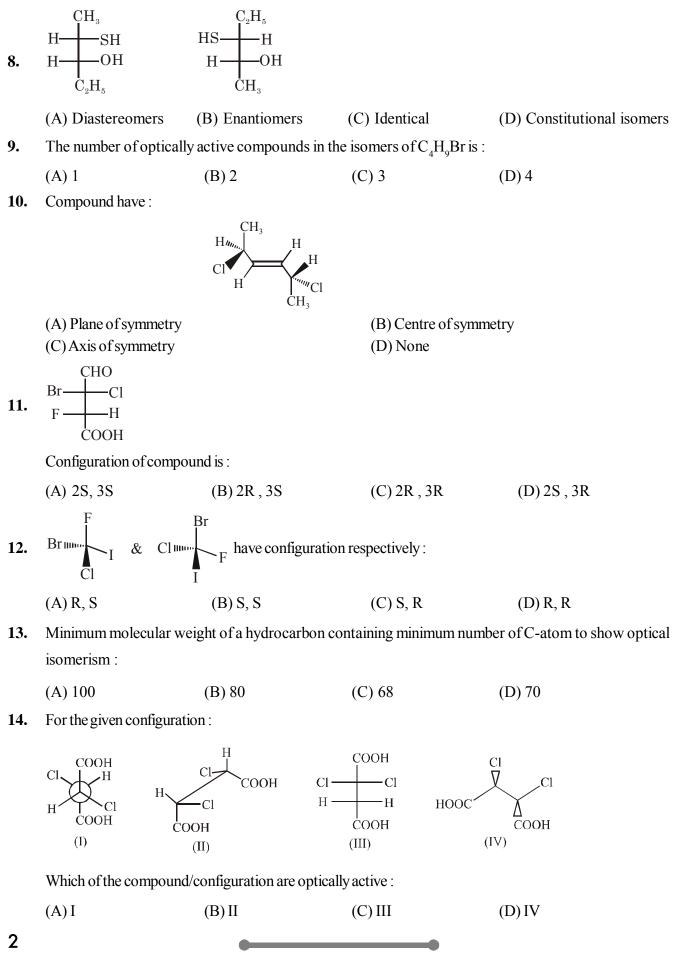
1

STEREO ISOMERISM


EXERCISE # I (MAINS ORIENTED)

1. Which one of the following statements concerning compounds V-Z is true : Br Br Bı Βr **(V) (W) (X) (Y) (Z)** (A) V and X are conformational isomers (B) Y and Z are constitutional isomers (C) X and Y are constitutional isomers (D) V and Y are stereoisomers 2. Which of the following compound has no isomer? (A) CH₃CH₂CH₂Cl (B) CH₂CHO (C) CH,=CH-Cl (D) ClCH,CH,Cl 3. Compound CH₂Cl₂ contain : (A) Plane of symmetry (B) Centre of symmetry (C) Axis of symmetry (D) Both (A) & (C) Number of POS present in CH_4 : 4. (A) 3 (B) 4 (C) 5 (D) 6 5. How many stereoisomers of the following molecule are possible? HOOC.CH=C=CH.COOH (A) Two optical isomers (B) Two geometrical isomers (C) Two optical and two geometrical isomers (D) None 6. The number of cis-trans isomer possible for the following compound.

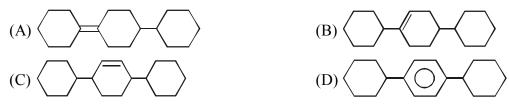
node06\B0AI-B0\Kata \IEE (Advanced)

7.

node06\B0AI-B0\Kata\EE{Advanced}\Enthusicst\Chen\Sheer\Stereo tsamerism\Eng.p65

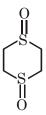
ALLEN

15. Compounds which can show both optical as well as geometrical isomerism :

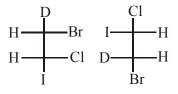


16. Which of the following will not show optical isomerism :

ALLEN.


$$(A) \longrightarrow \overset{Me}{H} \qquad (B) \longrightarrow \overset{Me}{Me} \qquad (C) \longrightarrow \overset{Me}{Cl} \qquad (D) \longrightarrow \overset{CH}{H}$$

17. Optical & geometrical isomerism both can be shown by :-



18. Which of the following will not show optical isomerism :

19. The correct statement for the given compound is

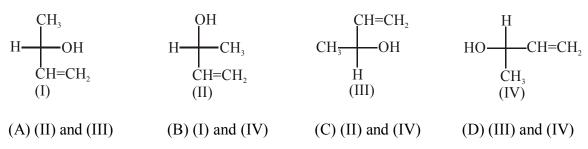
- (A) It can shows geometrical isomerism
- (C) It contain chiral centre
- **20.** Meso-tartaric acid and d-tartaric acid are :-(A) Positional isomers (B) Enantiomers
- 21. The two compounds given below are :

(A) Enantiomers

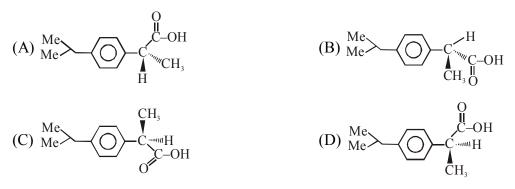
node06\B0AI-B0\Kata\EE{Advanced}\Enthusicst\Chen\Sheer\Stereo tsamerism\Eng.p65

Ε

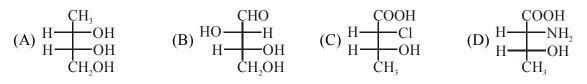
(B) Diastereomers (C) Optically inactive (D) Identical

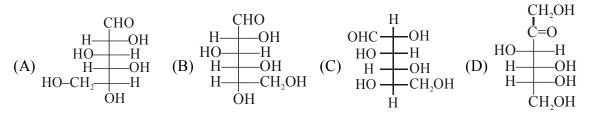

(D) None of these

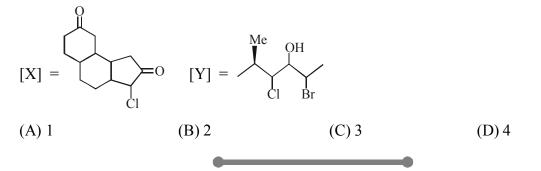
(B) It can show optical isomerism


(C) Diastereomers (D) Racemic mixture

3

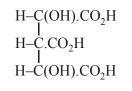

22. Which of the following combinations amongst the four Fischer projections represents the same absolute configurations ?


23. The S-ibuprofen is responsible for its pain relveing property. Which one of the structure shown is S-ibuprofen :


24. Which of the following is a 'threo' isomer :

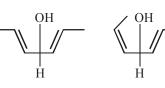
- 25. Number of possible stereoisomers of glucose are :-
 - (A) 10 (B) 8 (C) 16 (D) 20
- 26. Which of the following is not D sugar :

27. Number of chiral centres in [X] & [Y] is a & b respectively. The value of (a–b) is :


ALLEN

28. Which one of the following is resolvable :

ALLEN


(A)
$$\stackrel{H}{\underset{COOH}{\longrightarrow}}$$
 (B) $\stackrel{H}{\underset{CH_3}{\longrightarrow}}$ (B) $\stackrel{H}{\underset{H}{\longrightarrow}}$ (D) $\stackrel{H}{\underset{H}{\longrightarrow}}$

29. How many stereoisomers can exist for the following acid.

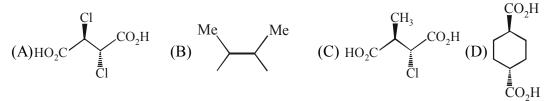
(A) Two (B) Four (C) Eight (D) Six

30. Incorrect relationship between given compounds are

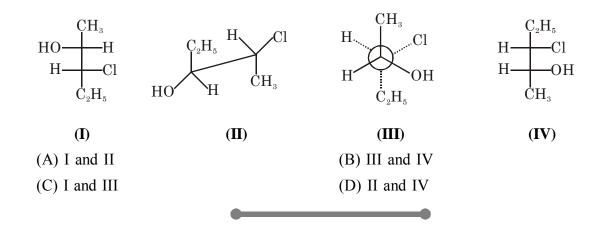
(A) Both are geometrical isomers

(C) Both are enantiomers

(B) Both are stereo isomers


(C) Both are chantioniers

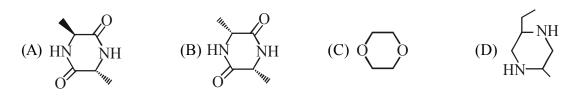
(D) Both are diastereomers


31. Identify meso compound.

node06\B0AI-B0\Kata\EE(Advanced)\Enthusicst\Chen\Sheer\Stereo Isamerism\Eng.p65

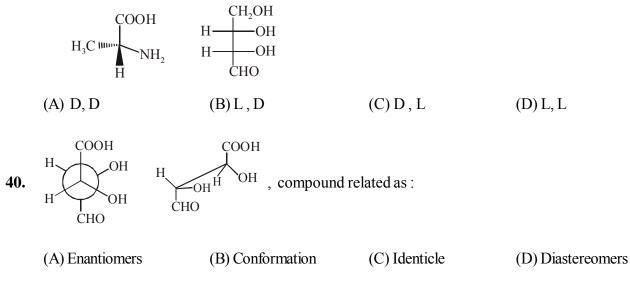
Ε

32. The two projection formulae that represent a pair of enantiomers are :-



JEE-Chemistry

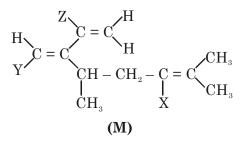
- **33.** A pure sample of 2-chlorobutane shows rotation of PPL by 30° in standard conditions. When above sample is made impure by mixing its opposite form, so that the composition of the mixture becomes 87.5% d-form and 12.5% *l*-form, then what will be the observed rotation for mixture.
 - (A) -22.5° (B) $+22.5^{\circ}$ (C) $+7.5^{\circ}$ (D) -7.5°


34. When an optically active compound is placed in a 10 dm tube is present 20 gm in a 200 ml solution rotates the PPL by 30°. Calculate the angle of rotation & specific angle of rotation if above solution is diluted to 1 Litre.

- (A) $16^{\circ} \& 36^{\circ}$ (B) $6^{\circ} \& 30^{\circ}$ (C) $3^{\circ} \& 30^{\circ}$ (D) $6^{\circ} \& 36^{\circ}$
- 35. Identify % optical purity if 6 gm(+)-2-butanol is mixed with 2 gm(-)-2-butanol.
 - (A) 50 % (B) 66.6 % (C) 33.3 % (D) 75 %
- 36. A mixture of d and ℓ, 2-bromobutane contain 75% d-2-bromobutane. Calculate enantiomeric excess.
 (A) 75%
 (B) 25%
 (C) 50%
 (D) 100%
- 37. Which of the following is example of meso compound?

- **38.** Which of the following has $C_2 \& C_3$ axis of symmetry ?
 - (A) $\underset{H}{\overset{N}{\underset{H}{\overset{}}}}$ (B) H_2CCl_2 (C) H_3C-Cl
- $(D) \xrightarrow{Cl}{B} Cl$

39. Configuration of I & II respectively will be :

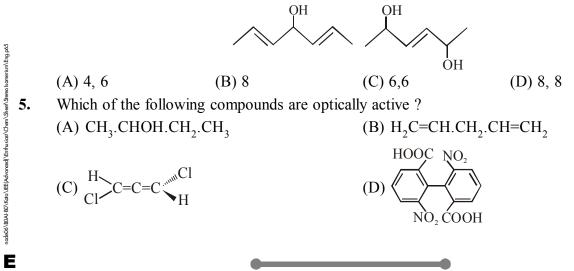


ALLEN

EXERCISE # II (JEE-ADVANCE ORIENTED LEVEL-I)

Single correct Option Type :

- **1.** Molecular formula $C_5H_{10}O$ can have :
 - (A) 6-Aldehyde, 4-Ketone
 - (C) 4-Aldehyde, 3-Ketone
- (B) 5-Aldehyde, 3-Ketone
- (D) 5-Aldehyde, 2-Ketone
- 2. In the given halogenoalkene M, atoms X, Y and Z represents hydrogen or bromine or chlorine. To show cis-trans isomerism, what could be the identities of atoms X, Y and Z?

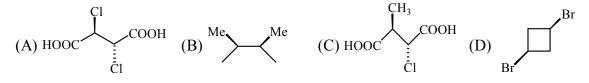

	Х	Y	Ζ
1	Cl	Н	Br
2	Н	Br	Cl
3	Cl	Br	Н

(A) 1, 2 and 3 (B) 1 and 2 only (C) 2 and 3 only (D) 1 and 3 only

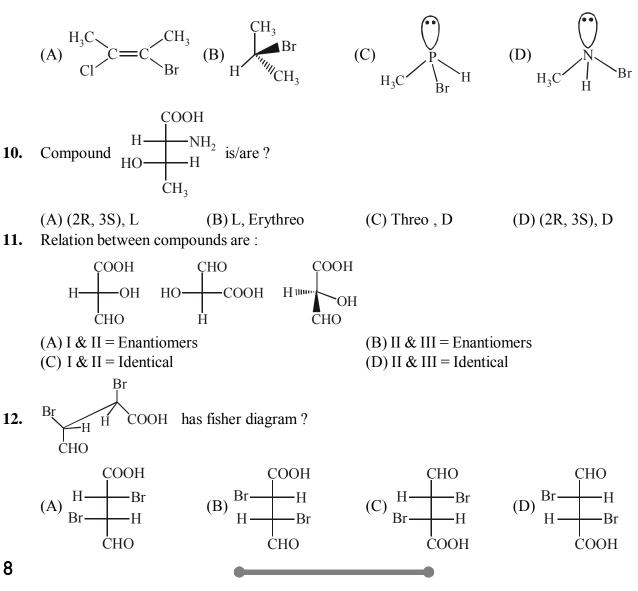
3. Statement-1 : $H \rightarrow Et$ is a chiral resolvable molecule.

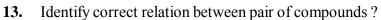
Statement-2: H \longrightarrow_{Cl} Et is non-superimposable on its mirror image.

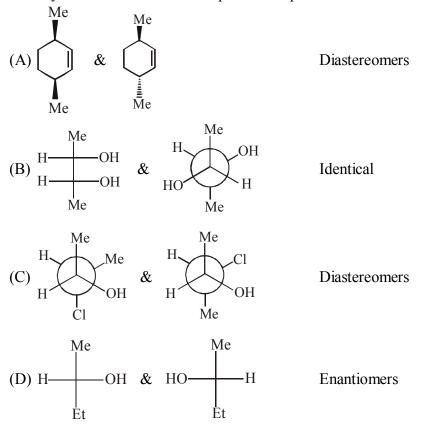
- (A) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1
- (B) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true
- 4. Total number of stereoisomer of following compounds are respectively :-

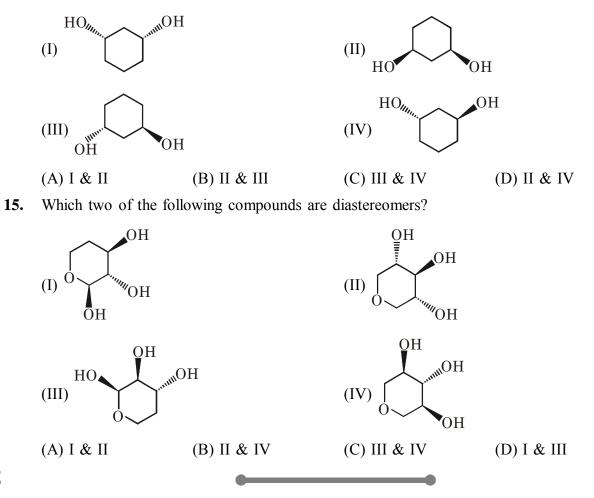


JEE-Chemistry


6. Which out the following are Non-resolvable :

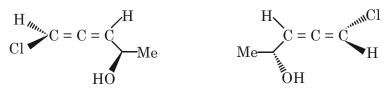

7. Identify compound(s) which is/are not meso :


- 8. Which of the following statements for a meso compound is/are correct :
 - (A) The meso compound has either a plane or centre of symmetry
 - (B) The meso compound is optically inactive due to internal compensation.
 - (C) The meso compound is achiral
 - (D) The meso compound is formed when equal amounts of two enantiomers are mixed
- 9. Among the following the non- resolvable compound is/are :


ALLEN

ALLEN.

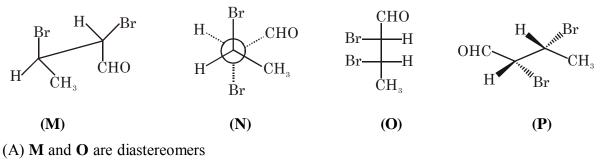
14. Which two of the following compounds represents a pair of enantiomers?



Ε

9

16. The correct relation between the following compounds is :


(A) Enantiomers

(B) Diastereomers

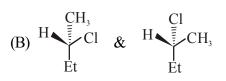
(C) Homomers (Identical)

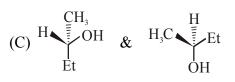
(D) Constitutional isomers

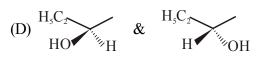
17. Identify the correct statement regarding following molecules?

(B) N and P are enantiomers

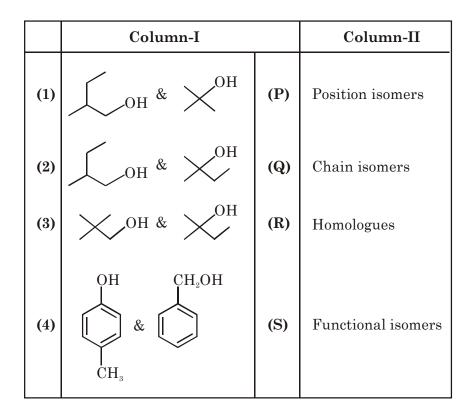
- (C) M and N are identical
- (D) **O** and **P** are diastereomers


Matrix Match Type :


18. Column I


(A) $H \xrightarrow{CH_3}_{NH_2} CH_2OH \& H_3C \xrightarrow{H}_{OH} CH_2NH_2$

(P) Structural

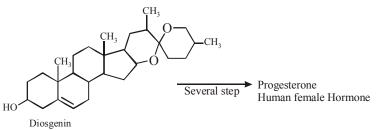

(Q) Identical

(R) Enantiomers

(S) Diastereomers

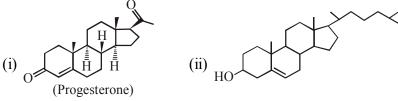
ALLEN

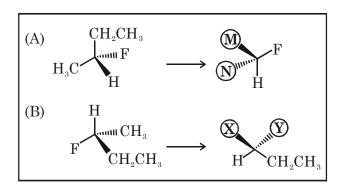
19. Match the column :-



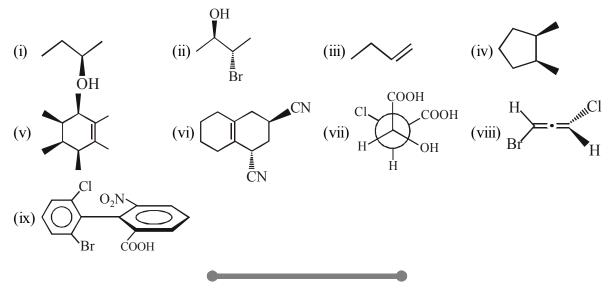
20. Match the column :-

	Column-I (Compounds)		Column-II (Total number of stereoisomers)
(1)		(P)	8
(2)		(Q)	4
(3)		(R)	3
(4)		(S)	2

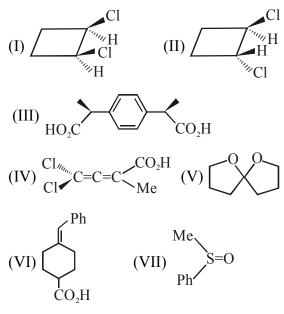

Subjective Type :



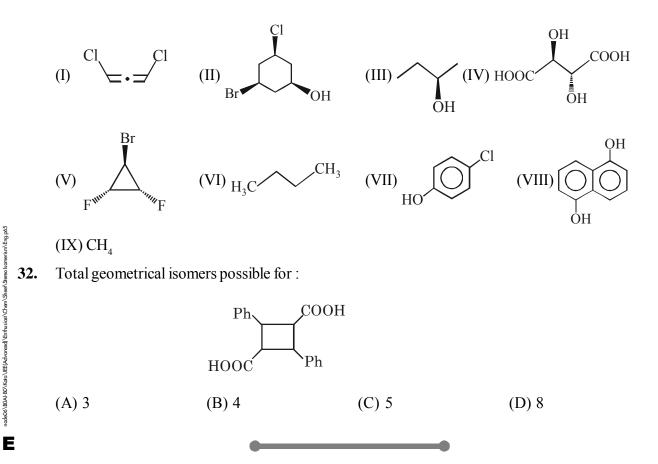
What is number of chiral centres present in Diosgenen is : Calculate the total number of christ earbon stoms in


22. Calculate the total number of chrial carbon atoms in.

- 23. Total number of isomeric (including stereo) bromochlorofluoroiodo propadiene.
- 24. Re-orient the molecule at the left to match the partially drawn perspective at the right. Find the two missing substituents at their correct positions.

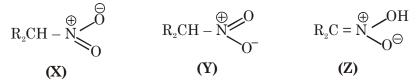


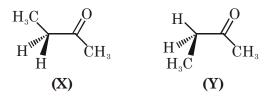
- (A) $\mathbf{M} = CH_3CH_2 -$ (B) $\mathbf{X} = CH_3 -$ (C) $\mathbf{M} = CH_3 -$ (D) $\mathbf{X} = F \mathbf{N} = CH_3 -$ (D) $\mathbf{X} = F \mathbf{N} = CH_3CH_2 -$ (D) $\mathbf{X} = F -$
- **25.** Find out the total number of cyclic isomers of C_6H_{12} which are optically active ?
- **26.** How many of the given compounds are chiral :


ALLEN

27. With reasons, state whether each of the following compounds I to VIII is chiral

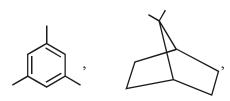
- **28.** How many cyclopentane structures (including stereo) are possible for C_7H_{14} .
- 29. The number of diastereoisomers (excluding enantiomers) for 1-bromo-2-chloro-3-iodocyclopropane.
- **30.** Identify total number of stereoisomers for the following compound :

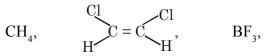

31. How many of the given molecule / species are chiral :

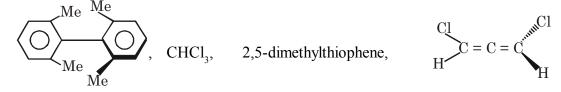

EXERCISE # III (JEE-ADVANCE ORIENTED LEVEL # II)

Single Correct Type :

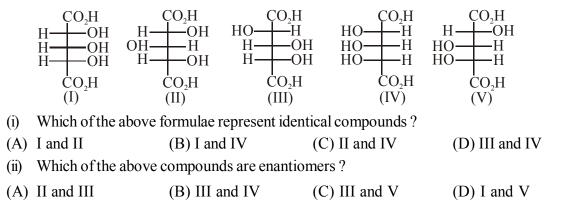
The correct statements describing the relationship between : 1.




- (A) X and Y are resonance structures and Z is a tautomer
- (B) X and Y are tautomers and Z is resonance structure
- (C) X, Y and Z are all resonance structures
- (D) **X**, **Y** and **Z** all are tautomers
- 2. The correct statements about conformations X and Y of 2-butanone are :



- (a) X is more stable than Y
- (c) Methyl groups in **X** are anti
- (b) **Y** is more stable than **X**
- (d) Methyl groups in Y are gauche
- (A) a and d (B) a and c

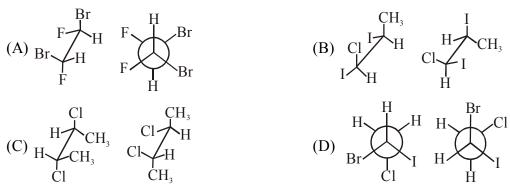

- (C) b and c (D) a, c and d
- 3. Among the following, the number of molecules that possess C2-axis of symmetry is :

4. Observe the given compounds and answer the following questions.

ALLEN

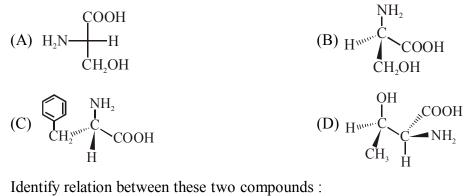
5. Which of the following option is correct regarding the given compounds :

$$\begin{array}{c} CH_{3} \\ H \end{array} C = C = C_{4} \\ CH_{3} \\ CH_$$

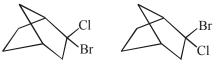

(A) Both are identical

ALLEN

(C) Both are enantiomers

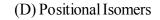

(B) Both are optically inactive

- (D) Geometrical isomer
- 6. Which of the following pairs of compound is/are identical?

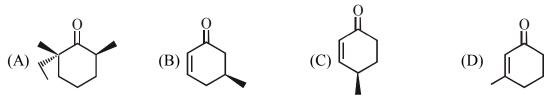


Multiple Correct Type :

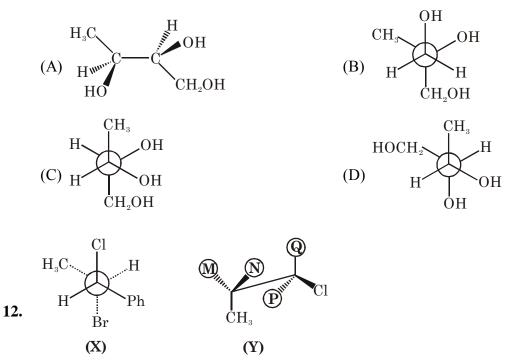
- 7. Which of the following statements is/are not correct for D-(+) glyceraldehyde :
 - (A) The symbol D indicates the dextrorotatory nature of the compound
 - (B) The sign(+) indicates the dextrorotatory nature of the compound
 - (C) The symbol D indicates that (-OH) group lies left to the chiral centre in the conventionally correct Fischer projection diagram
 - (D) The symbol D indicates that (-OH) group lies right to the chiral centre in the conventionally correct Fischer projection diagram
- 8. Which of the following are correct representation of L-amino acids :



9.

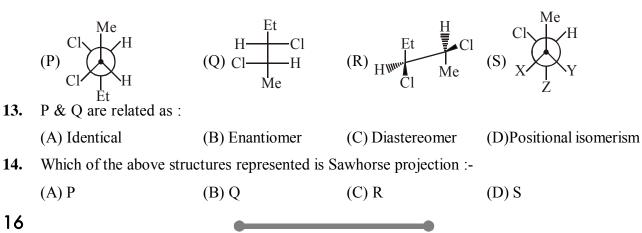


(A) Homomers


- (B) Enantiomers
- (C) Diastereomers

10. Which of the following undergoes racemisation in alkaline medium?

11. Which compound is different from the others?

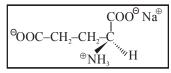

What would be the correct match to get (\mathbf{Y}) as a diastereomers of (\mathbf{X}) ?

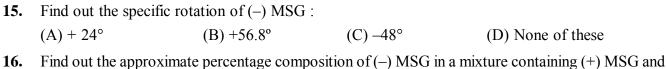
(A) $\mathbf{M} = -\mathbf{H}$ $\mathbf{N} = -\mathbf{Br}$	-	(B) $\mathbf{M} = -\mathbf{H}$ $\mathbf{N} = -\mathbf{Br}$	
(C) $\mathbf{M} = -\mathbf{Br}$	-	(D) $\mathbf{M} = -\mathbf{Br}$	$\mathbf{Q} = -\mathbf{H}$
$\mathbf{N} = -\mathbf{H}$		$\mathbf{N} = -\mathbf{H}$	$\mathbf{P} = -\mathbf{P}\mathbf{h}$

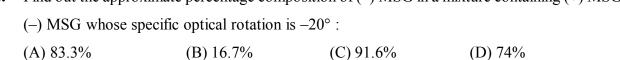
Comprehension Type :

Paragraph for Question 13 to 14

Four compounds are given below 'S' is a stereoisomer of P.

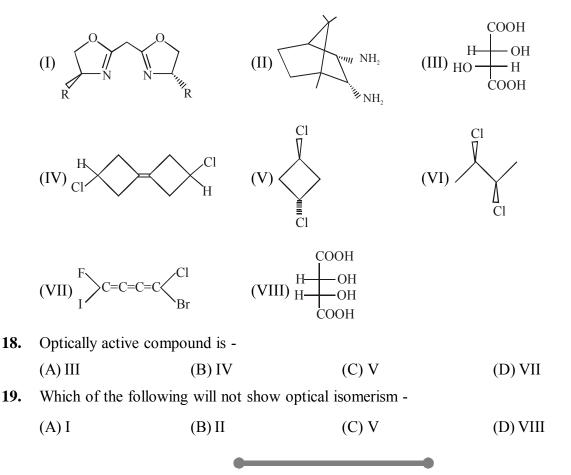

node06\B0AI+B0\Kata\LEE(Advanced)\Enthusics1\Chen\Sheen\Sheeo Isanerism\Eng.p65


10de06\B0AI+B0\Kata\IEE(Advanced)\Enthusicst\Chem\Sheet\Stereo Isamerism\Eng.p65


Е

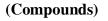
Paragraph for Question 15 to 17

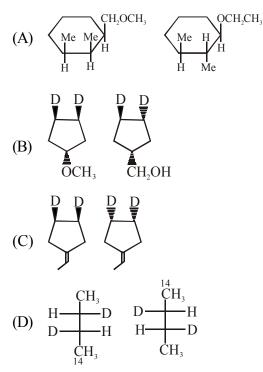
S(+) Mono sodium Glutamate (MSG) is a flavour enhancer used in many foods. Fast foods often contain substantial amount of MSG and is widely used in Chinese food. If one mole of above MSG was placed in 845 ml solution and passed through 200 mm tube, the observed rotation was found to be $+ 9.6^{\circ}$.



17. If 33.8 g of (+) MSG was put in 338 ml solution and was mixed with 16.9g of (-) MSG put in 169 ml solution and the final solution was passed through 400 mm tube. Find out observed rotation of the final solution :

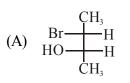
(A)
$$+1.6^{\circ}$$
 (B) $+4.8^{\circ}$ (C) $+3.2^{\circ}$ (D) None of these


Paragraph for Q.18 to Q.19


Among the following structures ?

Matrix Match Type :

20. Column-I



21. Match List-I, II, III with each other :

List - I

List - II

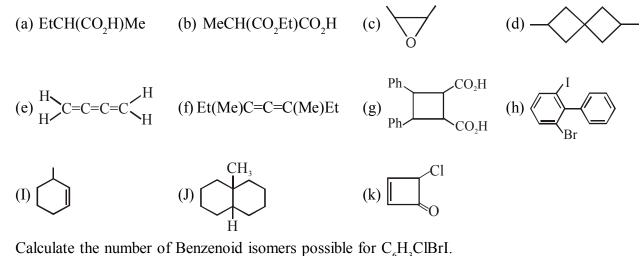
(A) $\underset{HO}{\text{Br}} \xrightarrow{\text{CH}_3}_{\text{HO}} \stackrel{\text{H}}{\underset{HO}}$ (1) $\underset{CH}{\text{HO}} \xrightarrow{\text{CH}_3}_{\text{CH}}$ (i) (2R, 3R)

(B) $\begin{array}{c} HO \longrightarrow H\\ Br \longrightarrow H \end{array}$

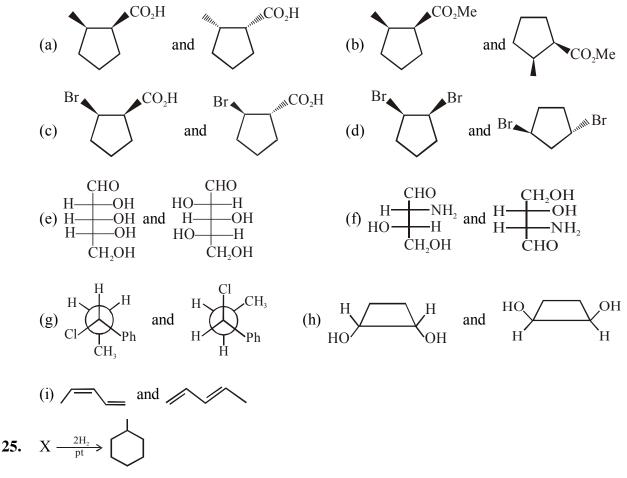
(C) $H \xrightarrow{CH_3} OH \\ Br \xrightarrow{CH} H$

- (2) Br CH_3 C-C CH_3 CH_3 CH_3 (ii) (2S,3S)
 - (3) $OH^{\text{HMM}}C-C$ (iii) (2S,3R)
- (4) $\overset{\text{Br}}{H_{\text{HMM}}}C-C\overset{\text{in}}{\frown}CH$ (D) $HO \xrightarrow{CH_3} H$ $H \xrightarrow{DT} Br$ (iv) (2R,3S)

Column-II (Relation)


- (P) Metamers
- (Q) Functional Isomer
- (R) Geometrical isomer
- (S) Enantiomer
- **(T)** Diastereomer

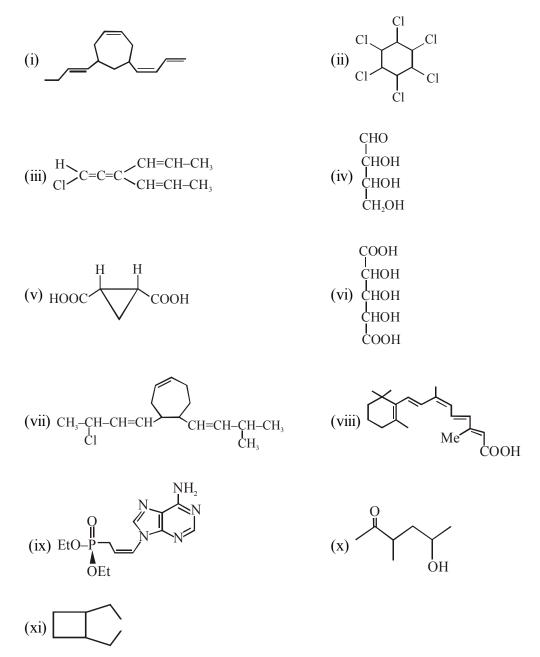
List - III



23.

- Subjective Type :
- 22. In what stereoisomeric forms would you expect the following compounds to exist ?

24. What are the relationships between the following pairs of isomers ?



Find out total number of structures of X.

26. Calculate the number of chiral center in the molecule Ethyl 2,2-dibromo-4-ethyl-6-methoxy cyclohexane carboxylate.

node06\B0AI-B0\Kata\UEE(Advanced)\Enthusicst\Chem\Sheet\Stereo Isamerism\Eng.p65

27. Calculate the total number of stereoisomers possible for

28. How many different chloroethanes are there from the formula $C_2H_{6-n}Cl_n$ (where n can be any integer from 1 to 6)?

21

Stereo isomerism

ALLEN

node06\B0AI-B0\Kata\UEE(Advanced)\Enthusicst\Chem\Sheet\Stereo Isamerism\Eng.p65

Ε

JEE-Chemistry

ALLEN

7.	Of the five isomeric	hexanes, the isomer	which can give two n	nonochlorinated	compounds is :
	(1) 2-methyl pentane		(2) 2,2-dimethyl b	outane	[AIEEE-2005]
	(3) 2,3–dimethyl but	ane	(4) n-hexane		
8.	Which types of isom	erism is shown by 2	2,3-dichloro butane-		[AIEEE-2005]
	(1) Structural	(2) Geometric	(3) Optical	(4) Diastereo	
9.	The absolute configu	ration of HO_2C HO H H	CO ₂ H is :		[AIEEE-2008]
	(1) S, S	(2) R, R	(3) R, S	(4) S, R	
10.	The number of s CH ₃ -CH=CH-CH(C		sible for a compo	and of the mo	lecular formula [AIEEE-2009]
	(1) 4	(2) 6	(3) 3	(4) 2	
11.	Out of the following	, the alkene that exh	ibits optical isomerism	1 is :-	[AIEEE-2010]
	(1) 2-methyl-2-pente	ne			
	(2) 3-methyl-2-pente	ne			
	(3) 4-methyl-1-pente	ne			
	(4) 3-methyl-1-pente	ne			
12.	The optically inactive	e compound from th	ne following is :-	[]	[EE-MAIN-2015]
	(1) 2-chloropropanal				
	(2) 2-chlorobutane				
	(3) 2-chloro-2-methy	lbutane			
	(4) 2-chloropentane				
13.	The absolute configu	ration of :		[,	[EE-MAIN-2016]
	(1)(2R, 3R) (2)	H	$\begin{array}{c} & \text{CO}_2\text{H} \\ \text{H} & \text{OH} \\ \text{H} & \text{CI} \\ & \text{CH}_3 \end{array}$ (3) (2S, 3R)	(4) (28, 39	2) (2)
	(-)			()(==, •	* / IEI (Advense

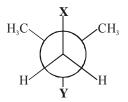
node06\B0At-B0\Kata\UEE(Advanced)\Enthusiast\Chem\Sheet\Stereo Isamerism\Eng.p65

Е


Stereo isomerism

EXERCISE # IV (B) (J-ADVANCE OBJECTIVE)

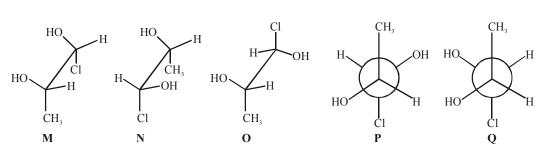
1.	The H_3C C=C H_1 C=C H_1 C	I shows :			[IIT-1995]
	CH ₃	СООН			
	(A) Geometrical isomerism	n	(B) Optical isomeria	sm	
	(C) Geometrical & optical	l isomerism	(D) tautomerism		
2.	How many optically active	e stereoisomers are	possible for butane –	2,3-diol :	[IIT-1997]
	(A) 1	(B) 2	(C) 3	(D) 4	
3.	The number of possible	enantiomeric pairs	s that can be produ-	ced during mo	nochlorination
	of 2-methyl butane is :				[IIT-1997]
	(A) 2	(B) 3	(C) 4	(D) 1	
4.	Identify the pairs of enant			ving compounds	I, II and III
	$\begin{array}{c} H \xrightarrow{CH_3} OH \\ HO \xrightarrow{H} H \\ CH_3 \\ I \end{array}$	HO - H H H H H H H H H H H H H H H H H H	$\begin{array}{c} CH_{3} \\ HO \longrightarrow H \\ H \longrightarrow OH \\ CH_{3} \\ III \end{array}$		[IIT-2000]
5.	Which of the following co				[IIT-2002]
	(A) 2–Methylbutene–1		(B) 3–Methylbutyne	e-1	
	(C) 3-Methylbutanoic aci	d	(D) 2–Methylbutan	oic acid	
6.	On monochlorination of 2	-methylbutane, the	total number of chiral	compounds for	med is :
	(A) 2	(B) 4	(C) 6	(D) 8	[IIT-2004]
7.	Statement-I : Molecules	that are not superim	posable on their mirro	or images are ch	niral
	Because				
	Statement-II : All chiral	molecules have chir	al centres.		[IIT-2007]
	(A) Statement-1 is True, S	tatement-2 is True ; S	tatement-2 is a correct	explanation for S	tatement-1
	(B) Statement-1 is True, Sta	atement-2 is True ; Star	tement-2 is NOT a corre	ect explanation for	Statement-1
	(C) Statement-1 is True,	Statement-2 is Fals	se.		
	(D) Statement-1 is False	, Statement-2 is Tru	le.		
8.	The correct statement(s)	concerning the struc	ctures E, F and G is ((are)	[IIT-2008]
	$\underset{H_{3}C}{\overset{H_{3}C}{}}\underset{(E)}{\overset{O}{}}_{CH_{3}}$	H ₃ C OH H ₃ C (F)	$H_{3}C$ $H_{3}C$ (G)	∠CH₃ ≻OH	
	(A) E , F and G are reso	onance structures	(B) E , F and E , G	are tautomers	
	(C) F and G are geomet		(D) F and G are di		
	· · · · · · · · · · · · · · · · · · ·		× /		


23

9. The correct statement(s) about the compound given below is (are) :

- (A) The compound is optically active
- (B) The compound possesses centre of symmetry
- (C) The compound possesses plane of symmetry
- (D) The compound possesses axis of symmetry
- **10.** The correct statement(s) about the compound $H_3C(HO)HC CH = CH CH(OH)CH_3(X)$ is (are) :
 - (A) The total number of stereoisomers possible for X is 6 [IIT-2009]
 - (B) The total number of diastereomers possible for X is 3
 - (C) If the stereochemistry about the double bond in X is trans, the number of enantiomers possible for X is 4
 - (D) If the stereochemistry about the double bond in X is cis, the number of enantiomers possible for X is 2
- 11. In the Newman projection for 2,2–dimethylbutane

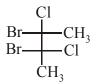
[IIT-2010]

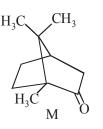


X and Y can respectively be -

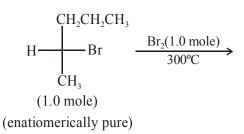
(A) H and H (B) H and C_2H_5 (C) C_2H_5 and H (D) CH_3 and CH_3

12. Which of the given statement(s) about N,O,P and Q with respect to M is (are) correct ?

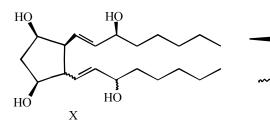

[JEE-2012]


- (A) M and N are non-mirror image stereoisomers
- (B) M and O are identical
- (C) M and P are enantiomers
- (D) M and Q are identical

[IIT-2008]


13. The total number(s) of <u>stable</u> conformers with non-zero dipole moment for the following compound is (are) [JEE-2014]

14. The total number of stereoisomers that can exist for M is :



15. In the following monobromination reaction, the number of possible chiral products is : [JEE-2016]

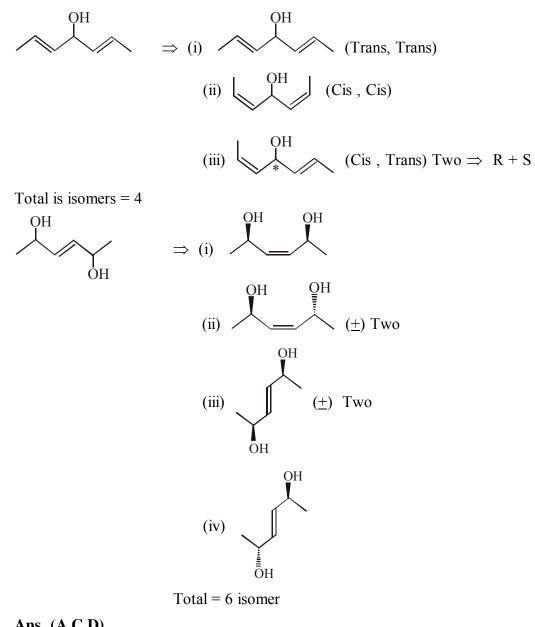
16. For the given compound X, the total number of optically active stereoisomers is _____.

[IIT-JEE 2018]

- This type of bond indicates that the configuration at the specific carbon and the geometry of the double bond is fixed
- This type of bond indicates that the configuration at the specific carbon and the geometry of the double bond is NOT fixed

[JEE-2015]

			ANSV	VER-	(EY			
		EXE	RCISE # I (MAINS	ORIENT	ED)		
1.	Ans. (C)	2.	Ans. (C)		Ans. (D)	4.	Ans. (D)	
5.	Ans. (A)	6.	Ans. (A)	7.	Ans. (A)	8.	Ans. (D)	
9.	Ans. (B)				ĊH3		CH3	
	$C_4H_9Br \Longrightarrow CH_3-C$	CH ₂ –CH ₂ –C	H ₂ , CH ₃ -CH ₂ -	-ČH–CH ₃	, CH ₃ -C-CH	I ₃ , CH ₃ -	-CH-CH ₂	
		Ė			Br		Br	
	Optically active	isomers →		ally active)				
10.	Ans. (B)		- Ans. (D)	12	Ans (A)			
10. 13.	Ans. (C)	11	· Alls. (D)	14.	Alls. (A)			
13.		СН						
	H_3C $H_3C = C = C$							
	11	11						
14.	Ans. (B)	15	. Ans. (C)	16.	Ans. (D)			
17.	Ans. (C)							
18.	Ans. (A)							
	Cl-CH=C=C=Cl	H–Cl is a p	planar structure					
19.	Ans. (A)							
20.	Ans. (C)					_		
		id and d-far	taric acid and n	ot mirror	image of each	other so	they are diastered	omers.
21.	Ans. (A)							
	D 7 ^S	Cl						
	H Br and	I <mark>−</mark> Н	Enontiomore	(I&IIa	ra mirrar imaa	a of one	h other)	
	$H \xrightarrow{D}_{Br}^{S}$ and $H \xrightarrow{Cl}_{D}$	D H	Enantionners	(I & II a		e of eac	(in other)	
	$I \Sigma_R$	$\mathrm{Br}^{\lambda}R$						
	(I)	(II)						
22.	Ans. (C)	23	. Ans. (D)	24.	Ans. (B)			
25.	Ans. (C)							
	СНО							
	H * OH							
	HO — * H H — * OH	2 ⁿ	$\Rightarrow 2^4 \Rightarrow 16$					
	H							
	CH ₂ OH							
26.	Ans. (B)	27	. Ans. (B)					
28.	Ans. (B)							
	Optically active	compounds	s are resolvable.					
29.	Ans. (B)	-						
	COOH	COC	Н	COOH	ÇC	ЮН		
	н——ОН	Н———(OH HO-	H-H	н	-OH		
	н СООН		COOH HOOC-		НООС			
	Н—ОН	но—н		—ОН	Н——			
	СООН	COO		 СООН		ЮН		
	COOR		11	COOH		лUП		


ALLEN

30. Ans. (C) 31. Ans. (A) COOH POS is present in HOOC 32. Ans. (C) 33. Ans. (B) $e.e = 87.5 - 12.5 \implies 75 \% \text{ of}$ $ee = \frac{Rotation by mixture}{Rotation by pure isomer} \times 100$ $75 = \frac{X}{30} \times 100$ $X = \frac{75 \times 30}{100} = +22.5^{\circ}$ 34. Ans. (B) $\ell = 10 \text{ dm}$ c = 20 gm/200 ml $\alpha = 30^{\circ}$ $\left[\alpha\right]_{\text{specific}} = \frac{\alpha_{\text{obs}}}{c.l} = \frac{30}{\frac{20}{200} \times 10} \implies 30^{\circ}$ α_{obs} after dilution $\alpha_{obs}^{obs} = \alpha_{sp} c.p.$ $\alpha_{obs} = 30 \times \frac{20}{1000} \times 10 \implies 6^{\circ}$ Ans. (A) 35. % optical purity = $\frac{|d-\ell|}{d+\ell} \times 100 = \frac{4}{8} \times 100 = 50\%$ 37. Ans. (A) 38. 36. Ans. (C) Ans. (D) **39.** Ans. (C) 40. Ans. (A) EXERCISE-II (JEE-ADVANCE ORIENTED LEVEL-I) Single correct Option Type : 1. Ans. (B) $C_{5}H_{10}O:$ **Ketones**

node06\B0AFB0\Kota\UE{Advanced}\Enthusiasi\Chem\Sheet\Sheeo kamerism\Eng.p65

(i) $CH_3-CH_2-CH_2-CH_2-C-H$ CH_3 (i) $CH_3-CH_2-CH_2-CH_2-CH_3$ (ii) $CH_3-CH_2-CH_2-CH_4$ (iii) $CH_3-CH_2-CH_2-CH_3$ (iii) $CH_3-CH_2-CH_2-CH_4$ (iiii) $CH_3-CH_2-CH_2-CH_3$ (iii) $CH_3-CH_2-CH_2-CH_4$ (iiii) $CH_3-CH_2-CH_3$ (iv) $CH_3-CH_2-CH_3$ (iv) $CH_3-CH_3-CH_4$ CH_3 (iv) CH_3-CH_3 (iv) CH_3-CH_4 CH_3 (iv) CH_3-CH_3 (iv) CH_3-CH_4 CH_3 (iv) CH_4 CH_3 (iv) CH_4 CH_3 (iv) CH_4 CH_4 (iv) CH_4 (iv) CH_4 CH_4 (iv) CH_4 (iv) C

- **2.** Ans. (C)
- 3. Ans. (B)
- 4. Ans. (A)

- 5. Ans. (A,C,D)
- 6. Ans. (A,C)

Optically active compounds are resolvable and A & C are optically inactive

9.

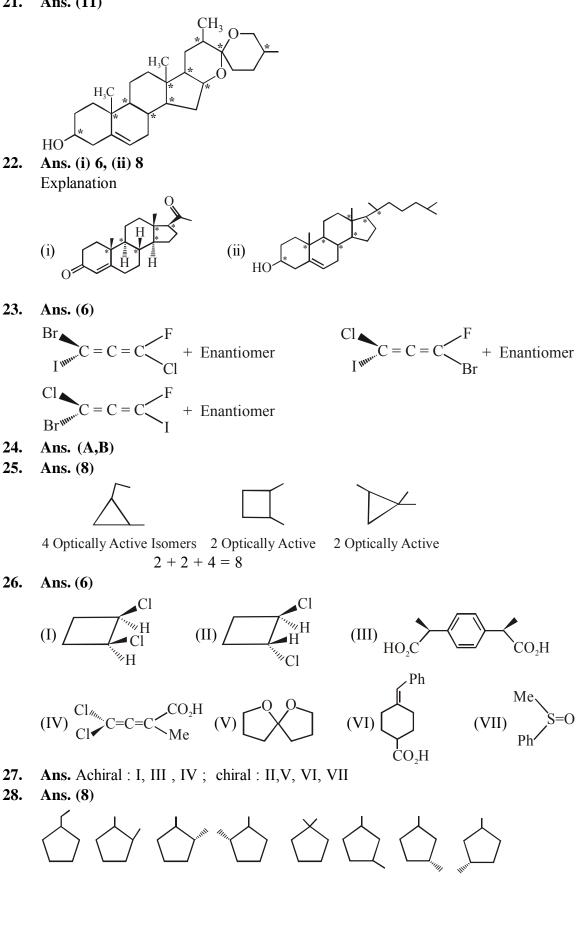
12.

15.

Ans. (A,B,D) Ans. (A,C)

Ans. (D)

- 7. Ans. (B,C,D)
 8. Ans. (A,B,C)


 10. Ans. (C,D)
 11. Ans. (A,D)
- 13. Ans. (A,B,C,D)
 14. Ans. (C)
- 16. Ans. (C) 17. Ans. (D)
- 18. Ans. (A) \rightarrow P; (B) \rightarrow R; (C) \rightarrow Q; (D) \rightarrow R
- 19 Ans. (1–R, 2–P, 3–Q, 4–S)
- 20. Ans. (1-S, 2–R, 3–Q, 4–Q)

ALLEN .

nade06\B0AI-B0\Kata\JEE(Advanced)\Enthusiast\Chem\Sheer\Shereo Is amerism\Eng.p65

Е

21. Ans. (11)

29.	Ans. (4)				
	Br H	H	Br		
	CI H I CI Br I	H/Br	I H H I		
		Cl	Ч К—— Ч Н СІ Н		
30.	Ans. (8)				
	CH ₃ - [*] CH- [*] CH- <u>CH=CH</u> -	CЦ			
	Ĵ.				
	OH OH				
	Stereogenic centre = 3 total number of stereoisom	$r = 2^3 = 2^3$	= 8		
31.	Ans. (3)		0		
32.	Ans.(C)				
	EXERCISE#II	I (JEI	E-ADVANCE OR	IENTED LEVE	L # II)
Sing	le Correct Type :				
1.	Ans. (A)	2.	Ans. (D)	3.	Ans. (8)
4.	Ans. (i) (B) ; (ii) (C)	5.	Ans. (C)	6.	Ans. (C)
Muli	tiple Correct Type :				
7.	Ans. (A , C)	8.	Ans. (A,C,D)	9.	Ans. (C)
10.	Ans. (C)	11.	Ans. (B)	12.	Ans. (A,D)
	prehension Type :				
13.	Ans. (B)	14.	Ans. (C)		
15.	Ans. (D)				
	M.W. of MSG = 169				
	$C = \frac{169 \text{ gm}}{845 \text{ m}^{1}}$				
	C = 845 ml				
	$\ell = 200 \text{ mm} = 2 \text{ dm}$				
	$\alpha_{obs} = +9.6^{\circ}$				
	$\left[\alpha\right] = \frac{\alpha_{obs}}{2} = \frac{9.6}{2} = -1$.74°			
	$[\alpha]_{sp} = \frac{\alpha_{obs}}{C.\ell.} = \frac{9.6}{\frac{169}{845} \times 2} = -$				
16.	845 Ans. (C)				
10.					
	$ee = \frac{\left[\alpha\right]_{mixture}}{\left[\alpha\right]_{pure}} \times 100 = \frac{-20}{-24}$	• - • ×100 =	= 83.3°		
	\therefore RM = 100 - 83.3 \Rightarrow	16.7 %	d = 8.35		
	Total (-) MSG = 83.3 + 8 = 91.6 %				
30					
50					

ALLEN -

17.

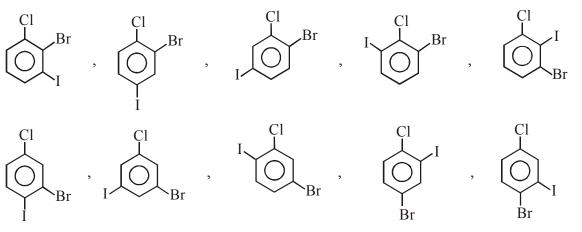
Ans. (C)

$$C = \frac{33.8 - 16.9 \text{ g}}{338 + 169 \text{ ml}} = \frac{16.9 \text{ g}}{507 \text{ ml}}$$

$$\ell = 400 \text{ mm} = 4 \text{ dm}$$

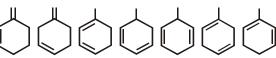
$$\alpha_{obs} = [\alpha]_{sp.} \text{ c.} \ell = 24 \times \frac{16.9}{507} \times 4$$

$$= + 3.2^{\circ}$$


18. Ans. (A) **19.** Ans. (C)

Matrix Match Type :

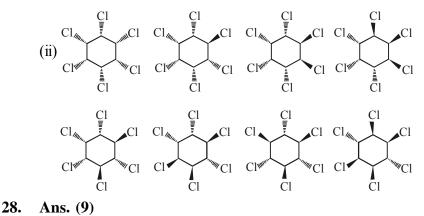
 \sim


20. Ans. (A) \rightarrow P; (B) \rightarrow Q; (C) \rightarrow R,S; (D) \rightarrow S 21. Ans. (A)-4-iii; (B)-3-iv; (C)-2-ii; (D)-1-i Subjective Type :

- 22. Ans. Optical : a, b, c, d, f, g, i, j, k ; Geometrical isomer : c, g, j ; None : e, h
- 23. Ans. (10)

- 24. Ans.
- (a) Enantiomers,(d) Positional,(g) Enantiomers,
- (b) Enantiomers, (c) Geometrical isomers & Diastereomers,
 (e) Optical, (Diastereomers), (f) Diastereomers
 (h) Identical, (i) Geometrical isomers (Diastereomers)

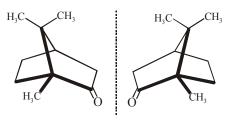
25. Ans. (7)



26. Ans. (3)

node06\B0AI-B0\Kota\LEE(Advanced)\Enthusicst\Chem\Sheet\Stereo lsamerism\Eng.p65

Ε


27. Ans. (i) 2⁴ (ii) 9 (iii) 4 (iv) 4 (v) 3, (vi) 4 (vii) 2⁵, (viii) 2⁴, (ix) 2, (x) 4, (xi) 3

ALLEN

			EXERCI	SE # IV	/ (A) (J-M	AINS)	
1.	Ans. (4)	2.	Ans. (4)	3.	Ans. (2)	4.	Ans. (2)
5.	Ans. (3)	6.	Ans. (1)	7.	Ans.(3)	8.	Ans. (3)
9.	Ans. (2)	10.	Ans. (1)	11.	Ans. (4)		
12.	Ans. (3)						
Sol.							
	It achiral \ optica	lly ina	ctive				
13.	Ans. (3)	-					
	E	XER	CISE # IV	(B) (J-	ADVANCE	OBJE	CCTIVE)
1.	Ans. (B)	2.	Ans. (B)	3.	Ans. (A)		
4.	Ans. Enantiome	rs - I	and III; Diast	ereomers	- I & II and II	& III	
5.	Ans. (D)	6.	Ans. (B)	7.	Ans. (C)		
8.	Ans. (B,C,D)	9.	Ans. (A,D)	10.	Ans. (A,D)		
11.	Ans. (B,D)	12.	Ans. (A,B,C)			
13.	Ans. (3)						
	$Br - CH_3 = CH_3 CH_3$	Cl— Br—	$\begin{array}{c} CH_{3} \\ \hline Br \\ CH_{3} \end{array} = \begin{array}{c} Br \\ \end{array}$	CI H ₃ C _{CH₃}	-Cl -Br		
	Stable conforme	er (wit	h $\mu \neq 0$)				
	Br, Cl	B	CH ₃ Cl	Br	Br Cl CH ₃		

- 14. Ans. (2)
- **Sol.** M is a organic compound known as camphor. M contains two <u>**rigid**</u> chiral centre so it can exist only in <u>**two**</u> enantiomeric forms.

15. Ans. (5) 16. Ans.(7)