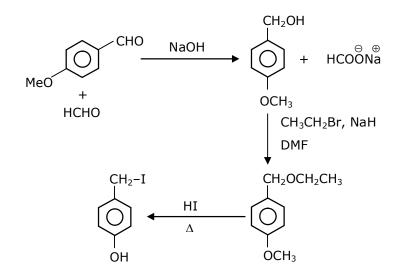

26th Feb. 2021 | Shift - 2 CHEMISTRY

Section - A

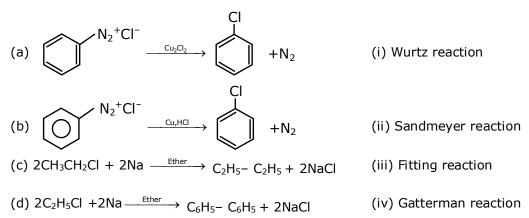
- **1.** 2,4-DNP test can be used to identify:
 - (1) aldehyde
 - (2) halogens
 - (3) ether
 - (4) amine
- Ans. (1)
- Sol.


2. Identify A in the following chemical reaction.

 CH_2OH

CH₂OH

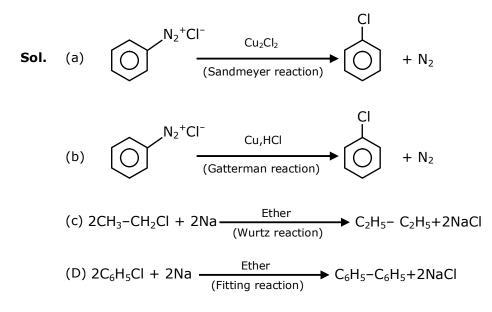
Ans. (3) Sol.


- **3.** The nature of charge on resulting colloidal particles when FeCl₃ is added to excess of hot water is:
 - (1) positive
 - (2) neutral
 - (3) sometimes positive and sometimes negative
 - (4) negative

Ans. (1)

Sol. If $FeCl_3$ is added to excess of hot water, a positively charged sol of hydrated ferric oxide is formed due to adsorption of Fe^{3+} ions.

4. Match List-I with List-II List-I


List-II

Choose the correct answer from the option given below:

- (1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
- (2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (3) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
- (4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Ans. (3)

- **5.** In $\operatorname{CH}_2 = \operatorname{C}^2 = \operatorname{CH}_2 \operatorname{CH}_3$ molecule, the hybridization of carbon 1, 2, 3 and 4 respectively are:
 - (1) sp², sp, sp², sp³
 - (2) sp², sp², sp², sp³
 - (3) sp², sp³, sp², sp³
 - (4) sp³, sp, sp³, sp³

Ans. (1)

Sol. $CH_{sp^2} = C_{sp} = CH_{sp^2} - CH_{3}$

6. Match List-I with List-II.

List-I

List-II

(a) Sucrose(b) Lactose

(i) β -D-Galactose and β -D-Glucose (ii) α -D-Glucose and β -D-Fructose

- (c) Maltose (iii) α -D- Glucose and α -D-Glucose
- Choose the correct answer from the options given below:
- (1) (a)-(iii), (b)-(ii), (c)-(i)
- (2) (a)-(iii), (b)-(i), (c)-(ii)
- (3) (a)-(i), (b)-(iii), (c)-(ii)
- (4) (a)-(ii), (b)-(i), (c)-(iii)

Ans. (4)

- **Sol.** Sucrose $\rightarrow \alpha$ -D- Glucose and β -D- Fructose Lactose $\rightarrow \beta$ -D- Galactose and β -D- Glucose Maltose $\rightarrow \alpha$ -D- Glucose and α -D- Glucose
- 7. Which pair of oxides is acidic in nature?
 - (1) N₂O, BaO
 - (2) CaO, SiO₂
 - (3) B₂O₃, CaO
 - (4) B₂O₃, SiO₂

Ans. (4)

Sol. B_2O_3 and SiO₂ both are oxides of non-metal and hence are acidic in nature.

(1) Calgon contains the 2nd most abundant element by weight in the earth's crust.
(2) It is also known as Graham's salt.
(3) It is polymeric compound and is water soluble.
(4) It doesnot remove Ca²⁺ ion by precipitation.
Ans. (1)
Sol. Na₆(PO₃)₆ or Na₆P₆O₁₈
Order of abundance of element in earth crust is
O > Si > Al > Fe > Ca > Na > Mg > K
So second most abundant element in earth crust is Si not Ca.
9. Ceric ammonium nitrate and CHCl₃/alc. KOH are used for the identification of functional groups present in ______and_____respectively.

Calgon is used for water treatment. Which of the following statement is NOT true about calgon?

- (1) alcohol, amine (2) amine, alcohol
- (3) alcohol, phenol (4) amine, phenol

Ans. (1)

8.

- **Sol.** Alcohol give positive test with ceric ammonium nitrate and primary amines gives carbyl amine test with CHCl₃, KOH.
- **10.** Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: In TII_3 , isomorphous to CsI_3 , the metal is present in +1 oxidation state.

Reason R: TI metals has fourteen *f* electrons in its electronic configuration.

In the light of the above statements, choose the most appropriate answer from the options given below:

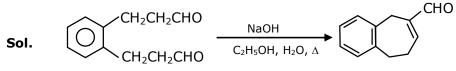
- (1) Both A and R are correct and R is the correct explanation of A
- (2) A is not correct but R is correct
- (3) Both A and R are correct R is NOT the correct explanation of A
- (4) A is correct but R is not correct

Ans. (3)

Sol. $T\ell I_3$ is $T\ell^+ I_3^-$

 CsI_3 is $Cs^+\ I_3{}^-$

Thallium shows $T\ell^+$ state due to inert pair effect.


11. The correct order of electron gain enthalpy is:

(1) S > Se > Te > 0
(2) O > S > Se > Te
(3) S > O > Se > Te
(4) Te > Se > S > O

Ans. (1)

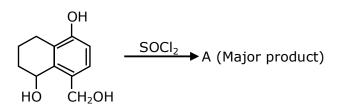
- **Sol.** Electron gain enthalpy of O is very low due to small size.
- 12. Identify A in the given chemical reaction. CH₂CH₂CHO NaOH C₂H₅OH,H₂O → A (Major product) CH₂CH₂CHO 0 0 ٠H (1)(2)CH₂CH₂COOH CHO (3) (4)CH₂CH₂CH₂OH

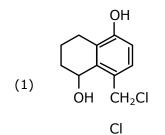
Ans. (1)

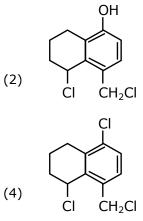
(Internal aldol condensation)

13. Match List-I with List-II

List-I	List-II
(a) Siderite	(i) Cu
(b) Calamine	(ii) Ca
(c) Malachite	(iii) Fe
(d) Cryolite	(iv) Al
	(v) Zn

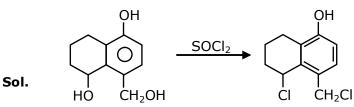

Choose the correct answer from the options given below:


- (1) (a)-(i), (b)-(ii), (c)-(v), (d)-(iii)
- (3) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)


(2) (a)-(iii), (b)-(v), (c)-(i), (d)-(iv) (4) (a)-(iii), (b)-(i), (c)-(v), (d)-(ii)

Ans. (2)

- Sol. Siderite FeCO₃ Calamine - ZnCO₃ Malachite - CuCO₃.Cu(OH)₂ Cryolite - Na₃AlF₆
- **14.** Identify A in the given reaction



Ans. (2)

(3)

OH CH₂OH

15. Match List-I with List-II.

List-I

List-II

- (a) Sodium Carbonate (i) Deacon
- (b) Titanium (ii) Caster-Kellner
- (c) Chlorine (iii) Van-Arkel
- (d) Sodium hydroxide (iv) Solvay

Choose the correct answer from the option given below:

- (1) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- (2) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (3) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (4) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)

Ans. (2)

Sol. Sodium carbonate Na₂CO₃ & NaHCO₃

Titanium : Van arkel method

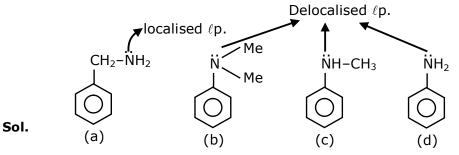
$$\begin{split} T_i + I_2 & \xrightarrow{T_1} T_i I_4 \\ (g) & \\ T_i I_4 & \xrightarrow{T_2 > T_1} & T_i + 2 I_2 \\ (g) & \\ Refined & \\ Refined & \\ (g) &$$

Chlorine : Decon's process

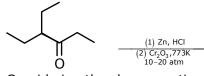
 $HCI + O_2 \xrightarrow{CuCl_2} H_2O + Cl_2$

Sodium hydroxide :- Caster-Kellner cell

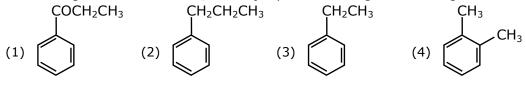
16. Match List-I with List-II.

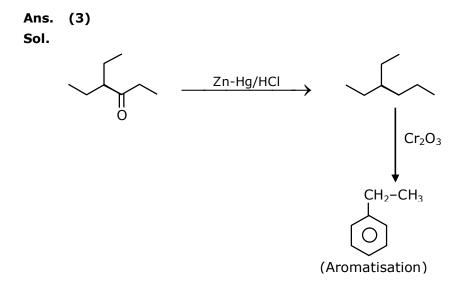

	List-I		List-II				
	(Molecule)	(В	ond order)				
	(a) Ne ₂	(i)	1				
	(b) N ₂	(ii)) 2				
	(c) F ₂	(iii) 0				
	(d) O ₂	(iv) 3				
	Choose the c	orrect answer fron	n the optior	ns given below:			
	(1) (a)-(iii), (b)-(iv), (c)-(i),)-(ii)	(2) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)			
	(3) (a)-(ii), () (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)		(4) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)			
Ans.	(1)						
Sol.	Ne ₂ O	BO = 0					
	N ₂	BO = 3					
	F ₂	BO = 1					
	O ₂	BO = 2					
	As per molec	ular orbital theory					

- **17.** Which of the following forms of hydrogen emits low energy β^- particles?
 - (1) Proton H⁺
 - (2) Deuterium ${}_{1}^{2}H$
 - (3) Protium ${}^{1}_{1}H$
 - (4) Tritium ${}_{1}^{3}H$


Ans. (4)

Sol. Tritium isotope of hydrogen is radioactive and emits low energy β^- particles. It is because of high n/p ratio of tritium which makes nucleus unstable.


18.	 A. Phenyl methanamine B. N, N-Dimethylaniline C. N-Methyl aniline D. Benzenamine Choose the correct order of basic nature of basic nature of basic nature 	of the above amines.
	(1) $D > C > B > A$	(2) $D > B > C > A$
	(3) A > C > B > D	(4) $A > B > C > D$
Ans.	(4)	



19.

Considering the above reaction, the major product among the following is:

20.	Seliwanoff	test	and	Xanthoproteic	test	are	used	for	the	identification	of	 and
respectively												

(1) ketoses, proteins	(2) proteins, ketoses
-----------------------	-----------------------

- (3) aldoses, ketoses (4) ketoses, aldoses
- Ans. (1)
- **Sol.** Seliwanoff test and Xanthaproteic test are used for identification of 'Ketoses' and proteins respectively.

Section - B

1. The NaNO₃ weighed out to make 50 mL of an aqueous solution containing 70.0 mg Na⁺ per mL is ______g. (Rounded off to the nearest integer)

[Given: Atomic weight in g mol⁻¹. Na: 23; N: 14; O : 16]

Ans. 13

- **Sol.** Na⁺ = 70 mg/mL
 - W_{Na^+} in 50mL solution = 70 × 50mg

= 3500 mg = 3.5 gm

Moles of Na⁺ in 50 ml solution = $\frac{3.5}{23}$ Moles of NaNO₃ = moles of Na⁺ = $\frac{3.5}{23}$ mol

Mass of NaNO₃ =
$$\frac{3.5}{23} \times 85 = 12.934$$

 \simeq 13gm Ans.

- **2.** The number of stereoisomers possible for $[Co(ox)_2(Br)(NH_3)]^{2-}$ is _____ [ox = oxalate]
- **Ans.** 3

Sol.

3. The average S–F bond energy in kJ mol⁻¹ of SF₆ is ______. (Rounded off to the nearest integer)

[Given : The values of standard enthalpy of formation of $SF_6(g)$, S(g) and F(g) are - 1100, 275 and 80 kJ mol⁻¹ respectively.]

Ans. 309

Sol.
$$SF_6(g) \longrightarrow S(g) + 6F(g)$$

$$\begin{split} \Delta H^{o}_{reaction} &= 6 \times E_{S-F} = \Delta H^{o}_{f}[S(g)] + 6 \times \Delta H^{o}_{f}[F(g)] - \Delta H^{o}_{f}[SF_{6}(g)] \\ 6 \times E_{S-F} &= 275 + 6 \times 80 - (-1100) \\ &= 275 + 480 + 1100 \\ 6 \times E_{S-F} &= 1855 \\ E_{S-F} &= \frac{1855}{6} = 309.1667 \end{split}$$

 \simeq 309 kJ/mol Ans.

4. Emf of the following cell at 298 K in V is $x \times 10^{-2}$. Zn|Zn²⁺ (0.1 M)||Ag⁺(0.01 M)| Ag The value of x is ______. (Rounded off to the nearest integer) [Given: $E_{Zn^{2+}/Zn}^{0} = -0.76V; E_{Ag^{+}/Ag}^{0} = +0.80V; \frac{2.303RT}{F} = 0.059$]

Ans. 147

Sol.
$$Zn(s)|Zn^{+2}(0.1M)||Ag^{+}(0.01M)|Ag(s)$$

 $Zn(s) + 2Ag^{+} \implies 2Ag(s) + Zn^{+2}$
 $E^{0} = 0.80 + 0.76 = 1.56$; $Q = \left\{\frac{Zn^{2+}}{(Ag^{+})^{2}}\right\}$
 $E = E^{0} - \frac{0.059}{n} \log(Q)$
 $E = 1.56 - \frac{0.059}{2} \log\left[\frac{0.1}{(0.01)^{2}}\right]$
 $E = 1.56 - \frac{0.059}{2} \log\left[(10)^{3}\right]$
 $E = 1.4715 = 147.15 \times 10^{-2} \text{ volt}$
 $= x \times 10^{-2}$
 $X = 147.15 \simeq 147 \text{ Ans.}$

5. A ball weighing 10g is moving with a velocity of 90ms⁻¹. If the uncertainty in its velocity is 5%, then the uncertainty in its position is ______×10⁻³³m. (Rounded off to the nearest integer) [Given : $h = 6.63 \times 10^{-34}$ Js] **Ans.** 1

Ans. Sol.

$$\begin{split} m &= 10 \text{ g} = 10^{-2} \text{ Kg} \\ v &= 90 \text{ m/sec.} \\ \Delta v &= v \times 5\% \quad = 90 \times \frac{5}{100} = 4.5 \text{ m / sec} \\ m.\Delta v.\Delta x &\geq \frac{h}{4\pi} \\ 10^{-2} \times 4.5 \times \Delta x &\geq \frac{6.63 \times 3 \times 10^{-34}}{4 \times \frac{22}{7}} \\ \Delta x &\geq \frac{6.63 \times 7 \times 2 \times 10^{-34}}{9 \times 4 \times 22 \times 10^{-2}} \\ \Delta x &\geq 1.17 \times 10^{-33} = x \times 10^{-33} \\ x &= 1.17 \simeq 1 \end{split}$$

6. In mildly alkaline medium, thiosulphate ion is oxidized by MnO⁻₄ to "A". The oxidation state of sulphur in "A" is_____.

Ans. 6

 $\mbox{Sol.} \quad \begin{array}{l} S_2 O_3^{2-} + Mn O_4^- \xrightarrow{Alkaline}{Medium} A \\ A \rightarrow S O_4^{-2} \end{array}$

 \therefore Oxidation no. of 'S' = +6 Ans.

7. When 12.2 g of benzoic acid is dissolved in 100g of water, the freezing point of solution was found to be -0.93° C (K_f (H₂O) = 1.86 K kg mol⁻¹). The number (n) of benzoic acid molecules associated (assuming 100% association) is_____.

Ans. 2

Sol. n PhCOOH \rightarrow (PhCOOH)_n

$$N = \frac{1}{x} = i \{As \quad \alpha = 1\}$$
$$\Delta T_{f} = i \times k_{f} \times m$$
$$0.93 = \frac{1}{n} \times 1.86 \times \frac{12.2 \times 1000}{122 \times 100}$$
$$n = 2$$

8. If the activation energy of a reaction is 80.9 kJ mol⁻¹, the fraction of molecules at 700K, having enough energy to react to form products is e^{-x} . The value of x is _____.

(Rounded off to the nearest integer)

 $[Use R = 8.31 JK^{-1} mol^{-1}]$

Ans. 14

 $\textbf{Sol.} \quad \textbf{E}_{a}=80.9 \text{kJ}\,\text{/}\,\text{mol}$

Fraction of molecules able to cross energy barrier = $e^{-E_a/RT} = e^{-x}$

$$x = \frac{E_a}{RT} = \frac{80.9 \times 1000}{8.31 \times 700} = 13.91$$

 $x\simeq 14 \text{ Ans}$

9. The pH of ammonium phosphate solution, if pk_a of phosphoric acid and pk_b of ammonium hydroxide are 5.23 and 4.75 respectively, is_____.

Ans. 7

Sol. $(NH_4)_3PO_4 \implies 3NH_4^+ + PO_4^{3-}$

$$[H^{+}] = K_{a} \times \sqrt{\frac{kw}{k_{a} \times k_{b}}}$$

pH = pk_{a} + $\frac{1}{2} \{ pk_{w} - pk_{a} - pk_{b} \}$
pH = 5.23+ $\frac{1}{2} \{ 14-5.23-4.75 \}$
pH = 5.23 + $\frac{1}{2} (4.02) = 7.24 = 7$ (Nearest integer)

10. The number of octahedral voids per lattice site in a lattice is ______.(Rounded off to the nearest integer)

Ans. 1

Sol. Assuming FCC

No of lactice sites = 6 face centre + 8 corner = 14No. of octahedral voids = 13

Ratio =
$$\frac{13}{14} = 0.92857 = 1$$
 (Nearest integer)