Chapter 9

Coordination Compounds

Solutions (Set-1)

Foundations

Very Short Answer Type Questions :

1. Identify the complex ion and counter ion in $K_4[Fe(CN)_6]$.

Sol. $[Fe(CN)_6]^{4-}$ and K⁺ respectively.

2. Write coordination number of central metal atom in [Pt(en)₂Cl₂].

Sol. 6

3. Calculate oxidation number of underlined atom in $K_3[\underline{Fe}(C_2O_4)_3]$.

Sol. +3

4. Calculate EAN of underlined atom in [Cr(NH₃)₆]Cl₃.

Sol. 33

- 5. Write IUPAC name of Na[Co(CO)₄].
- Sol. Sodium tetracarbonylcobaltate(-I)
- 6. Assign the charge (x) on coordination sphere [Ni(DMG)₂]^x.

Sol. 0 as Ni(II)

- 7. Why does ammonia readily form complex while ammonium ion does not?
- **Sol.** Ammonium ion (NH_{4}^{+}) neither has lone pair of electrons nor a vacant orbital.
- 8. What is the charge (x) present on $[Fe(CO)_4]^x$?

Sol. x = 0

9. Draw the structure of fac-triaquatrinitrito-N-cobalt(III).

10. Calculate magnetic moment in Ni(CO)₄.

Sol. Zero, as it has no unpaired electron.

Short Answer Type Questions :

11. K₂[PtCl₆] is ionized to three ions, when dissolved in water. Will it give white precipitate with AgNO₃?

Sol. No, because all Cl⁻ are in complex sphere which are not free in solution.

 $K_2[PtCl_6] \implies 2K^+ + [PtCl_4]^{2-1}$

- 12. Calculate number of unpaired electrons of central atom in [MnCl₄]²⁻.
- Sol. Manganese is present as Mn(II) and Cl⁻ is weak ligand. Hence it has five unpaired electrons

- 13. Aqueous solution of potassium ferrocyanide does not give test of iron(II) and it is not poisonous like potassium cyanide. Why?
- Sol. Being a complex salt, it ionizes to 4K⁺ and [Fe(CN)₆]^{4−} ions. Absence of Fe(II) does not give the test of iron. Absence of free CN[−] makes it non-poisonous.
- 14. What is difference between oxygenation and oxidation?
- Sol. In oxygenation, O₂ ligand is incorporated intact while in oxidation, it loses its identity.
- 15. Which type of *d*-electron configuration exhibit both low and high spin in octahedral complexes?

```
Sol. d<sup>4</sup>, d<sup>5</sup>, d<sup>6</sup>, d<sup>7</sup>.
```

16. All the octahedral complexes of Ni2+ are outer orbital complexes, why?

Sol. Ni⁺² :
$$1 | 1 | 1 | 1 | 1 | 1$$

Thus, only one 3*d*-orbital is available if all electrons paired up due to strong field ligand. Therefore, d^2sp^3 hybridisation is not possible. Only sp^3d^2 is possible which represents outer orbital complex.

- 17. NH₂ NH₂ although possesses two electron pair for donation but not acts as chelating agent. Why?
- **Sol.** The coordination by NH₂ NH₂ leads to a three membered highly unstable strained ring and thus it does not act as chelating agent.
- 18. Why complex [Al(NH₃)₆]³⁺ does not exist in aqueous solution?
- **Sol.** $[Al(NH_3)_6]^{3+}$ undergoes the change into $[Al(H_2O)_6]^{3+}$ in aqueous medium due to higher heat of hydration of aluminium ion on account of its small size.

 $[\operatorname{Al}(\operatorname{NH}_3)_6]^{3+} + 6\operatorname{H}_2\operatorname{O} \longrightarrow [\operatorname{Al}(\operatorname{H}_2\operatorname{O})_6]^{3+} + 6\operatorname{NH}_3$

- 19. SCN⁻ shows linkage isomerism in coordination compounds. Explain.
- Sol. Because it is ambidentate ligand.
- 20. Explain and arrange the following complexes in increasing order of molar conductivity on the basis of Werner theory :
 - (i) $[Cr(NH_3)_3(NO_2)_3]$
 - (ii) K[Co(NH₃)₂(NO₂)₄]
 - (iii) $K_2[Cr(NH_3)(NO_2)_5]$

Molar conductivity \propto number of ions

- 21. How would you distinguish between [Co(NH₃)₅SO₄]Br and [Co(NH₃)₅Br]SO₄ by chemical test?
- **Sol.** [Co(NH₃)₅SO₄]Br will give yellow precipitate of AgBr with AgNO₃, while [Co(NH₃)₅Br]SO₄ will give white precipitate of BaSO₄ with BaCl₂.

- 22. On the basis of VBT, explain geometry, nature of hybridisation and magnetic property of $[Co(ox)_3]^{3-}$.
- **Sol.** Hybridisation sp^3d^2

Geometry - octahedral

Paramagnetic in nature due to presence of four unpaired electrons.

- 23. Square planar complexes do not show optical isomerism. Why?
- **Sol.** Because they contain a plane of symmetry.
- 24. Ni(CO)₄ possesses tetrahedral geometry, while $[Pt(NH_3)_4]^{2+}$ is square planar. Why?
- Sol. Ni(CO)₄ possesses sp³ hybridisation and then tetrahedral, whereas [Pt(NH₃)₄]²⁺ possesses dsp² hybridisation, thus square planar.
- 25. Why does $[CoF_{e}]^{3-}$ give a high spin complex?
- Sol. F⁻ is weak field ligand so it cannot pair up the electrons.
- 26. [CuCl₄]²⁻ exists but [Cul₄]²⁻ does not. Why?
- **Sol.** $[Cul_4]^{2-}$ decomposed as $[Cul_4]^{2-} \longrightarrow 2Cul + 3l_2$. The instability may be explained as it is complex of oxidising agent (Cu2+) and reducing agent (I-). Also, I- is poor electron donor than CI- and steric effect may also play some role.
- 27. What are essential requirements for regarding a compound as an organometallic? Give some examples.
- Sol. In organometallic compounds, carbon forms bond with atom (metal/non-metal) which is less electronegative than carbon. For e.g., $B(CH_3)_3$, $SiCl_3(CH_3)$ etc.

Long Answer Type Questions :

- 28. CO and N₂ are isoelectronic, but CO forms a number of complexes while N₂ forms very few. Explain.
- **Sol.** N₂ is weaker σ -donor being very symmetrical and weaker π -acceptor than CO, so N₂ complexes are not much stable.
- 29. A compound Co(en)₂ · (NO₂)₂Cl exists in different isomeric forms. If it does not show optical activity, reacts with AgNO₃ but not with ethane-1,2-diammine, identify its structure.
- Sol. It is trans isomer. It reacts with AgNO₃, so CI atom is ionizable. It does not react with 'en', so two NO₂ groups are not adjacent. Nedical In Aska

30. The coordination number of Ni²⁺ in given complexes is 4.

 $NiCl_2 + KCN (excess) \longrightarrow A (cyano complex)$

 $NiCl_2$ + conc. KCI (excess) \longrightarrow B (chlorido complex)

Identify A and B, their magnetic moment with geometry.

Sol. A = $K_2[Ni(CN)_4]$

 $B = K_2[NiCl_4]$

A is square planar with dsp² configuration. Due to absence of unpaired electron, it is diamagnetic (zero magnetic moment).

B is tetrahedral with sp³ configuration, having two unpaired electrons (paramagnetic)

 $\mu = \sqrt{2(2+2)} = \sqrt{8}$ BM

31. Arrange the following complexes in increasing order of CFSE (Δ_n) :

- (i) [Co(NH₃)₆]³⁺
- (ii) $[Rh(NH_3)_6]^{3+}$
- (iii) $[Ir(NH_3)_6]^{3+}$

Sol. (i) < (ii) < (iii)

Co, Rh and Ir belongs to 3*d*, 4*d* and 5*d* transition series respectively and CFSE increases by 30% between two adjacent members down the group.

32. Write all the geometrical isomers of [Pt(NH₃)(Cl)(py)(Br)]. How many of these will exhibit optical isomerism?

Sol. Oxidation state of Pt = +2

Complex is square planar

Square planar molecules of M(ABCD) type will not show optical isomerism.

Geometrical isomers are

- 33. Explain by structure that EDTA is hexadentate ligand.
- Sol. EDTA has six sites to donate electrons.

Two N atoms and four O atoms are electron donor sites.

- 34. A solution of $[Ni(H_2O)_6]^{2+}$ is green but a solution of $[Ni(CN)_4]^{2-}$ is colourless. Why?
- **Sol.** The value of energy difference between *d* levels (Δ) for the H₂O complex is in visible region and that for the cyano complex is in UV region.

Chapter 9

Coordination Compounds

- Solutions (Set-2)
- 1. Of the following, which ligand does not posses the name suggested by IUPAC when it acts as a ligand in complex?
 - (1) H_2O , aqua (2) NH_3 , ammonia (3) CO, carbonyl (4) F^- , fluoro

```
Sol. Answer (2)
```

Fact.

- 2. Write the structural formula for aqua-bromo-bis (ethylenediamine) chromium (III) chloride
 - (1) $[CrBr(H_2O) (en)]Cl$ (2) $[CrBr_2(H_2O) (en)]Cl_2$ (3) $[CrBr(H_2O) (en)_2]Cl_2$ (4) $[CrBr(H_2O) (en)_2]Cl_3$

Sol. Answer (3)

```
[CrBr(H_2O)(NH_2 - CH_2 - CH_2 - NH_2)_2]Cl_2
```

- 3. The complex cis $[CoCl(NH_3)(NH_2CH_2CH_2NH_2)_2]^{2+}$ has an octahedral geometry. Name of this complex ion according to IUPAC would be
 - (1) cis chloroamminethylenediamine cobalt (II) ion
 - (2) cis amminechloroethylenediamine cobalt (III) ion
 - (3) cis amminechlorobis (ethylenediamine) cobalt (II) ion
 - (4) cis amminechlorobis (ethylenediamine) cobalt (III) ion

Sol. Answer (4)

cis-amminechlorobis (ethylenediamine) cobalt (III) ion.

- 4. Which complex ion has cis and trans isomer?
 - (1) $[PdCl_3NH_3]^-$ (2) $[Pd(CN)_5NH_3]^-$ (3) $[PtCl_2(CN)_2]^{2-}$ (4) $[Pt(C_2O_4)_2]^{2-}$

Sol. Answer (3)

For cis and trans isomer, complex should have $[MA_2B_2]$ or $[MA_2BC]$ or $[MA_4B_2]$ or $[MA_2B_4]$ formula.

- 5. What is the name of the complex $[Ni(H_2O)_4(NH_2CH_2CH_2NH_2)]SO_4.5H_2O$ as per IUPAC rules?
 - (1) Aquaethylenediamine nickel (II) sulphate-1-water
 - (2) Tetraaquaethylenediamine nickel (II) sulphate-5-water
 - (3) Tetraaqua bis (ethylene diamine) nickel (II) sulphate-5-water
 - (4) Tetraaqua bis (ethylene diamine) nickel (III) sulphate-5-water

Sol. Answer (2)

Tetraaquaethylenediamine nickel (II) sulphate-5-water.

Which pair of isomers illustrates the concepts of ionisation isomers? 6. (1) $[Cr(SCN) (NH_3)_5]^{2+}$ and $[Cr(NCS) (NH_3)_5]^{2+}$ (2) $[CoCl(NH_3)_5] SO_4$ and $[Co(SO_4) (NH_3)_5]Cl$ (4) (+) - $[Co(en)_3]^{3+}$ and (-) - $[Co(en)_3]^{3+}$ (3) cis $[PtCl_2(NH_3)_2]$ and trans $[PtCl_2(NH_3)_2]$ Sol. Answer (2) $[CoCl(NH_3)_5]SO_4 \rightarrow [Co(SO_4)(NH_3)_5]CI$ give different ions in solution. 7. Which of the following coordination compounds is incapable of showing geometrical isomerism? (1) $[PtCl_2(NH_3)_2]$ (2) $[CoCl_2(NH_3)_4]^+$ (3) $[Co(NO_2)_3(NH_3)_3]$ (4) [Co(en)₃]³⁺ Sol. Answer (4) $[Co(en)_3]^{+3}$ does not show geometrical isomerism. 8. Which of the following compounds exhibit geometrical isomer? (2) $Zn(NH_2)_2Cl_2$ (1) $Pt(NH_3)_2Cl_2$ (3) $Pt(NH_2)_2CI$ (4) All of these Sol. Answer (1) Pt(NH₂)₂Cl₂ 9. A six coordinate complex of formula CrCl₃.6H₂O has green colour. A 0.1 M solution of the complex when treated with excess of AgNO₃ gave 28.7 g of white precipitate. The formula of the complex would be (2) $[Cr(H_2O)_5CI]CI_2.H_2O$ (3) $[Cr(H_2O)_4Cl_2]Cl.2H_2O$ (4) (1) $[Cr(H_2O)_6]Cl_3$ [Cr(H₂O)₃Cl₃].3H₂O E Foundatio Sol. Answer (2) 0.1 mole of complex gives 28.7 gm of AgCI. Mole of AgCI formed $\frac{28.7}{108+35.5} = 0.2$ So the formula is [Cr(H₂O)₅Cl]Cl₂.H₂O. 10. If excess of AgNO₃ solution is added to 100 ml of 0.024 M solution of dichlorobis (ethylene diamine) cobalt (III) chloride, how many moles of AgCl will be precipitated? (3) 0.0016 0.0024 0.0048 (1) 0.0012 (2)(4) Sol. Answer (3) One Cl⁻ ion is present outside the co-ordination sphere, so, mole of AgCl formed is equal to $\frac{1}{10}$ × mole of complex = 0.0024.11. The EAN of Pt in potassium hexachloroplatinate (IV) is (1) 46 (2)86 (3) 36 (4)84 Sol. Answer (2) $EAN = (78 - 4) + 2 \times 6 = 86$ 12. Which of the following complex has five unpaired electrons? (1) $[Mn(H_2O)_6]^{2+}$ [Mn(CN)₆]³⁻ (3) $[CrCl_3(H_2O)_3]$ (2) (4) $[Ag(NH_3)_2]^+$ Sol. Answer (1) $Mn^{+2} \cdot 3d^5$ H₂O is a weak ligand, so, [Mn(H₂O)₆]⁺² complex contain 5 unpaired e⁻.

- 13. Which of the following species is diamagnetic?
 - (1) An isolated, gas-phase V³⁺ ion
 - (3) An isolated, gas phase Cu2+ ion

- A high spin ocatahedral Fe⁺² complex (2)
- (4) A low spin octahedral Co³⁺ complex

Sol. Answer (4)

Low spin complexes of Co⁺³ do not contain any unpaired e⁻.

- 14. The complex [Ni(CN),1²⁻ is diamagnetic and the complex [NiCl,1²⁻ is paramagnetic. What can you conclude about their molecular geometries?
 - (1) Both complexes have square planar geometries
 - (2) Both complexes have tetrahedral geometries
 - (3) $[NiCl_{\lambda}]^{2-}$ has a square planar geometry while $[Ni(CN)_{\lambda}]^{2-}$ has a tetrahedral geometry.
 - (4) $[NiCl_4]^{2-}$ has a tetrahedral geometry while $[Ni(CN)_4]^{2-}$ has a square planar geometry

Sol. Answer (4)

 $[Ni(CN)_{4}]^{-2} \longrightarrow dsp^{2} \rightarrow square planar$

 $(NiCl_{4})^{-2} \longrightarrow sp^{3} \rightarrow Tetrahedral$

- 15. [PtCl₂(NH₃)₂] [Electronic configuration of Pt : [Xe]5d⁸6s²]
 - (1) A tetrahedral geometry and is paramagnetic in behaviour
 - (2) A tetrahedral geometry and is diamagnetic in behaviour
 - (3) A square planar geometry and is paramagnetic in behaviour
 - (4) A square planar geometry and is diamagnetic in behaviour

Sol. Answer (4)

Most of the complexes of Pt⁺² are square planar and diamagnetic.

- oundations 16. Which of the following complex is considered to be tetrahedral?
 - (2) $[Ni(CN)_{4}]^{2-1}$ [PtCl₄]²⁻ (1) [FeCl₄]⁻ (4) $[PdCl_2(NH_2)_2]$
- **Sol.** Answer (1)

 $[FeCl_{\lambda}]^{-}$ is a tetrahedral complex.

- 17. Which of the following complex ions is more likely to be colourless?
 - [Mn(CN)_c]³⁻ (1) $[Co(H_2O)_6]^{2+}$ (2) $[CrCl_2(H_2O)_2]$ (3) (4) $[Ag(NH_{3})_{3}]^{+}$
- Sol. Answer (4)

Ag⁺ have 3d¹⁰ electronic configuration. So, no d-d transition is allowed.

- 18. How many unpaired electrons are present in the high spin form of [CoFe]3- complex and which metal orbitals are used in bonding?
 - (1) 0 unpaired electrons and 4s, 4p and 4d orbitals to give sp^3d^2 hybridisation
 - (2) 4 unpaired electrons and 4s, 4p and 4d orbitals to give sp^3d^2 hybridisation
 - (3) 0 unpaired electrons and 3*d*, 4*s* and 4*p* orbitals to give d^2sp^3 hybridisation
 - (4) 4 unpaired electrons and 3*d*, 4*s* and 4*p* orbitals to give d^2sp^3 hybridisation.

Sol. Answer (2)

- F⁻ is a weak ligand, so complex of Co⁺³ will be high spin.
- hybridization $\rightarrow sp^3d^2$

19.	Which of the following complexes are diamagnetic?									
	$[\text{IVIN}(\text{CIN})_6]^{+}$, $[\text{ZN}(\text{INH}_3)_4]^{+}$]-`, [⊢	$e(CN)_6$], [FeF ₆]	$\langle \mathbf{O} \rangle$		12_				
	(1) $[Zn(INH_3)_4]^{2^+}$	1) $[Zn(NH_3)_4]^{2+}$ (2) $[Zn(N_3)_4]^{2+}$ (2) (2)]° 13-				
	(3) $[Zn(NH_3)_4]^{2+}$ and $[Fe(CN)_6]^{4-}$ (4) $[Zn(NH_3)_4]^{2+}$, $[Mn(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$						d [Fe(CN) ₆]⁴ [⊥]			
Sol.	Answer (3)									
	$[Zn(NH_3)_4]^{+2}$ and $[Fe(CN)_6]^{-4}$ are diamagnetic.									
20.	Which metal ion is likely to	form	a square planar com	plex i	on with CN ⁻ ?					
	(1) Cu ⁺¹	(2)	Ag ⁺	(3)	Ni ²⁺	(4)	Zn ²⁺			
Sol.	Answer (3)									
	Ni⁺² form square planar complex ion with CN⁻.									
21.	$CuSO_4 + \underset{excess}{KCN} \longrightarrow Complexity$	lex								
	Correct regarding complex	in thi	is reaction is							
	(1) Octahedral, paramagne	etic		(2)	Tetrahedral, paramagne	etic				
	(3) Square planar, diamage	netic		(4)	Tetrahedral, diamagnet	ic				
Sol.	Answer (4)		(·			5				
22.	Which of the given metal id	on for	m high tendency to co	omplex	x with CO?	1				
	(1) Sc ⁺³	(2)	Ti ⁺³	(3)	Mn ⁺²	(4)	Fe ⁺²			
Sol.	Answer (4)				III Limite					
	Due to presence of high number of e⁻ in <i>d</i> -orbital.									
23.	. Effective atomic number of Fe in $Fe_2(CO)_9$ is									
	(1) 35			(2)	36					
	(3) 37	4		(4)	Cannot be calculated					
Sol.	Answer (2)			AN	0					
	36		dil sion	3						
24.	Which of the following diva	alent r	netal ion form the mos	st stat	ble complexes?					
	(1) Mn ²⁺	(2)	Fe ²⁺	(3)	Ni ²⁺	(4)	Cu ²⁺			
Sol.	Answer (4)									
	On the basis of Erwin Will	iam s	eries, stability of com	plex ir	ncreases as					
	$Mn^{+2} < Fe^{+2} < CO^{+2} < Ni^{+2} < Cu^{+2} > Zn^{+2}$.									
25.	Which of the following is most stable complex?									
	(1) [Co(NH ₃) ₆] ⁺²	(2)	[Co(NH ₃) ₆] ⁺³	(3)	$[Co(en)_2(NH_3)_2]^{+3}$	(4)	[Co(en) ₃] ⁺³			
Sol.	Answer (4)									
	Due to Chelation Effect.									
26.	. For which of the following complex formula number of possible stereoisomers is maximum? (a, b and c are monodentate ligands]									
	(1) [Ma ₃ b ₃]	(2)	[Ma ₃ b ₂ c]	(3)	[Ma ₄ b ₂]	(4)	[Ma ₄ bc]			

Sol. Answer (2)

In case of $[Ma_3b_2c]$, no. of stereoisomers is 3 while for others it is 2.

27. The correct order of increasing field strength of following ligands is

	F	Br-	SCN-	Cl⁻					
	I	I	III	IV					
	(1) (I)	< (II) < (III) < (IV))		(2)	$() < () < (\vee) + (\vee) + $	< (III)	
	(3) (IV	/) < () <	< (II) < (I))		(4)	() < () < () <	< (IV)	
Sol.	Answe	r (1)							
	Correc	t order i	S						
	l⁻ < Br	- < SCN	l- < Cl-						
28.	In octa stabilis	hedral c ation er	omplexe lergy (C	es for whi FSE) is r	ch of the followin	ng configura sence of liga	tion of central m and CN⁻ ?	etal atom mag	gnitude of crystal field
	(1) <i>d</i> ⁵			(2)	0 ⁶	(3)	d ¹⁰	(4)	d ⁹
Sol.	Answe	r (2)							
	In stro	ng field	ligands l	ike CN⁻,	CFSE is maxim	um (magnit	ude) for <i>d</i> ⁶ confi	guration.	
29.	For co	mplex [0	Co(NH ₃)	4(NO2)2]N	IO ₃ the isomeris	m which is	not possible is		
	(1) Ge	eometric	al	(2)	Linkage	(3)	Co-ordination	(4)	Ionisation
Sol.	Answe	r (3)					C_{A}	til	
	For co	mplex [0	Co(NH ₃)	4(NO ₂) ₂]N	O3 only co-ordi	nation isome	erism is not pos	sible.	
30.	For which of the following complex effective atomic number (EAN) of central atom is not equal to its nearest noble gas?								
	(1) [M	n ₂ (CO) ₁₀]	(2)	[Ni(CO) ₄]	(3)	[Pd(NH ₃) ₆] ⁴⁺	(4)	[Fe(CN) ₆] ³⁻
Sol.	Answe	r (4)					Aucatio		
	Effectiv	ve atomi	ic no. of	Fe in [Fe	e(CN) ₆] ^{3–} is 35.		Sher		
31.	Consid	ler the fo	ollowing	complex	compound	S IN			
	Co	ompoun	d	Abs	orbed waveler	igth of			
	A : [Ci	r(H ₂ O) ₆] ³	+		A A	Que			
	B : [Ci	r(CN) ₆] ³⁻			λ2				
	C : [Ci	r(H ₂ O) ₃ (I	VH ₃) ₃] ³⁺		λ3				
	D : [Ci	r(H ₂ O) ₄ (I	VH ₃) ₂] ³⁺		λ ₄				
	The correct order of wavelength is								
	(1) λ ₂	$< \lambda_3 < \lambda$	$\lambda_4 < \lambda_1$	(2)	$\lambda_2 < \lambda_4 < \lambda_3 <$	λ ₁ (3)	$\lambda_1 < \lambda_4 < \lambda_3 <$	λ ₂ (4)	$\lambda_1 < \lambda_3 < \lambda_4 < \lambda_2$
Sol.	Answe	r (1)							
	Spliting	g increas	ses as s	trength o	f ligand increase	es so absorb	ed wavelength	decreases.	
32.	For o Cl⁻ wh	ctahedr ich amo	al com	plexes v ollowing (which configu do not have two	ration of c electrons ir	entral metal a e _g set?	itom/ion in	presence of ligand
	(1) d ⁵			(2)	d ⁶	(3)	d^4	(4)	d ⁸

Sol. Answer (3)

33.	Select the correct order of increasing field strength of following molecules or ions :										
	F [_] ,	OH⁻,	en,	CN⁻							
	(I)	(II)	(III)	(IV)							
	(1) (I) < (II) < (III) < (IV)	(2)	(V) < (I) < (I) < (I)	(3)	() < () < ()	<(IV)	(4)	(I) < (I) < (V) < (I)		
Sol.	Answer (1)									
	Correct or	der : F⁻ < C)H [_] < en <	CN-							
34.	In which o	f the followi	ng EAN of	central metal atom is	s differ	ent from other	s?				
	(1) [Mn ₂ (0	CO) ₁₀]	(2)	[Ni(CO) ₄]	(3)	[Fe(CN) ₆] ³⁻		(4)	[Fe(CO) ₅]		
Sol.	DI. Answer (3)										
	EAN of Fe^{+3} in $[Fe(CN)_6]^{3-} = 35$										
	In others EAN of central metal atom = 36										
35.	The ligand	which canr	not show li	nkage isomerism is							
	(1) NO ₂ ⁻		(2)	$C_2 O_2 S_2^{2-}$	(3)	NO		(4)	C ₂ O ₄ ²⁻		
Sol.	Answer (4)									
	Oxalate io	n has only o	oxygen as	donor atom.							
36.	For which	of the follow	ing compl	ex salts, primary valer	ncy of	central atom is	same as tl	hat o	f ionizable chlorides?		
	(1) [Co(NI	H ₃) ₆]Cl ₃	(2)	[Co(NH ₃) ₅ Cl]Cl ₂	(3)	[Co(NH ₃) ₃ Cl ₃	1/101	(4)	$[Co(NH_3)_4Cl_2]Cl$		
Sol.	Answer (1)				\mathbf{X}	Bar BJ				
	In case of [Co(NH ₃) ₆]Cl ₃										
	Primary valency of Co = 3										
	Number of ionizable chlorines = 3										
37.	Which of the following is correct statement?										
	(1) NO_2° , SCN ^o and CN ^o are ambidentate ligand										
	(2) Secondary valency of nickel is 4 in tetracarbonylnickel(0) complex										
	(3) Diamminesilver(I) dicyanoargentate(I) can show isomerism										
	(4) All of these										
Sol.	Answer (4)									
	NO ₂ ⁻ , SCI	N ⁻ and CN ⁻	have more	e than donor site.							
38.	B. Formula of compound A is NiCl ₂ .6H ₂ O and geometry is octahedral. If complex A react with excess of AgNO ₃ then 2 mol of AgCl precipitate, then correct statement about A is										
	(1) A is homoleptic complex					A can show geometrical isomer					
	(3) A can	show optica	al isomer		(4)	Secondary v	alency of c	entra	al atom in A is 2		
Sol.	Answer (1)									
	A is [Ni(H ₂	₂ O) ₆]Cl ₂									
39.	Formation	constant (k	ς) data an	d dissociation consta	nt (k _d)	data is given,	then selec	ct mo	ost stable complex.		
	(1) [Ni(a) ₆] ⁺² k _f	= 10 ¹²		(2)	[Ni(b) ₆] ⁺²	$k_{f} = 10^{10}$				
	(3) [Ni(c) ₆] ⁺² k _d	= 10 ⁻¹⁵		(4)	[Ni(d) ₆] ⁺²	$k_{d} = 10^{-8}$				
	(3) [INI(C) ₆]. ₇ K ^q	= 10 ⁻¹³		(4)	[NI(d) ₆] ⁺²	$\kappa_{d} = 10^{-5}$				

76	Coordin	ation Compounds			Solutions of Assignment (Level-I) (Set-2)					
Sol.	Answer	(3)								
	$k_d = \frac{1}{k_f}$									
40.	Chemical formula for the complex potassium hexacyanidoferrate (II) is									
	(1) K ₄ [F	e(CN) ₆]	(2)	$Fe[K_4(CN)_6]$	(3)	K ₆ [Fe(CN) ₆]	(4)	$K_4[Fe_2(CN)_6]$		
Sol.	Answer	(1)								
	K ₄ [Fe(Cl	N) ₆]								
41.	Which o bidendat	f the following can e ligand]	show	egeometrical isomeris	sm? [h	ere a and b are monoc	lentate	e ligand. AA \rightarrow sym.		
	(1) Ma ₆		(2)	Ma ₅ b	(3)	M(AA) ₃	(4)	Ma ₃ b ₃		
Sol.	Answer	(4)								
	Ma ₃ b ₃ form fac and mer isomer.									
42.	In which	of the following co	omple	x, central atom is inne	er orbit	al hybridized?				
	(1) K ₄ [N	li(CN) ₆]	(2)	$K_2[Zn(CN)_4]$	(3)	K ₄ [Fe(CN) ₆]	(4)	K ₂ [ZnCl ₄]		
Sol.	Answer	(3)								
	K ₄ [Fe(C	N) ₆] is inner orbital	comp	lex.						
43.	Which o	f the following com	pound	d absorb highest wave	length	of light?	5			
	(1) [Fe(H ₂ O) ₆] ³⁺								
	(2) [Fe(ox) ₃] ³⁻			9	n Comited	5			
	(3) [Fe(CN) ₆] ^{3–}				1.011 1085 LIN				
	(4) All c	ompound absorb e	equal v	wavelength of light		Service				
Sol.	Answer	(1)				ationa.				
	H ₂ O is w	veak ligand.			$\langle \cdot \rangle$	FLOUCE				
44.	I. [Co(H ₂ O) ₅ Cl] Cl ₂ . H ₂ C	can s	show hydrate isomeris	m					
	II. [Fe(NH ₃) ₅ NO ₂]SO ₄ car	n show	/ linkage isomerism	or					
	(1) State	ement I is true		Ne onisio.	(2)	Statement II is true				
	(3) Both	I and II are true		4.	(4)	Neither I nor II is true				
Sol.	Answer	(3)								
	Both I ar	nd II are true.								
45.	In which	of the following ior	n magr	netic moment of the co	-ordina	ation compound is not a	ffected	by nature of ligand?		
	(1) Zn ²⁺		(2)	Fe ³⁺	(3)	Fe ²⁺	(4)	Ni ²⁺		
Sol.	Answer	(1)								
	Zn^{+2} configuration $\Rightarrow Ar 4s^03d^{10}$									
	Zn ²⁺ is diamagnetic and no effect of ligand									
	Fe^{3+} configuration $\Rightarrow Ar 4s^03a^5$									
	With strong field and weak ligand magnetic moment is different									
	$Fe^{2+} = Ar 4s^0 3d^6$									

With strong field ligand magnetic moment is zero and with weak field unpaired electron is 4 (octahedral complex) $Ni^{2+} = |Ar|4s^0 3d^8$ Different magnetic moment with strong and weak field ligand. 46. Which of the following is spin free complex? (1) $[CoF_{e}]^{3-}$ (2) $K_{2}[Ni(CN)_{4}]$ [Co(CN)₆]³⁺ (4) $K_2[PtCl_4]$ (3) Sol. Answer (1) Co³⁺ with weak field ligand form high spin or spin free complex. 47. In the given below complex, which of the following is the most stable complex? (1) $[Fe(NH_3)_6]^{+2}$ (2) $[Fe(H_2O)_6]SO_4$ (3) Na₂[Fe(EDTA)] (4) $Na_4[Fe(C_2O_4)_3]$ Sol. Answer(3) Chelating complexes are more stable. 48. Which of the following is correct about Potassium hexacyanoplatinate(IV)? (1) Compound can show isomerism (2) Compound is inner orbital hybridized and diamagnetic (3) If all cyanide are replaced by chlorine geometry will be octahedral $K_2[Pt(CN)_6]$ can show linkage isomerism and inner hybridized with $\mu = 0$ Which of the following statement is incorrect? (1) In coordination **Sol.** Answer (4) 49. Which of the following statement is incorrect? (1) In coordination compounds metals show two types of valences that are primary and secondary (2) The primary valences are generally ionisable (3) The secondary valences are non-ionisable in coordination compound (4) The groups bound by secondary linkages to metal have no characteristic spatial arrangements Sol. Answer(4) Geometry is decided by secondary valency. 50. For Ag⁺ metal ion, correct sequence regarding ligand strength is (1) F⁻ > Cl⁻ > Br⁻ > l⁻ (2) $I^- > Br^- > CI^- > F^-$ (3) Cl⁻ > Br⁻ > F⁻ > l⁻ (4) $F^- > Br^- > I^- > CI^-$ **Sol.** Answer (2) |- > Br- > C|- > F-51. Which of the following ligands may be flexidentate? (2) CO_3^{-2} (1) [EDTA]⁴⁻ (3) NO_3^{-} (4) All of these **Sol.** Answer (4) All these are flexidentate ligand.