Relations & Functions

DPP-09

- 1. If $-1 \le [2x^2 3] < 2$, then x belongs to: (where [.] is G.I.F.)
 - (A) $-\sqrt{\frac{5}{2}} < x \le -1$ only
 - (B) $1 \le x \le \sqrt{\frac{5}{2}}$ only
 - (C) $-\sqrt{\frac{5}{2}} < x \le -1 \text{ or } 1 \le x < \sqrt{\frac{5}{2}}$
 - (D) $-1 \le x \le 1$
- **2.** Which of the following is true?
 - (A) $|x| = x \operatorname{sgn}(x)$
 - (B) $\operatorname{sgn}(\operatorname{sgn}(x)) = \operatorname{sgn}(x)$
 - (C) $x = |x| \operatorname{sgn}(x)$
 - (D) All of these
- **3.** Which of the following is correct? ([.] represents greatest integer function, {.} represents fractional function)
 - (A) $[\{x\}] + \{[x]\} + \left[\left\{x^2 + x + 2\right\}\right] + \left\{\left[x^2 + x + 2\right]\right\} = 0$
 - (B) $\left(\left[\frac{200+1}{2} \right] + \left[\frac{200+2}{2^2} \right] + \left[\frac{200+2^2}{2^3} \right] + \dots \infty \right)$ $+ \left([10] + \left[10 + \frac{1}{10} \right] + \left[10 + \frac{2}{10} \right] + \dots \left[10 + \frac{9}{10} \right] \right)$ = 300
 - (C) [[[x]]] = [x]
 - (D) [|x|] = |[x]|
- **4.** The solution set of the inequality

$$\log_{0.8} \left(\log_6 \left(\frac{x^2 + x}{x + 4} \right) \right) < 0$$
 containing set(s)

- (A) (-4, -3)
- (B) (-3, 8)
- (C) $(8, \infty)$
- (D) $(-\infty, -4)$

- 5. The range of the function $f(x) = x\{x\} x[-x]$ (where [.] and $\{\ \}$ denote the greatest integer function and fractional part function respectively) does not contain
 - (A) -1
- (B) -2

(C) 1

- (D) 2
- **6.** Function $f: N \rightarrow N, f(x) = 2x + 3$ is:
 - (A) One-one onto
- (B) One-one into
- (C) Many-one onto
- (D) Many -one into
- 7. The function $f: R \to R$ defined by

$$f(x) = (x-1)(x-2)(x-3)$$
 is:

- (A) One-one but not onto
- (B) Onto but not one-one
- (C) Both one-one and onto
- (D) Neither one-one nor onto
- 8. If $f_1(x) = 2x + 3$, $f_2(x) = 3x^3 + 5$, $f_3(x) = x + \cos x$ are defined from $R \to R$, then f_1, f_2 and f_3 are:
 - (A) One-one-onto
- (B) Many one into
- (C) One-one-into
- (D) Many one onto
- **9.** If $f: R \to R$, then f(x) = |x| is:
 - (A) One-one but not onto
 - (B) Onto but not one-one
 - (C) One-one and onto
 - (D) None of these
- **10.** The function $f: R \to R$ defined by $f(x) = e^x$ is:
 - (A) Onto
- (B) Many-one
- (C) One-one and into
- (D) Many one and onto

Answer Key

1. (C) (D)

2.

(A, B, C)3.

(A, C) (A, B) 4.

5.

(B) (B) (A)

6. 7.

8.

(D) 9.

(C) 10.

Hint & Solutions

1. (C)

$$-1 \le [2x^2 - 3] < 2$$

 $-1 \le 2x^2 - 3 < 2$ [because $n_1 \le [x] < n_2, n_1 \le x < n_2$]

$$2 \le 2x^2 < 5$$
; $1 \le x^2 < \frac{5}{2}$

On solving,
$$x \in \left(-\frac{\sqrt{5}}{2}, -1\right] \cup \left[1, \sqrt{\frac{5}{2}}\right)$$

2. (D)

$$y = \operatorname{sgn}(x)$$

$$|x| = \begin{cases} x \text{ if } x > 0\\ 0 \text{ if } x = 0\\ -x \text{ if } x < 0 \end{cases}, \text{ sgn}(x) = \begin{cases} 1 \text{ if } x > 0\\ -1 \text{ if } x < 0 \text{ and } 0 \text{ if } x = 0 \end{cases}$$

also
$$|x| = x \operatorname{sgn}(x)$$

(B) & (C) also true

$3. \quad (A, B, C)$

(i) Fractional part of any integer is zero and integral part of any fraction is zero

(ii)
$$[x] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right]$$

= $[nx].x \in N$

Hence
$$= 200 + 100 = 300$$

4. (A, C)

$$\frac{x^2 + x}{x + 4} > 6 \Longrightarrow \frac{(x - 8)(x + 3)}{x + 4} > 0$$

$5. \quad (A, B)$

$$f(x) = \begin{cases} x^2, & x \in I \\ x^2 + x, & x \notin I \end{cases}$$

So, $f(x) \neq -1$ or -2 for any $x \in R$

6. **(B)**

$$f$$
 is one-one because $f(x_1) = f(x_2)$
 $\Rightarrow 2x_1 + 3 = 2x_2 + 3 \Rightarrow x_1 = x_2$

Further
$$f^{-1}(x) = \frac{x-3}{2} \notin N$$
 (domain)

when x = 1, 2, 3 etc.

 \therefore f is into which shows that f is one-one into.

7. **(B)**

We have
$$f(x) = (x-1)(x-2)(x-3)$$

 $\Rightarrow f(1) = f(2) = f(3) = 0 \Rightarrow f(x)$ is not one-one

For each $y \in R$, there exists $x \in R$ such that f(x) = y.

Therefore, f is onto.

Hence, $f: R \to R$ is onto but not one-one.

8. (A)

$$f_3(x) = x + \cos x$$

$$f_3^{;}(x) = 1 - \sin x \ge 0$$

$$\therefore f_3(x) = 0$$
 hold for only point $x = (2n+1)\frac{\pi}{2}, n \in \mathbb{I}$

i.e. at discrete points not in interval hence function strictly increasing. Hence function is one-one and onto.

Similarly we can prove for $f_1 \cdot f_2$

9. **(D)**

$$f(-1) = f(1) = 1$$
 : function is many-one function.

Obviously, f is not onto so f is neither one-one nor onto.

10. (C)

Function $f: R \to R$ is defined by $f(x) = e^x$. Let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$ or $e^{x_1} = e^{x_2}$ or $x_1 = x_2$ Therefore, f is one-one.

Let
$$f(x) = e^x = y$$
.

Taking log on both sides, we get $x = \log y$.

We know that negative real numbers have no preimage or the function is not onto and zero is not the image of any real number. Therefore, function f is into.