Differential Equations

• An equation is called a differential equation, if it involves variables as well as derivatives of dependent variable with respect to independent variable.

For example:

$$x\frac{d^{4}y}{dx^{4}} + y\left(\frac{d^{2}y}{dx^{2}}\right)^{3} - 2x^{2}y\frac{dy}{dx} + 3 = 0$$

is a differential equation.
$$\frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} \cdot \frac{d^{3}y}{dx^{2}} \cdot \frac{d^{4}y}{dx^{2}}$$

Sometimes, we may write dx^{2} , dx^{2} , dx^{3} , dx^{4} etc. as y'y'', y''', y'''' etc. respectively. Also, note that we cannot say that $\tan(y') + x = 0$ is a differential equation.

- Order of a differential equation is defined as the order of the highest order derivative of dependent variable with respect to independent variable involved in the given differential equation. For example: The highest order derivative present in the differential equation $x^3y^5y''' - 3x^2y'' + xyy' - 5 = 0$ is y''''. Therefore, the order of this differential equation is 4.
- Degree of a differential equation is the highest power of the highest order derivative in it. For example: The degree of the differential equation $(y'')^2 - 2x(y'')^5 - xy(y'')^2 + y' = 0$ is 2, since the highest power of the highest order derivative, y''_{2} , is 2.

Note: The degree of the differential equation $\frac{d^2y}{dx^2} + \cos\left(\frac{dy}{dx}\right) = 0$ is not defined since it is not a polynomial equation in $\frac{dy}{dx}$. However, its order is 2.

• If a differential equation is defined, then its order and degree are always positive integers.

• A function that satisfies the given differential equation is called a solution of a given differential equation.

Example: Verify whether $y = \sin x + \cos x - 5$ is a solution of the differential equation y'' + y' = 0 or not.

Solution:

We have, $y = \sin x + \cos x - 5$ $\therefore y' = \cos x - \sin x$ $y' = -\sin x - \cos x = -(\sin x + \cos x)$ $y'' = -(\cos x - \sin x) = -y'$ $\Rightarrow y''' + y' = 0$ Therefore, $y = \sin x + \cos x - 5$ is a solution of the differential equation y'' + y' = 0

• An equation is called a differential equation, if it involves variables as well as derivatives of dependent variable with respect to independent variable.

For example:

$$x\frac{d^4y}{dx^4} + y\left(\frac{d^2y}{dx^2}\right)^3 - 2x^2y\frac{dy}{dx} + 3 = 0$$

is a differential equation.
etimes, we may write $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \frac{d^4y}{dx^4}$ etc. as $y'y'', y''', y''''$

Sometimes, we may write $dx^2 dx^2 dx^3 dx^4$ etc. as y'y'', y''', y''' etc. respectively. Also, note that we cannot say that $\tan(y') + x = 0$ is a differential equation.

- Order of a differential equation is defined as the order of the highest order derivative of dependent variable with respect to independent variable involved in the given differential equation. For example: The highest order derivative present in the differential equation $x^3y^5y''' - 3x^2y'' + xyy' - 5 = 0$ is y''''. Therefore, the order of this differential equation is 4.
- Degree of a differential equation is the highest power of the highest order derivative in it. For example: The degree of the differential equation $(y'')^2 - 2x(y'')^5 - xy(y'')^2 + y' = 0$ is 2, since the highest power of the highest order derivative, y'', is 2.

Note: The degree of the differential equation $\frac{d^2y}{dx^2} + \cos\left(\frac{dy}{dx}\right) = 0$ is not defined since it is not a polynomial equation in $\frac{dy}{dx}$. However, its order is 2.

- If a differential equation is defined, then its order and degree are always positive integers.
- A function that satisfies the given differential equation is called a solution of a given differential equation.

Example: Verify whether $y = \sin x + \cos x - 5$ is a solution of the differential equation y'' + y' = 0 or not.

Solution:
We have,
$$y = \sin x + \cos x - 5$$

 $\therefore y' = \cos x - \sin x$
 $y' = -\sin x - \cos x = -(\sin x + \cos x)$
 $y'' = -(\cos x - \sin x) = -y'$
 $\Rightarrow y''' + y' = 0$
Therefore, $y = \sin x + \cos x - 5$ is a solution of the differential equation $y'' + y' = 0$

• To form a differential equation from a given function, we differentiate the function successively as many times as the number of arbitrary constants in the given function and then eliminate the arbitrary constants.

Example: Form the differential equation, representing the family of circle $(x-a)^2 + (y-b)^2 = r^2$, where *a* and *b* are arbitrary constants.

Solution:

We have $(x-a)^2 + (y-b)^2 = r^2$ (1) Differentiating with respect to x, we obtain $2(x-a) + 2(y-b)\frac{dy}{dx} = 0$...(2) Again differentiating with respect to x, we obtain

$$2 + 2\left[\left(\frac{dy}{dx}\right)^2 + (y - b)\frac{d^2y}{dx^2}\right] = 0$$

$$\Rightarrow (y - b)\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]$$

$$\Rightarrow y - b = -\left[\frac{1 + (y')^2}{y''}\right]$$

Substituting the values of (x - a) and (y - b) in equation (1), we obtain

$$\left[\frac{y'+(y')^3}{y''}\right]^2 + \left[-\frac{1+(y')^2}{y''}\right]^2 = r^2$$

$$\Rightarrow (y')^2 \left[1+(y')^2\right]^2 + \left[1+(y')^2\right]^2 = r^2(y'')^2$$

$$\Rightarrow \left[1+(y')^2\right]^2 \left[1+(y')^2\right] = r^2(y'')^2$$

$$\Rightarrow \left[1+(y')^2\right]^3 - r^2(y'')^2 = 0$$

This is the required differential equation of the given circle.

- The three methods of solving first order, first degree differential equations are given as follows:
 - Variable separable method: This method is used to solve such an equation in which variables can be separated completely i.e., terms containing y should remain with dy and terms containing x should remain with dx.

Example: Solve the differential equation: $x(1+y^2)dx + y(4+x^2)dy = 0$

Solution:

$$x(1+y^2)dx + y(4+x^2)dy = 0$$

$$\Rightarrow \frac{x}{4+x^2} dx + \frac{y}{1+y^2} dy = 0$$

$$\Rightarrow \frac{1}{2} \cdot \left(\frac{2x}{4+x^2}\right) dx + \frac{1}{2} \cdot \left(\frac{2y}{1+y^2}\right) dy = 0$$

$$\Rightarrow \int \frac{2x}{4+x^2} dx = -\int \frac{2y}{1+y^2} dy$$

$$\Rightarrow \log(4 + x^2) = -\log(1 + y^2) + \log C$$

$$\Rightarrow \log(4 + x^2)(1 + y^2) = \log C$$

$$\Rightarrow (4 + x^2)(1 + y^2) = C$$

This is the required solution of the given differential equation.

• Homogeneous differential equation:

A differential equation which can be expressed as $\frac{dy}{dx} = f(x, y)$ or $\frac{dx}{dy} = g(x, y)$, where f(x, y) and g(x, y) are homogenous functions of degree zero is called a homogenous differential equation. To solve such an equation, we have to substitute y = vx in the given differential equation and then solve it by variable separable method.

Example: Solve the differential equation: $xydy - (x^2 - 3y^2)dx = 0$

Solution:

$$xydy - (x^2 - 3y^2)dx = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{x^2 - 3y^2}{xy} = F(x, y) , \quad \dots (1)$$

Now

Now,

$$F(\lambda x, \lambda y) = \frac{\lambda^2 x^2 - 3\lambda^2 y^2}{\lambda^2 x y} = \frac{x^2 - 3y^2}{x y}$$
$$= \lambda^{\circ} f(x, y)$$

F is homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential equation.

Let y = vx $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$ Now, equation (1) becomes

$$v + x \frac{dv}{dx} = \frac{x^2 - 3v^2 x^2}{v x^2} = \frac{1 - 3v^2}{v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{1 - 3v^2}{v} - v = \frac{1 - 4v^2}{v}$$

$$\Rightarrow \int \frac{v}{1 - 4v^2} dv = \int \frac{dx}{x}$$

$$\Rightarrow -\frac{1}{8} \int \frac{-8v}{1 - 4v^2} dv = \int \frac{dx}{x}$$

$$\Rightarrow -\frac{1}{8} \log(1 - 4v^2) = \log(x) - \log C_1$$

$$\Rightarrow \log \left[x(1 - 4v^2)^{\frac{1}{8}} \right] = \log C_1$$

$$\Rightarrow x(1 - 4v^2)^{\frac{1}{8}} = C_1$$

$$\Rightarrow x^8(1 - 4v^2) = C_1^8 = C(\operatorname{say})$$

$$\Rightarrow x^8 \left(1 - 4x^2 \right)^2 = C$$

$$\Rightarrow x^6 (x^2 - 4y^2) = C$$

This is the required solution of the given differential equation.

• Linear differential equation:

• A differential equation which can be expressed in the form of $\frac{dy}{dx} + Py = Q$, where P and Q are constants or functions of x only, is called a first order linear differential equation.

In this case, we find integrating factor (I.F.) by using the formula:

 $I.F. = e^{\int P dx}$ Then, the solution of the differential equation is given by, $v(I.F.) = \int (O \times I.F.) dx + C$

• A linear differential equation can also be of the form $\frac{dx}{dy} + P_1 x = Q$, where P₁ and Q₁ are constants or functions of *y* only. In this case, I.F. = $e^{\int P_1 dy}$ And the solution of the differential equation is given by, $x(I.F.)=\int (Q_1 \times I.F.) dy + C$

Example: Find the solution of the differential equation $\sin y dx = \cos y (\sin y - x) dy$, satisfying the condition that x = 5 when $y = \frac{\pi}{2}$.

Solution:

We have,

$$\sin y dx = \cos y (\sin y - x) dy$$

$$\Rightarrow \frac{dx}{dy} = \frac{\cos y (\sin y - x)}{\sin y} = \cos y - x \cot y$$

$$\Rightarrow \frac{dx}{dy} + x \cot y = \cos y$$
This is a linear differential equation of the form $\frac{dx}{dy} + P_1 x = Q$ where $P_1 = \cot y$ and $Q_1 = \cos y$

This is a linear differential equation of the form dy where $P_1 = \cot y$ and $Q_1 = \cos y$

Now, I.F =
$$= e^{\int P_1 dy} = e^{\int \cot y dy} = e^{\int \cos \sin y dy} = \sin y$$

Therefore, the general solution of the given differential equation is

$$x \times \sin y = \int \cos y \times \sin y \, dy + C$$

$$\Rightarrow x \sin y = \frac{1}{2} \int \sin 2y \, dy + C$$

$$\Rightarrow x \sin y = -\frac{1}{4} \cos 2y + C$$

Substituting $y = \frac{\pi}{2}$ and $x = 5$ in this equation, we obtain

$$5\sin\left(\frac{\pi}{2}\right) = -\frac{1}{4}\cos\left(2\times\frac{\pi}{2}\right) + C$$

$$5\sin\left(\frac{\pi}{2}\right) = -\frac{1}{4}\cos\pi + C$$

$$5\times1 = -\frac{1}{4}\times(-1) + C$$

$$\Rightarrow C = \frac{19}{4}$$

Therefore, the required solution

Therefore, the required solution is

$$x\sin y = -\frac{1}{4}\cos 2y + \frac{19}{4}$$

$$\Rightarrow x\sin y + \frac{1}{4}\cos 2y = \frac{19}{4}$$

$$\Rightarrow 4x\sin y + \cos 2y = 19$$