## **Co-ordination Compounds**

Weightage = 9 Marks

## **ONE MARK QUESTIONS**

- 1. What is the IUPAC of K<sub>2</sub>[Zn(OH)<sub>2</sub>]? Ans :Potassium tetrahydroxidozincate(II)
- 2. Write formula for the mercurytetrathiocyanatocobaltate(III) Ans : Hg[Co(SCN)<sub>4</sub>]
- How many Cl<sup>-</sup>ions can be precipitated as AgCl. by adding excess of aqueous AgNO<sub>3</sub> solution into one mole of [Co(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>3</sub>? Ans : Three(3) ions or three or 3
- What is the value of co-ordination number of Fe in[FeCl<sub>2</sub>(en)<sub>2</sub>]Cl? Ans : 6

## **TWO MARK QUESTIONS :**

5. What is an ambidentate ligand? Give an example. Ans :Ligand which can ligate through two different atoms to central metal atom/ion is known as ambidentate ligand.

Ex : Nitrito-N and Nitrito-O  $~OR~NO^{-}_{2}OR~$  Thiocyanate and Isothiocyanate OR SCN $^{-}$ 

and NCS<sup>-</sup> (any one)

- 6. What is Chelating ligand? Give an example.
  - Ans : When a didentate or polydentate ligand uses two or more donor atoms to bind single central metal metal atom/ ion is known as cheating ligand. Example : ethane 1-2 diamine (en), ethylenediaminetetraacetate(EDTA<sup>4-</sup>)ion, oxalate ( $C_2 O_4^{2-}$ ) etc. (any one)
- 7. What are homoleptic complexes? Give an example.

Ans : Complexes in which a central metal atom /ion is bound to more than one kind of donor groups are known as heteroleptic complexes.
Example :[*Ti*(*H*<sub>2</sub>*O*)<sub>6</sub>]<sup>3+</sup>, [Co(CN)<sub>6</sub>]<sup>3-</sup>, [Cu(H<sub>2</sub>O)<sub>4</sub>]<sup>2+</sup>, [Ni(CN)<sub>4</sub>]<sup>2-</sup>, [NiCl<sub>4</sub>]<sup>2-</sup>, [Co(en)<sub>3</sub>]<sup>3+</sup> etc

- 8. What are heteroleptic complexes? Give an example. Ans :Complexes in which a central metal atom /ion is bound to more than one kind of donor groups are known as heteroleptic complexes. Example : [CoCl.CN.NO<sub>2</sub>(NH<sub>3</sub>)<sub>3</sub>], [Co(NH<sub>3</sub>)5(NO<sub>2</sub>)]Cl<sub>2</sub>. [Co(NH<sub>3</sub>)5(NH<sub>3</sub>)5(ONO)]Cl<sub>2</sub>etc
- 9. Mention any two postulates of Werner's theory of co-ordination compound. Ans :
  - The central metal atom or ion in a complex posseses two types of valences(linkages) Namely a) Primary valency b) Secondary valency
  - ii) Primary valency is ionisable and secondary valency is non ionisablle.
  - iii) Primary valency is satisfied only by anions.(negatively charged ions) and secondary valency is satisfied by either anions or neutral moleculesor both.
  - iv) The primary valency corresponds to the oxidation state of central metal and the secondary valency corresponds to the co-ordination number of the metal(remains fixed for a metal)

3 Marks – 3Q

- vi) The primary valency of the metal is variable. The secondary valency has a fixed value.
- 10. Draw energy level diagram for the splitting of d-orbitals in an octahedral crystal field.



Figure: 5.10 - Crystal field splitting in octahedral field

## **THREE MARKS QUESTIONS :**

Ans :

11. On the basis of Valence Bond Theory (VBT), Account for hybridisation, geometry and magnetic property of [Ni(CN)<sub>4</sub>]<sup>2</sup>-complex ion. (Z for Ni is 28)



- 12. Using valence bond theory explain geometry hybridisation and magnetic property of [CoF<sub>6</sub>]<sup>3-</sup>.(Given atomic number of Co is 27)
  - Ans : Hybridisation :  $sp^3d^2$

Geometry :Octahedral Magnetic property : Paramagnetic



Complexes hybridisation according to valence bond theory

- 13. Using valence bond theory explain geometry hybridization and magnetic property of [Co(NH<sub>3</sub>)<sub>6</sub>]<sup>3-</sup> (Given atomic number of Co is 27)
  - Ans : Hybridisation :  $d^2sp^3$

Geometry : Octahedral

Magnetic property :Diamagnetic



- 14. On the basis of valence bond theory (VBT), Account for hybridisation, geometry and magnetic property of [NiCl<sub>4</sub>]<sup>2</sup>-Complex ion (Z for Ni is 28)
  - Ans : Hybridisation : sp<sup>3</sup>

Geometry :Tetrahedral

Magnetic property :Paramagnetic



15. Discuss the nature of bonding in metal carbonyl.

Ans : In metal carbonyl : The metal-carbon bond posses both  $\sigma$  and  $\pi$ -character. The metal-carbon  $\sigma$  bond is fomed by the donation of lone pair of electrons on the carbonyl carbon into vacant orbitals of metal.

The metal-carbon  $\pi$ - bond is formed by the donation of a pair of electrons from a filled d-orbital of metal into the vacant antibonding  $\pi^*$  orbital of CO

The metal to ligand bonding creates a synergic effect which strengthens the bond between CO and metal.



16. What is Crystal Field Splitting Energy? Name two factors on which Crystal Field splitting energy depends.

Ans : The energy separation in the splitting of the degenerated levels due to presence of ligands in a definite geometry is known as Crystal-Field Splitting energy.

OR

The difference in energy between the two sets of degenerate orbitals during crystal field splitting is called as Crystal-Field Splitting Energy.

The crystal field splitting energy depends on :

- 1. Field produced by the ligand. (Strength of ligand)
- 2. Charge on the metal ion.

17. Define spectrochemical series

A series of ligands arranged is the increasing order of their ligand field strength is called spectrochemical series.