroprussio				
	(1) Sodium nitroferricyanid		iomato (II)	(2)	Sodium nitroferrocy		
801	(3) Sodium pentacyanonitr	rosyi i	errate (II)	(4)	Sodium pentancya	nonitro	osyrierrate (III)
301.	Answer (3) Sodium nitroprusside ⇒ N	a (Fa/	(CN) (NO)1 → Sodiur	m nar	ntacvanonitrosyl ferr	ata (II)	1
57.	The number of unpaired e	_	-				
07.	(1) 2	(2)			4	(4)	Zero
Sol.	Answer (3)	(-)		(0)		(· /	_0.0
		·	41 4 4 4 4 4 4				
	$[CoF_6]^{3-} \Rightarrow Co^{3+} \Rightarrow 3d^6$	$\Rightarrow $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	⇒ Four unpaired electron	ıs					

- 58. The anion of acetylacetone (acac) forms Co(acac)₃ chelate with Co³⁺. The rings of the chelate are
 - (1) Three membered
- (2) Five membered
- (3) Four membered
- (4) Six membered

Sol. Answer (4)

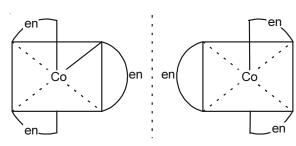
(acac) forms six membered complex (structure).

- 59. Which one of the following octahedral complexes will not show geometric isomerism? (A and B are monodentate ligands)
 - (1) [MA₂B₄]
- (2) [MA₂B₂]
- $(3) [MA_4B_3]$
- $[MA_5B]$

Sol. Answer (4)

[MA₅B] will not show geometrical isomerism.

60. Which of the following is considered to be an anticancer species?


$$(1) \begin{bmatrix} CI \\ CI \end{bmatrix} Pt \begin{bmatrix} CH_2 \\ CH_2 \\ CI \end{bmatrix}$$

Sol. Answer (3)

Cis-platin is considered to be an anticancer species.

- 61. Which of the following coordination compounds would exhibit optical isomerism?
 - (1) Pentaamminenitrocobalt (III) iodide
 - (2) Diamminedichloroplatinum (II)
 - (3) Trans dicyanobis (ethylenediamine) chromium (III) chloride
 - (4) Tris-(ethylenediamine) cobalt (III) bromide

Sol. Answer (4)

- 62. Among $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ species, the hybridization states at the Ni atom are, respectively [Atomic number of Ni = 281
 - (1) sp^3 , dsp^2 , dsp^2
- (2) sp^3 , dsp^2 , sp^3
- (3) sp^3 , sp^3 , dsp^2 (4) dsp^2 , sp^3 , sp^3

Sol. Answer (2)

[Ni(CO)₄] $[Ni(CN)_{\Delta}]^{2-}$ dsp²

[NiCl₄]²⁻ sp^3

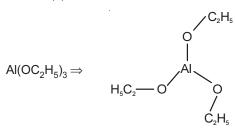
- 63. Considering H₂O as a weak field ligand, the number of unpaired electrons in [Mn(H₂O)_e]²⁺ will be (atomic number of Mn = 25)
 - (1) Three
- (2) Five

- Two (3)
- (4) Four

Sol. Answer (2)

 $[Mn(H_2O)_6]^{2+} \Rightarrow Mn^{2+} \Rightarrow 3d^5 \Rightarrow$

⇒ Five unpaired electrons.


- 64. Which of the following does not have a metal carbon bond?
 - (1) $AI(OC_2H_5)_3$

(2) C_2H_5MgBr

(3) $K[Pt(C_2H_A)CI_3]$

(4) Ni(CO)₄

Sol. Answer (1)

- 65. The *d* electron configuration of Cr²⁺, Mn²⁺, Fe²⁺ and Ni²⁺ are 3*d*⁴, 3*d*⁵, 3*d*⁶ and 3*d*⁸ respectively. Which one of the following aqua complexes will exhibit the maximum paramagnetic behaviour? (At. No. Cr = 24, Mn = 25, Fe = 26, Ni = 28)
 - (1) $[Fe(H_2O)_{e}]^{2+}$
- (2) $[Ni(H_2O)_6]^{2+}$
- (3) $[Cr(H_2O)_6]^{2+}$ (4) $[Mn(H_2O)_6]^{2+}$

Sol. Answer (4)

H₂O is a weak field ligand and Mn²⁺ has maximum numbers of unpaired electrons *i.e.*, 5. So, [Mn(H₂O)₆]²⁺ will exhibit the maximum paramagnetic behaviour.

SECTION - C

Assertion - Reason Type Questions

- A: The complex [Co(NH₃)₃Cl₃] gives white ppt. with AgNO₃ solution.
 - R: Chlorine always gives white ppt with AgNO₃ solution.
- Sol. Answer (4)

[Co(NH₃)₃Cl₃] will not give while ppt. with AgNO₃ solution. Because there is no any Cl⁻ in the primary valency i.e. outside the co-ordination sphere.

Chlorine does not give white ppt. with AgNO₃ always.

- A: Glycinate ion is an unsymmetrical bidentate ligand.
 - R: Glycinate ion is a conjugate base of glycine.

Sol. Answer (2)

Glycinate ion ⇒ NH₂–CH₂–COO⁻ ⇒ unsymmetrical

But the reason is not any explanation.

- A: $K_4[Fe(CN)_6]$ is less stable than $K_3[Fe(CN)_6]$.
 - R: In $K_4[Fe(CN)_6]$, the EAN of Fe is 36.

Sol. Answer (2)

$$\begin{split} \mathsf{K}_{4}[\mathsf{Fe}(\mathsf{CN})_{6}] &\Rightarrow \mathsf{Fe}^{2^{+}} \Rightarrow 3\mathsf{d}^{6} \\ \Rightarrow & \mathsf{CFSE} = -2.4 \ \Delta_{0} \\ & \mathsf{K}_{4}[\mathsf{Fe}(\mathsf{CN})_{6}] \Rightarrow \mathsf{Fe}^{3^{+}} \Rightarrow 3\mathsf{d}^{5} \\ \Rightarrow & \mathsf{CFSE} = -2.0 \ \Delta_{0} \end{split}$$

 $\Rightarrow \ \ K_{3}[Fe(CN)_{6}] \ is \ less \ stable \ then \ K_{4}[Fe(CN)_{6}]$

$$K_4[Fe(CN)_6] \Rightarrow Fe^{2+} \Rightarrow 24$$
 electrons

- \therefore EAN = 24 + 2 × 6 = 36 \Rightarrow But not the correct explanation.
- 4. A: All square planar complexes can exhibit geometrical isomerism.

R: In square planar complexes metal assumes sp^3 hybridisation.

Sol. Answer (4)

Square planar complexes of type [MA₄] and [MA₃B] can not exhibit geometrical isomerism.

In square planar complexes, metal is dsp^2 hybridized.

5. A: K₄[Fe(CN₆)] and K₃[Fe(CN₆)] have different magnetic moment.

R: Magnetic moment is decided by the number of unpaired electron and both have different number of unpaired electrons.

Sol. Answer (1)

$$\mathsf{K_4}[\mathsf{Fe}(\mathsf{CN}_6)] \Rightarrow \mathsf{Fe}^{2+} \Rightarrow 3\mathsf{d}^6 \Rightarrow \boxed{1 \ \ 1} \ \boxed{1} \ \boxed{1} \ \boxed{1} \ \boxed{1} \ \boxed{1}$$

$$\text{K}_3[\text{Fe}(\text{CN}_6)] \Rightarrow \text{Fe}^{3+} \Rightarrow 3\text{d}^5 \Rightarrow \boxed{1 \hspace{-0.2cm} 1} \boxed{1} \boxed{1} \boxed{1} \Rightarrow \mu = 1.73 \text{ BM}$$

6. A: The degeneracy of d-orbitals is lost under strong field ligand.

R: The degeneracy of d-orbitals does not get lost under chelated ligand field.

Sol. Answer (3)

In strong field, the *d*-orbital splits into t_{2q} and e_q orbitals. t_{2q} and e_q have different energies.

Chelated ligand fields are generally strong

 \Rightarrow Statement (2) is false.

7. A: Transition metal ion forming octahedral complex having d^2sp^3 or sp^3d^2 hybridisation.

R: Under the influence of strong field ligand inner d-orbitals take part in the hybridisation.

Sol. Answer (2)

Octahedral
$$\Rightarrow d^2sp^3$$
 or sp^3d^2

Under strong field, electrons of d-orbital get paired and the orbital takes part in hybridization. But it is not the correct explanation for hybridization.

8. A: Higher the charge density on the central ion, greater will be stability of the complex.

R: Hard acid show a greater tendency for forming complexes with hard ligands such as F-.

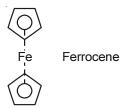
Sol. Answer (2)

Both the statements are facts. But 2nd one is not giving the reason, why charge density on metal ion is responsible for stability.

9. A: Al₂(CH₃)₆ is a dimeric compound and has similar structure to diborane.

R: Al₂(CH₃)₆ in a sigma bonded complex.

Sol. Answer (2)


Both are true as per the structure of $Al_2(CH_3)_6$ but not the correct explanation.

10. A: Ferrocene may prepared by the reaction of Grignard reagent ferrous chloride.

R : Ferrocene is a σ and π -bonded complex.

Sol. Answer (3)

Assertion is correct (fact). But reason is wrong, because Ferrocen forms π -bonded complex.

11. A: dien is bidentate ligand.

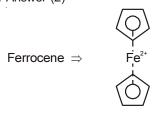
R: dien donates two pairs of electron.

Sol. Answer (4)

Dien is not a bidentate ligand and does not donate two pairs of electrons.

12. A: CN- is an acid ligand.

R: CN⁻ accepts electron pair also.


Sol. Answer (4)

CN⁻ donates electron to the metal ion.

13. A: Coordination number of Fe²⁺ in ferrocene is 10.

R : Ferrocene is π bonded complex.

Sol. Answer (2)

⇒ Co-ordination number of Fe²⁺ is 10

 \Rightarrow π -bonded complex

But not the correct explanation.

14. A: $[MA_3B_3]^{n+}$ shows optical isomerism.

R: [MA₃B₃]ⁿ⁺ deviates plane polarized light.

Sol. Answer (4)

[MA₃B₃] type complexes do not show optical isomerism.

15. A : $[Fe(CN)_6]^{4-}$ follows EAN rule.

R: Number of electrons in Fe in this complex ion is 36.

Sol. Answer (1)

$$[Fe(CN)_6]^{4-} \Rightarrow Fe^{2+} \Rightarrow 24 \text{ electrons}$$

6 CN⁻ ligands
$$\Rightarrow$$
 6 \times 2 = 12 electrons

 \Rightarrow Total 24 + 12 = 36 electrons in the complex ion.

16. A: According to C.F.T. complex compound contain point charges.

R: The bonding between central metal ion and ligand is electrostatic.

Sol. Answer (2)

Both the statements are true. But not the correct explanation.

17. A: $[Cr(H_2O)_6]^{3+}$ is inner orbital complex.

R: H₂O is strong ligand generally.

Sol. Answer (4)

H₂O is a moderate field ligand.

 $[\text{Cr}(\text{H}_2\text{O})_6]^{3^+} \Rightarrow \text{Cr}^{3^+} \Rightarrow 3\text{d}^3 \Rightarrow \text{forms outer orbital complex}.$

18. A: [Ni(CO)₄] is organometallic compound.

R : CO is not a π -acid ligand.

Sol. Answer (3)

19. A: CH₃COONa is an organometallic compound.

R: CH₃COOH is organic compound and Na is transition metal.

Sol. Answer (4)

Na is a metal. CH₃COONa is a salt.

20. A: The energy gap $\Delta_0 = \frac{4}{9} \Delta_t$.

R : Δ_0 is always greater than Δ_t for same metal ion and ligand.

Sol. Answer (2)

Both the statements are true. But not the correct explanation.