**SYLLABUS: Chemical Kinetics** 



Rate of formation of product at t = 20 seconds is

- (A)  $0.5 \text{ MS}^{-1}$
- (B) 1 M S<sup>-1</sup>
- (C)  $1.5 \text{ M S}^{-1}$
- (D) 2MS<sup>-1</sup>

2. In the following reaction: xA ————— yB

$$\log \left[ -\frac{d[A]}{dt} \right] = \log \left[ \frac{d[B]}{dt} \right] + 0.3$$

where –ve sign indicates rate of disappearance of the reactant. Thus, x: y is:

- (A) 1:2
- (B) 2:1 (C) 3:1
- (D) 3:10
- 3. Rate of formation of SO<sub>3</sub> in the following reaction  $2SO_2 + O_2 \rightarrow 2SO_3$  is 100 g min<sup>-1</sup>. Hence rate of disappearance of  $O_2$  is:
- (A)  $50 \text{ g min}^{-1}$  (B)  $40 \text{ g min}^{-1}$  (C)  $200 \text{ g min}^{-1}$  (D)  $20 \text{ g min}^{-1}$
- 4.  $aA + bB \longrightarrow Product$ ,  $dx/dt = k [A]^a [B]^b$ . If concentration of A is doubled, rate is four times. If concentration of B is made four times, rate is doubled. What is relation between rate of disappearance of A and that of B?
  - $(A) \{d[A] / dt\} = \{d[B] / dt\}$
- $(B) {d [A] / dt} = {4 d [B] / dt}$
- $(C) \{4 d [A] / dt\} = \{d [B] / dt\}$
- (D) None of these
- 5. For the reaction,  $2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$  the rate expression can be written in the following ways:

$${d[N_2]/dt} = k_1[NO][H_2]; {d[H_2O]/dt} = k[NO][H_2]; {-d[NO]/dt} = k'_1[NO][H_2]; {-d[H_2]/dt} = k''_1[NO][H_2]$$

The relationship between k, k<sub>1</sub>, k'<sub>1</sub> and k''<sub>1</sub>. is:

(A)  $k = k_1 = k'_1 = k''_1$ 

(B)  $k = 2k_1 = k'_1 = k''_1$ 

(C)  $k = 2k'_1 = k_1 = k''_1$ 

(D)  $k = k_1 = k'_1 = 2 k''_1$ 

- 6. For the irreversible process, A + B —— products, the rate is first–order w.r.t. A and second– order w.r.t. B. If 1.0 mol each of A and B introduced into a 1.0 L vessel, and the initial rate was  $1.0 \times 10^{-2}$  mol L<sup>-1</sup> s<sup>-1</sup>, rate when half reactants have been turned into products is :
  - (A)  $1.25 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$
- (B)  $1.0 \times 10^{-2} \text{ mol L}^{-1} \text{ s}^{-1}$
- (C)  $2.50 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$
- (D)  $2.0 \times 10^{-2} \text{ mol L}^{-1} \text{ s}^{-1}$
- 7. If rate constant is numerically the same for the three reactions of first, second and third order respectively. Assume all the reactions of the kind  $A \rightarrow products$ . Which of the following is correct:
  - (A) if [A] = 1 then  $r_1 = r_2 = r_3$
- (B) if [A] < 1 then  $r_1 > r_2 > r_3$
- (C) if [A] > 1 then  $r_3 > r_2 > r_1$
- (D) All
- The rate constant of the reaction A  $\rightarrow$  2B is 1.0 × 10<sup>-3</sup> mol lit<sup>-1</sup> min<sup>-1</sup>, if the initial concentration 8. of A is 1.0 mole lit<sup>-1</sup> what would be the concentration of B after 100 minutes.
- (A)  $0.1 \text{ mol lit}^{-1}$  (B)  $0.2 \text{ mol lit}^{-1}$  (C)  $0.9 \text{ mol lit}^{-1}$  (D)  $1.8 \text{ mol lit}^{-1}$
- A drop of solution (volume 0.05 mL) contains  $3.0 \times 10^{-6}$  moles of H<sup>+</sup>. If the rate constant of 9. disappearance of H<sup>+</sup> is 1.0 × 10<sup>7</sup> mole litre<sup>-1</sup> sec<sup>-1</sup>. How long would it take for H<sup>+</sup> in drop to disappear:
  - (A)  $6 \times 10^{-8}$  sec (B)  $6 \times 10^{-7}$  sec (C)  $6 \times 10^{-9}$  sec (D)  $6 \times 10^{-10}$  sec

- 10. Graph between concentration of the product and time of the reaction  $A \rightarrow B$  is of the type X I . Hence graph between – d[A]/dt and time will be of the type : time



11. What will be the order of reaction and rate constant for a chemical change having log  $t_{50\%}$  vs log concentration of (A) curves as:



- For a reaction 2A + B  $\rightarrow$  product, rate law is  $-\frac{d[A]}{dt} = k[A]$ . At a time when  $t = \frac{1}{k}$ , concentration of the reactant is:  $(C_0 = initial concentration)$ 
  - (A)  $\frac{C_0}{R}$
- $(B) C_0 e$
- (C)  $\frac{C_0}{e^2}$
- (D)  $\frac{1}{C_0}$

- 13. Two substances A ( $t_{1/2}$  = 5 min) and B ( $t_{1/2}$  = 15 min) are taken in such a way that initially [A] = 4[B]. The time after which both the concentration will be equal is: (Assume that reaction is first order)
  - (A) 5 min

(B) 15 min

(C) 20 min

- (D) concentration can never be equal
- 14. In a first order reaction the reacting substance has half-life period of ten minutes. What fraction of the substance will be left after an hour the reaction has occurred?:
  - (A) 1/6 of initial concentration
- (B) 1/64 of initial concentration
- (C) 1/12 of initial concentration
- (D) 1/32 of initial concentration
- 15. A reaction, which is second order, has a rate constant of 0.002 L mol<sup>-1</sup> s<sup>-1</sup>. If the initial conc. of the reactant is 0.2 M. how long will it take for the concentration to become 0.0400 M?
  - (A) 1000 sec
- (B) 400 sec
- (C) 200 sec
- (D) 10, 000 sec

- 16. Which is not true for a second order reaction?
  - (A) It can have rate constant 1 × 10<sup>-2</sup> L mol<sup>-1</sup> s<sup>-1</sup>
  - (B) Its half-life is inversely proportional to its initial concentration
  - (C) Time to complete 75% reaction is twice of half-life
  - (D)  $T_{50} = \frac{1}{K \times Initial conc.}$
- For the reaction  $2NO_2 \longrightarrow N_2O_2 + O_2$ , rate expression is as follows: 17.
  - $-\frac{d[NO_2]}{dt}$  = k  $[NO_2]^n$ , where k = 3 × 10<sup>-3</sup> mol<sup>-1</sup> L sec<sup>-1</sup>. If the rate of formation of oxygen is 1.5  $\times$  10<sup>-4</sup> mol L<sup>-1</sup> sec<sup>-1</sup>, then the molar concentration of NO, in mole L<sup>-1</sup> is
  - (A)  $1.5 \times 10^{-4}$  (B) 0.0151 (C) 0.214
- (D) 0.316
- 18. At the point of intersection of the two curves shown, the conc. of B is given by......for,  $A \rightarrow nB$ :



- (D)  $\left(\frac{n-1}{n+1}\right)A_0$

19. The data for the reaction  $A + B \rightarrow C$  is

| Exp. | $[A]_0$ | $[B]_0$ | initial rate |
|------|---------|---------|--------------|
| 1    | 0.012   | 0.035   | 0.10         |
| 2    | 0.024   | 0.035   | 0.80         |
| 3    | 0.012   | 0.070   | 0.10         |
| 4    | 0.024   | 0.070   | 0.80         |

The rate law is

(A) 
$$r = k [B]^3$$

(B) 
$$r = k [A]^3$$

(C) 
$$r = k [A] [B]^4$$

(A) 
$$r = k [B]^3$$
 (B)  $r = k [A]^3$  (C)  $r = k [A] [B]^4$  (D)  $r = k [A]^2 [B]^2$ .

20. The kinetic data for the given reaction  $A(g) + 2B(g) \longrightarrow C(g)$  is provided in the following table for three experiments at 300 K.

| Ex. No. | [A/M] | [B/M] | [Initial rate (M sec <sup>-1</sup> )] |  |  |  |
|---------|-------|-------|---------------------------------------|--|--|--|
| 1       | 0.01  | 0.01  | 6.930 × 10 <sup>-6</sup>              |  |  |  |
| 2       | 0.02  | 0.01  | 1.386 ×10 <sup>-5</sup>               |  |  |  |
| 3       | 0.02  | 0.02  | 1.386 ×10 <sup>-5</sup>               |  |  |  |

In another experiment starting with intitial concentration of 0.5 and 1 M respectively for A and B at 300 K. Find the rate of reaction after 50 minutes from start of experiment (in m/sec)?

(A) 
$$6.93 \times 10^{-4}$$

(B) 
$$0.25 \times 10^{-7}$$

(C) 
$$4.33 \times 10^{-5}$$

(D) 
$$3.46 \times 10^{-9}$$

At 373 K, a gaseous reaction A  $\rightarrow$  2B + C is found to be of first order. Starting with pure A, the 21. total pressure at the end of 10 min was 176 mm of Hg and after a long time when A was completely dissociated, it was 270 mm of Hg. The pressure of A at the end of 10 minutes was:

- (A) 94 mm of Hg
- (B) 47 mm of Hg
- (C) 43 mm of Hg (D) 90 mm of Hg

22. The rate constant, the activation energy and the frequency factor of a chemical reaction at 25°C are  $3.0 \times 10^{-4} \, \text{s}^{-1}$ ,  $104.4 \, \text{KJ mol}^{-1}$  and  $6.0 \times 10^{14} \, \text{s}^{-1}$  respectively. The value of the rate constant as  $T \to \infty$  is :

(A)  $2.0 \times 10^{18} \text{ s}^{-1}$ 

(B)  $6.0 \times 10^{14} \text{ s}^{-1}$ 

(C) infinite

(D)  $3.6 \times 10^{30} \text{ s}^{-1}$ 

23. Consider a reaction **aG + bH** → **Products** . When concentration of both the reactants G and H is doubled, the rate increases by eight times. However, when concentration of G is doubled keeping the concentration of H fixed, the rate is doubled. The overall order of the reaction is:

- 24. The half lives of decomposition of gaseous CH<sub>3</sub>CHO at constant temperature but at initial pressure of 364 mm and 170 mm Hg were 410 second and 880 second respectively. Hence order of reaction is :
- **25.** The order of a reaction **A** → **product**, in which half the reagent is reacted in half an hour, three quarters in one hour and seven eighth in one and half hours is

## ANSWER KEY

| 1.  | (A) | 2.  | (B) | 3.  | (D) | 4.  | (B) | 5.  | (B) | 6.  | (A) | 7.  | (D) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 8.  | (B) | 9.  | (C) | 10. | (C) | 11. | (A) | 12. | (A) | 13. | (B) | 14. | (B) |
| 15. | (D) | 16. | (C) | 17. | (D) | 18. | (C) | 19. | (B) | 20. | (C) | 21. | (B) |
| 22. | (B) | 23. | (3) | 24. | (2) | 25. | (1) |     |     |     |     |     |     |