DPP - Daily Pra	actice Problems
Name :	Date :
Start Time :	End Time :
CHEM	ISTRY (26)
SYLLABUS : Hydro	ocarbons-2 (Alkenes)
Max. Marks : 120	Time : 60 min.
GENERAL IN	ISTRUCTIONS
 You have to evaluate your Response Grids yourself with the Each correct answer will get you 4 marks and 1 mark shall be if no bubble is filled. Keep a timer in front of you and stop in The sheet follows a particular syllabus. Do not attempt the s Refer syllabus sheet in the starting of the book for the syllab After completing the sheet check your answers with the so analyse your performance and revise the areas which emerge DIRECTIONS (Q.1-Q.21) : There are 21 multiple choice guestions, Each guestion has 4 choices (a), (b), (c) and (d), 	help of solution booklet. deduced for each incorrect answer. No mark will be given/ deducted mediately at the end of 60 min. heet before you have completed your preparation for that syllabus. bus of all the DPP sheets. lution booklet and complete the Result Grid. Finally spend time to ge out as weak in your evaluation. This 2-butcne is- (a) Cis-2-butene (b) Trans -2-butene
out of which ONLY ONE choice is correct.	(c) Dependent upon reactant (d) Racemic mixture 0.4 What would be the product when ethene reacts with Bra
Q.1 The minimum number of C atoms required to be present in an optical ly active alkene are: (a) 4 (b) 6 (c) 8 (d) 10 H C1	water in presence of brine? (a) $CH_2 - CH_2$ $ $ Br Br
Q.2 $CH_2 \longrightarrow CH_2 \xrightarrow{alk.Na \oplus H} CH_2 = CH_2.$ Most probable mechanism for this reaction is - (a) El (b) E2 (c) El _{CB} (d) α -climination Cl	(b) $CH_2 - CH_2 \approx CH_2 - CH_2$ $ $ $ $ $ $ $ Br Br Br Cl(c) CH_2 - CH_2 \& CH_2 - CH_2 $ $ $ $ $ $ $ $ Br Br Br NO_2(d) CH_2 - CH_2 \& CH_2 - CH_2$
Q.3 $CH_3 - CH - CH - CH_3 \xrightarrow{Zn/dust} CH_3 - CH = CH - CH_3$ $\downarrow \\ CI$ Response Grid 1. (a)(b)(c)(d) 2. (a)(b)(c)(d)	$\begin{array}{c} (u) & \operatorname{CH}_2 - \operatorname{CH}_2 & \operatorname{CH}_2 \\ & & \\ Br & Br & Br \\ \end{array} \\ 3. & (a) (b) (c) (d) \\ 4. & (a) (b) (c) (d) \\ \end{array}$

— Space for Rough Work —

DPP/ C (26)

- 102
- Q.5 What would be the product when 2-pentene reacts with HBr? (b) 3-bromopentane(d) 1-bromopentane (a) 2-bromopentane (c) Both (a) and (b)
- Q.6 What would be the product when propene reacts with chlorine in presence of CCl₄? TT T

(a)
$$CH_3 - C - C - H$$

 $| | |$
 $Cl Cl$
(b) $Cl - CH_2 - CH = CH_2$
 $| | |$
 $Cl Cl$
(c) $CH_3 - C = C - Cl$
(d) $CH_3 - C - C - H$

CI H Q.7 Propene + HOCl \rightarrow A \rightarrow Final product. In the above reaction A will be -

(a)
$$CH_3 - C - C - H$$

 OH^-
(b) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-
(c) $CH_3 - C - C - H$
 OH^-

- Q.8 In hydroboration it is cvident that in the overall reaction a molecule of a water has been added to propene and the addition is :
 - (a) According to Markownikoff's rule
 - (b) Contrary to Markownikoff's rule
 - (c) Not concerned with Markownikoff's rule
 - (d) None of the above
- Q.9 What would be the product when ethene is oxidised with acidic $KMnO_4$?

(a)	CH ₂ -CH ₂	(b)	H - C - H
	•H •H		÷.
(c)	H = C = OH	(d)	$CO_{2} + H_{2}O$

Ő Q.10 Predict the product C obtained in the following reaction of Q.16 Reaction of HBr with propene in the presence of peroxide butyne-1.

$$CH_3CH_2 - C \equiv CH + HC \longrightarrow B \longrightarrow C$$

	2015.		(c) n-propy
	5. abcd	6. abcd	7. abcd
Response Grid	10.abCd	11. abcd	12.abcd
	15.abCd	16. abcd	

(a)
$$CH_3 - CH_2 - CH_2 - C - H_1$$

(b) $CH_3 - CH_2 - CH - CH_2CI$
(c) $CH_3 - CH_2 - CH - CH_2CI$
(d) $CH_3 - CH - CH_2CH_2I$
(d) $CH_3 - CH - CH_2CH_2I$

- Q.11 Reaction of alkene and peracid gives oxyrane. This reaction is namedas-
 - (a) Peroxidation (b) Oxidation
 - (c) Priles Chaiev reaction (d) None

Q.12 R-CH=CH₂+CO+H₂O
$$\xrightarrow{\text{CO/HO_2}}_{200^\circ-300^\circ\text{C}} \stackrel{\text{R-CH}_2}{\underset{\text{COOH}}{\text{R-CH}_2}}$$

- (a) Oxorcaction (b) Carboxylation
- (c) Both of the above (d) None of these
- Q.13 NBS reacts with 1-butene to give -
 - (b) 1,2-dibromobutanc (a) 3-bromobutene-l
 - (c) 1-bromobutene (d) 1,2-dibromobutene-1
- Q.14 The compound which reacts with HBr obeying Markownikov's rule is?

Q.15 Alkene R-CH = CH₂ reacts readily with B_2H_6 and the product on oxidation with alkaline hydrogen peroxide produces -(b) $R-CH_2-CH_2-OH$ (a) $R-CH_2-CHO$ (c) $R - C - CH_3$

(d) $R - CH - CH_2$ 1 OH OH

9.

(a)(b)(c)(d)

14. (a)b)(c)(d)

ö gives -(a) 3-bromopropane (b) ally bromide

(c) n-propyl bromide (d) isopropyl bromide

8. (a)(b)(c)(d)

13.abcd

DPP/C[26]

- 0.17 A mixture of 1-chloropropane and 2-chloropropane when treated with alcoholic KOH, gives
 - (a) l-Propene
 - (b) 2-Propene
 - (c) lsopropylene
 - (d) A mixture of 1-propene and 2-propene
- Q.18 The synthesis of ethene from electrolysis of an aqueous solution of potassium succinate is known as:
 - (a) Faradays electrolysis
 - (b) Kolbe- Schmidt reaction
 - (c) Hoffmann's rearrangement
 - (d) Kolbe's electrolysis synthesis
- Q.19 Which of the following alkenes is the most stable?

(a)
$$CH_2 = CH_2$$
 (b) $R - CH = CH - F_2$

- (d) $RCH = CH_2$
- (c) $R_2C = CH_2$ (d) $RCH = CH_2$ Q.20 Propendion treatment with chlorine at 500-600°C gives the following product(s):
 - (a) $CH_3 CH_2 = CH CI$ (b) $CH_3 C = CH_2$

(c)
$$Cl-CH_2-CH=CH_2$$
 (d) All of these

- Q.21 A hydrocarbon reacts with HI to give (X) which on reacting with aqueous KOH forms (Y). Oxidation of (Y) gives 3-methyl-2-butanone. The hydrocarbon is :
 - (b) $CII_2 = CH CII CH_3$ $\begin{array}{c} CII_{3} \\ CII_{3} \\ (c) CH_{3}-CH_{2}-C=CH_{2} \\ I \\ CII_{3} \\ CII_{3} \end{array} \qquad (d) CH = C - CH - CH_{3} \\ I \\ I \\ CII_{3} \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ I \\ CH = C - CH - CH_{3} \\ I \\ CH = C - CH - CH - CH_{3} \\ I \\ CH = C - CH - CH - CH - CH \\ CH = C - CH - CH - CH \\ CH = C - CH \\$ (a) $CH_3CH = C - CH_3$

DIRECTIONS (Q.22-Q.24): In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes: Codes: as

(a)	1,2	and 3 are co	rrect	(D)	1 and 2 are correct
(c)	2 ar	nd 4 are corre	ect	(d)	1 and 3 are correct
Q.22	2 If w with	e take ethyli h zinc dust th	dene chlori ien product	ide and will b	id isopropylidene chloride be –
	(1)	2-butene		(2)	2,3-dimethyl -2-butene
	(3)	2-methyl-2	-butene	(4)	2-methyl-1-butene
Q.23	3 RC	$H = CH_2 can$ O	be obtained	d by :	1203
	(1)	R-C-H	and (C_6H_5)	$)_{3} P =$	= CH ₂
	RES	SPONSE	17.@(DC)d 18. abcd
	0	DIN	22.a	ЪC)d 23.abcd

(2) By heating $RCH_2CH_2N(CH_3)_2$

- (3) By heating $RCH_2CH_2OCOCH_3$
- (4) By Kolbe synthesis of C_2H_5COONa

Q.24 Decolourization of alkaline $KMnO_4$ is used as a test for :

- (1) Olefinic hydrocarbons
- (2) Aromatic hydrocarbons
- (3) Acetylenic hydrocarbons
- (4) Saturated hydrocarbons

DIRECTIONS (Q.25-Q.27): Read the passage given below and answer the questions that follows :

Markownikoil's rule states, "the negative part of addendum is added on the carbon atom carrying lesser number of hydrogen atoms".

$$\begin{array}{ccc} R - CH = CH_{2} + & \stackrel{\delta^{*}}{H} - & \stackrel{\delta^{-}}{X} & \longrightarrow & R - & CH - CH_{3} \\ & & & \downarrow \\ Unsymmetrical alkene & & Alkyl halide \end{array}$$

However, addition of HBr on propylene in the presence of sunlight, air or an organic peroxide produces mainly n-propyl bromide instead of isopropyl bromide. In the presence of organic peroxides, addition of HBr takes place by a free radical mechanism as follows.

$$C_{6}H_{5} \xrightarrow{O} C_{6}O \xrightarrow{Homolysis} C_{6}H_{5} \xrightarrow{Homolysis} C_{6}H_{5} \xrightarrow{H} C_{6}O^{*}$$

$$C_{6}H_{5} \xrightarrow{O} C_{6}O^{*} \xrightarrow{H} C_{6}O^{*} \xrightarrow{Homolysis} C_{6}H_{5} \xrightarrow{H} C_{6}O^{*}$$

$$C_{6}H_{5} \xrightarrow{O} C_{6}O^{*} \xrightarrow{H} C_{6}O^{*} \xrightarrow{H} C_{6}O^{*} \xrightarrow{H} C_{6}O^{*}$$

$$C_{6}H_{5} \xrightarrow{O} C_{6}O^{*} \xrightarrow{H} C$$

Q.25 Addition of HCl on $C_{H_3} - C_H - C_H = C_{H_2}$ forms the CH₂

following major product:
(a)
$$CH_3 - CH - CH - CH_3$$
 (b) $CH_3 - CH - CH_2 - CH_2CI_1$
 $CH_3 CI$ (c) $CH_3 - CCI - CH_2 - CH_3$ (c) $CH_3 - CCI - CH_2 - CH_3$ (c) $CI - CH_2 - CH_2 - CH_3$
 CH_3 (c) $CH_3 - CCI - CH_2 - CH_3$ (c) $CI - CH_2 - CH_2 - CH_3$
 CH_3 (c) $CI - CH_2 - CH_3$ (c) $CI - CH_2 - CH_2 - CH_3$
 CH_3 (c) $CI - CH_2 - CH_3$ (c) $CI - CH_2 - CH_2 - CH_3$
 CH_3 (c) $CI - CH_2 - CH_3$ (c) $CI - CH_2 - CH_2 - CH_3$
 CH_3 (c) $CI - CH_2 - CH_3$ (c) $CI - CH_2 - CH_2 - CH_3$
 CH_3 (c) $CI - CH_2 - CH_3$ (c) $CI - CH_3 - CH_2 - CH_3$
 CH_3 (c) $CI - CH_3 - CH_3 - CH_3$ (c) $CI - CH_3 - CH_3 - CH_3$
 CH_3 (c) $CI - CH_3 - CH_3 - CH_3$ (c) $CI - CH_3 - CH_3 - CH_3$
 CH_3 (c) $CI - CH_3 - CH_3 - CH_3$ (c) $CI - CH_3 - CH_3 - CH_3$
 CH_3 (c) $CI - CH_3 - CH_3 - CH_3$ (c) $CI - CH_3 - CH_3 - CH_3$
 CH_3 (c) $CI - CH_3 - CH_3 - CH_3$ (c) $CI - CH_3 - CH_3 - CH_3$ (c) CH_3 (c) CH

25.(a)(b)(c)(d)24.abcd

— Space for Rough Work —

103

- DPP/ C (26)

- Q.26 When HCl gas is passed through propene in the presence of benzoyl peroxide, it gives :
 - (a) n-Propyl chloride
 - (b) 2-Chloropropene
 - (c) Allyl chloride
 - (d) Norcaction
- Q.27 Reaction of $CH_3CH = CH_2$ with Br.CCl₃ in the presence of a peroxide yields the following product.
 - (a) $CH_3 CH CH_2 CCI_3$ $|_Br$
 - (b) $CH_3 CH CH_2Br$ \downarrow CCl_3
 - (c) $BrCH_2 CH = CH_2$ and $CHCl_3$
 - (d) No reaction takes place

DIRECTIONS (Q.28-Q.30): Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement-1 is False, Statement-2 is True.
- (d) Statement 1 is True, Statement-2 is False.
- Q.28 Statement 1:1-Buteneon reaction with HBr in the presence of a peroxide produces 1-bromobutane.
 - Statement 2: It involves the free radical mechanism.

Q.29 Statement-1:

$$CH_3 - CH = CH_2 \xrightarrow{Cl_2, 773K}$$

 $CICH_2 - CH = CH_2 + HCI$

Statement-2: At high temperature Cl_2 dissociates into chlorine atoms which bring about the allylic substitution.

Q.30 Statement 1 : Addition of bromine to *trans*-2-butene yields *meso*-2,3-dibromobutane.

Statement 2 : Bromine addition to an alkene is an electrophilic addition.

Response Grid 26.abcd 27.abcd 28.abcd 29.abcd 30.abcd

DAILY PRACTICE PROBLEM SHEET 26 - CHEMISTRY			
Total Questions	30	Total Marks	120
Attempted		Correct	
Incorrect		Net Score	
Cut-off Score	36	Qualifying Score	60
Success Gap = Net Score – Qualifying Score			
Net Score = (Correct × 4) – (Incorrect × 1)			

Space for Rough Work

104

DAILY PRACTICE PROBLEMS

DPP/C [26]

CHEMISTRY SOLUTIONS

55

(1) (b) $CH_3 - C - CH = CH_2$ $| CH_2 - CH_3$

Here the central carbon atom is an asymmetric carbon atom.

(2) (b) 1° halide generally gives E 2 mechanism.

(3) (c)
$$CH_3 - CH - CH - CH_3$$
 may be of two types.

It may be asymmetrical or meso and they can give different compounds.

$$CH_{3} \xrightarrow{CH} CH_{3} \xrightarrow{CH_{3} CH_{3}} (H_{3} \xrightarrow{CH_{3} CH_{3}} CH_{3} \xrightarrow{CH_{3} CH_{3}} (H_{3} \xrightarrow{CH_{3}$$

(4) (b) In the presence of NaCl solution, the products are

$$\begin{array}{c|c} CH_2-CH_2 & CH_2-CH_2\\ | & | & |\\ Br & Br & Br & Cl \end{array}$$

(5) (c) $CH_{3} \rightarrow -CH_{2} \rightarrow -CH_{2} = CH_{2} - CH_{3}$ $- \frac{HBr}{HBr} \rightarrow CH_{3} - CH_{2} - CH_{2} - CH_{3}$ Br 3-bromopentane $-\delta \pm \delta$

CH₃-CH₂-CH = CH - ← CH₃

$$\xrightarrow{\text{HBr}}$$
 CH₃-CH₂-CH₂-CH-CH₃
Br
2-bromopentane

(6) (a)
$$CH_3-CH=CH_2+Cl_2 \xrightarrow{CCl_4} CH_3 \xrightarrow{C} C-C-H$$

(7) (d)
$$CH_3 - CH = CH_2 + H\overline{O} - C1$$

$$- \rightarrow CH_3 - CH \xrightarrow{\oplus} CH_2$$

(8) (b) In hydroboration it is evident that in the overall reaction a molecule of water has been added to propene and the addition is contrary to Markownikoff's rule

$$3CH_3CH = CH_2 + BH_3 \xrightarrow{0^\circ C} (CH_3CH_2CH_2)_3B$$

$$(CH_{3}CH_{2}CH_{2})_{3}B + 3H_{2}O_{2} + 3NaOH \rightarrow 3CH_{3}CH_{2}CH_{2}OH$$

n - propyl alcohol

- (9) (d) Ethene reacts with acidic $KMnO_4$ to form CO_2 and H_2O .
- (10) (c) This reaction occurs according to Markownikoff's rule which states that when an unsymmetrical alkene undergo hydrohalogenation, the negative part goes to that C-atom which contain lesser no. of H-atom.

$$CH_3 - CH_2 - C = CH + HCl$$

$$- \rightarrow CH_3 - CH_2 - C = CH_2$$
$$| C1$$

$$\stackrel{\text{HI}}{\xrightarrow{}} \text{CH}_3 - \text{CH}_2 - \begin{array}{c} I \\ I \\ C \\ C \\ C \\ C \\ C \\ \end{array}$$

- (11) (c) Reaction is known as Priles Chaiev reaction.
- (12) (c) Reaction is named as oxo and carboxylation. If
 CO + H₂ is taken then the reaction is named as a hydroformylation.
- (13) (a) NBS is used for the bromo substitution of allylic hydrogen.

(15) (b) $R - CH_2 - CH_2 - OH$

(16) (c) Reaction of HBr with propene in the presence of peroxide gives n-propyl bromide.

(17) (a)
$$CH_3CH_2CH_2CI \xrightarrow{KOH(alc.)} CH_3CH = CH_2$$

$$CH_3CHCICH_3 \xrightarrow{K()H(nle.)} CH_3CH=CH_2$$

(18) (d) The synthesis of ethene from electrolysis of an aqueous solution of potassium succinate is known as Kolbe's electrolysis synthesis.

EBD_7157

The reaction takes place as follows :

CH₂COOK CH₂COO⁻

$$|$$

CH₂COOK $--\rightarrow$
CH₂COO⁻
CH₂COO⁻ $-2c \xrightarrow{\text{At anode}} CH_2 + 2CO_2$
 $|$
CH₂COO⁻
CH₂COO⁻
CH₂
CH₂COO⁻
CH₂
CH₂COO⁻
CH₂
CH₂
CH₂COO⁻
CH₂
CH₂
CH₂COO⁻
CH₂
CH₂
CH₂COO⁻
CH₂
CH₂
CH₂
CH₂
CH₂COO⁻
CH₂
CH₂

(20) (c) Propend on treatment with chlorine at 500-600°C produces allyl chloride. The reaction takes place as follows:

$$CH_3 - CH = CH_2 \xrightarrow{Cl_2} CH_2CI - CH = CH_2$$

Allyl chloridc

(21) (b)
$$CH_2 - CH - CH_3 - H^* \rightarrow |_{CH_3}$$

$$CH_3 - \overset{\textcircled{o}}{C}H - CH - CH_3 - \overset{(i)}{\underbrace{(ii)}_{KOII}} \overset{(aq)}{\underbrace{(aq)}_{CH_3}}$$

(22) (a)
$$CH_3-CH - CH_3 - CH_3 - COCHCH_3$$

 $OH CH_3 - CH_3 - CH_3 - COCHCH_3$
 $OH CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH - CH_3 - CH_3 - CH_3$
 $CH_3-CH - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3-CH_3 - CH_3 - CH$

$$\xrightarrow{-2ZnCl_2} CH_3 - CII = C - CH_3$$

2-methyl-2-butene

$$CH_{3}-CH \underbrace{\overset{Cl}{\leftarrow} Cl}_{Cl}^{l} + \underbrace{\overset{Zn}{\leftarrow} Cl}_{Zn}^{l} + \underbrace{\overset{Cl}{\leftarrow} Cl}_{Cl}^{l} \underbrace{\overset{CH-CH_{3}}{\leftarrow} CH-CH_{3}}_{-2ZnCl_{2}} CH_{3}-CH=CH-CH_{3}$$
2-butene

 $CH_{3} \rightarrow C < CI + Zn + CI \\ CI + Zn + CI \\ CI \rightarrow C + CI + CI + CI \\ CI \rightarrow C + CH_{3} + CI \\ CI \rightarrow C + CH_{3} + CI \\ CH_{3} - C = C - CH_{3} \\ CH_{3} \\ CH_{3} - CH_{3} \\ CH_{3}$

(23) (a) $RCH = CH_2$ can be obtained by all above reagents as follows:

O
(1)
$$R - C - H$$
 and $(C_6H_5)_3P = CH_2$

$$- \rightarrow PO(C_6H_5)_3 + RCH = CH_2$$

DPP/C [26]

$$\overset{(2)}{\xrightarrow{}} \operatorname{RCH}_2 \operatorname{CH}_2 \underset{\downarrow}{\xrightarrow{}} \operatorname{N} (\operatorname{CH}_3)_2 \xrightarrow{}_{\operatorname{Cope reaction}} \xrightarrow{}_{\operatorname{Cope reaction}} \xrightarrow{}_{\operatorname{O}}$$

$$RCH = CH_2 + (CH_3)_2 NOH$$

(3)
$$\operatorname{RCH}_2\operatorname{CH}_2\operatorname{OCOCH}_3 _ \stackrel{\circ}{-} \rightarrow$$

 $RCH = CH_2 + CH_3COOH$

(24) (d) It is the test for unsaturation in molecule.

(25) (c) The intermediate 2° carbocation

$$\begin{array}{cccc} \mathrm{CH}_3 & -\mathrm{CH}_2 & \mathrm{CH}_2 & \mathrm{CH}_3 & -\mathrm{CH}_3 & -\mathrm{CH}_3 & -\mathrm{CH}_2 \mathrm{CH}_3 \\ & & & & & & \\ \mathrm{CH}_3 & & & & \mathrm{CH}_3 \end{array}$$

undergoes rearrangement to form 3° carbocation.

- (26) (b) Peroxide effect is noticed on lyin case of HBr. Addition of HCl follows Markownikoff's rule.
- (27) (a) Compounds like CCl₄, CHCl₃, BrCCl₃ etc also show peroxide effect, hence they will show anti-Markownikoff's addition in the presence of peroxides. The reaction with BrCCl₃ takes place as

$$CH_{3}CH = CH_{2} + BrCCl_{3} \xrightarrow{\text{Peroxide}} CH_{3} - CH_{2} - CH_{2} - CCl_{3}$$
$$\downarrow Br$$

(28) (a)

In this reaction anti Markownikoff's addition is explained on the basis of the fact that in the presence of peroxide the addition takes place via a free radical mechanism.

(29) (a)

(3●)

(b) With trans-2-butene, the product of Br₂ addition is meso (optically inactive).

> Even though, both assertion and reason are correct. the correct reason for the formation of *meso-2*, 3-dibromobutane from *trans-2*-butene is *enli*-addition of Br_2 .