= This section contains 30 multiple choice questions.
Each question has four choices (a), (b), (c), (d) out of which

The Straight Lines Exercise 1:
Single Option Correct Type Questions

ONLY ONE is correct.

1.

LI+ —+

The straight line y = x — 2 rotates about a point where it
cuts X-axis and becomes perpendicular on the straight
line ax + by + ¢ =0, then its equation is
(a)ax +by +2a =0 (b)ay —bx +2b =0
(c)ax +by +2b =0 (d) None of these

2 2 1 2™

—— =~ then orthocentre of the
317! 5!5!  n!

triangle having sides x —y +1 =0, x + y +3 =0and
2x +5y —2=0is
(a)@2m —2n,m —n)
(c)@m —n,m+n)

(b)( 2m —2n,n —m)
(d)@2m —n,m —n)

LIf f(x +y) = f(x)f(y) Ox, 30 Rand f(1) =2, then area

enclosed by 3| x| + 2| y| <8is
(a) f(4) sq units (b) éf(6) sq units

(c) %f(é) sq units (d) gf(S) sq units

. The graph of the function

y = cos x cos(x +2) —cos®(x +1)is

(a) a straight line passing through (0, — sin®1) with slope 2

(b) a straight line passing through (0, 0)

(c) a parabola with vertex (1, —sin®1)

(d) a straight line passing through the point QE, - sin® lgare
parallel to the X-axis. 2

. A line passing through the point (2, 2) and the axes

enclose an area A. The intercepts on the axes made by
the line are given by the two roots of
(@x* =2 A|x+|A|=0 (B)x*+|A[x+2A]|=0

() x* =|N|x+2/A| =0 (d) None of these

. The set of value of ‘b’ for which the origin and the point

(1, 1) lie on the same side of the straight line
a’x +aby +1=00d] R%» Oare

()b 0 4) (b) b 0(0, 2)

(c) b O[]0, 2] (d) None of these

. Line L has intercepts a and b on the co-ordinates axes,

when the axes are rotated through a given angle;
keeping the origin fixed, the same line has intercepts p
and g, then

1 1 1

(a)a® + b* =p* +¢° (b)g B ?4'?
11 _1 1

(©a® + p* =b” +¢’ D+5=5+5

8.

10.

11.

12.

If the distance of any point (x, y) from the origin is
defined as d(x, y) = max {| x|,| y|} d(x, y) = anon-zero
constant, then the locus is

(b) a straight line

(d) a triangle

(a) a circle
(c) a square

. If p1, po, p3 be the perpendiculars from the points

(m®,2m),(mm',m+ m' )and (m'? ,2m’ ) respectively on
.2

. . a
the line x cos 0 + ysina + =0, then pq, p,, p3

cosa
are in
(a) AP (b) GP
(c) HP (d) None of these

ABCD is a square whose vertices A, B, C and D are (0, 0),
(2, 0), (2, 2) and (0, 2) respectively. This square is rotated
in the xy plane with an angle of 30° in anti-clockwise
direction about an axis passing through the vertex A the
equation of the diagonal BD of this rotated square is ......
.If E is the centre of the square, the equation of the
circumcircle of the triangle ABE is

(@) N3x + (1 =B)y =3, x> + y* =4

(b) (1 ++3)x —(1 =2)y =2, x> + y* =9

(©@-3)x+y =23 -1), x> +y? - x3 =y =0

(d) None of the above

The point (4, 1) undergoes the following three successive
transformations
(i) reflection about the liney = x — 1.

(ii) translation through a distance 1 unit along the positive
direction of X-axis.

. . L R
(iii) rotation through an angle — about the origin in the
anti-clockwise direction

Then, the coordinates of the final point are

@ (®.3) Of=Xs

() (0.3+2) (d) (3, 4)

If the square ABCD, where A(0,0), B(2,0), C(2,2) and
D(0,2) undergoes the following three transformations
successively

(i) Al y) - (1, x)

(i) fo(x ) - (x +3y,y)

(i) fix )~ =L 22

then the final figure is a
(a) square
(c) rhombus

(b) parallelogram
(d) None of these



13.

14.

15.

16.

17.

18.

19.

The line x + y = ameets the axes of x and y at A and B

respectively. A triangle AMN is inscribed in the triangle
OAB, O being the origin, with right angle at N, M and N
lie respectively on OB and AB. If the area of the triangle

AMN is 3 of the area of the triangle OAB, then % is
8

equal to

(a)1 (b) 2 (c)3 (d) 4

If P(1,0), Q(—1,0) and R(2,0) are three given points, then
the locus of point S satisfying the relation

(SO)? + (SR)* =2(SP)* is

(a) a straight line parallel to X-axis

(b) a circle through the origin

(c) a circle with centre at the origin
(d) a straight line parallel to Y-axis

IfA ind _1 cosa
3

lgandBl (1, 1), a0 [F- T, 10 are two

points on the same side of the line 3x —2y +1 =0, then a
belongs to the interval

3T T
@ =T B e
(o (d) None of these
The line x + y =1 meets X-axis at A and Y-axis at B, Pis
the mid-point of AB. P, is the foot of the perpendicular
from P to OA; M, is that of P, from OP; P, is that of M,
from OA ; M, is that of P, from OP; P; is that of M,
from OA and so on. If P, denotes the nth foot of the
perpendicular on OA form M,, _,, then OP, is equal to

1 1
(@) % (b) 27
(c)2" -1 (d)2" +3

The line x = ¢ cuts the triangle with corners (0, 0); (1, 1)
and (9, 1) into two regions. For the area of the two
regions to be the same, then ¢ must be equal to

5
— b) 3
(a) 5 (b)
7
() 3 (d)3 or15
If the straight lines x +2y =9,3x =5y =5and ax + by =1
are concurrent, then the straight line 5x + 2y =1, passes
through the point
(a)(a, -b) (b) (=a, b)
(c) (a, b) (d) (=a, =b)

The ends of the base of the isosceles triangle are at (2, 0)

and (0, 1) and the equation of one side is x =2, then the
orthocentre of the triangle is

@20 o) 1
0BE  wg

20. Suppose that aray of light leaves the point (3, 4), reflects
off the Y-axis towards the X-axis, reflects off the X-axis,
and finally arrives at the point (8, 2). The value of x is

g
3.4
0.9) &3
(0] x, 0) mX
1 1 2 1

21. m, n are two integers with 0<n <m. A is the point (m, n)

on the cartessian plane. Bis the reflection of A in the
line y = x. C is the reflection of Bin the Y-axis, D is the
reflection of C in the X-axis and E is the reflection of D
in the Y-axis. The area of the pentagon ABCDE is

(a) 2m(m + n) (b) m(m + 3n)

(c) m2m + 3n) (d) 2m(m + 3n)

22. A straight line L with negative slope passes through the
point (8, 2) and cuts the positive coordinates axes at
points P and Q. As L varies, the absolute minimum value
of OP + OQ is (O is origin)

(a) 10 (b) 18 () 16 (d) 12

23. Drawn from origin are two mutually perpendicular lines
forming an isosceles triangle together with the straight

line 2x + y =a, then the area of this triangle is
2 2

(a) L sq units (b) 4 sq units
2 3
2

(c) % sq units (d) None of these

24. The number of integral values of m for which the
x-coordinate of the point of intersection of the lines
3x + 4y =9 and y = mx +11is also an integer is
(a) 2 (b)o (c) 4 (d)1

25. A ray of light coming from the point (1, 2) is reflected at
a point A on the X-axis and then passes through the
point (5, 3). The coordinates of the point A are

@ B 08 CESE
(c)(-7,0) (d) None of these

26. Consider the family of lines
5x+3y -2 +A3x —y —4) =0and
x —y+1+u(@2x —y —2) =0. Equation of straight line
that belong to both families is ax + by —7 =0, then
a+bis
(a) 1 (b)3

©5 d)7



27. In AABC equation of the right bisectors of the sides AB

28.

29.

= The section contains 15 multiple choice questions.
Each question has four choices (a), (b), (¢), and (d) out of

and AC are x +y =0and x — y =0respectively. If
A =(5,7), then equation of side BC is

(a)7y =5x (b)5x =y
(c)5y =7x (d)5y =x
Two particles start from the point (2, —1), one moving 2

units along the line x + y =1 and the other 5 units along
the line x — 2y = 4. If the particles move towards
increasing y, then their new positions are

()2 -+2,42 —1);@2V2 + 2,45 - 1)
(b) (2v2 +2,+/5 —=1);(2v/2,+/2 + 1)

(€)@ ++/2,+2 +1); (22 + 2,45 +1)
(d)2-+2,45 -1);(\2 - 1,242 +2)

Let P be (5,3) and a point Ron y = x and Q on the X-axis
be such that PQ + QR + RP is minimum, then the

coordinates of Q are
7
Ol

@ 5o
() % 0@ (d) (17, 0)

The Straight Lines Exercise 2 :

30.

In the adjacent figure combined equation of the incident
and refracted ray is
Yk
X, \% 20
0o P! >X
1 4 30°
Y 1
Y !

(@) (x —2)* +y* +—=(x -2)y =0

NG
(b) (x —2)? + y? —%u ~2)y =0
() (x —2)* + y? +%(x -2) =0

(d)(x-2)% +y° —%(x -2) =0

More than One Correct Option Type Questions

which MORE THAN ONE may be correct.

31.

32,

33.

. . . X
The point of intersection of the lines — + = =1and
a
X+ =1lies on
a
(ayx-y=0

(b) (x +y)(a + b) =2ab

(c)(Ix + my)(a + b) =(I + m)ab

(d) (Ix =my)(a + b) =( —m)ab

The equations (b — ¢)x +(¢c —a)y +a —b =0and

(b® =¢?)x +(c® —a’)y +a® —-b® =0will represent the

same line, if

(ab=c (b)c=a
(c)a=b (d)a+b+c=0
The area of a triangle is 5. Two of its vertices are (2, 1)

and (3, —2). The third vertex lies on y = x +3. The
coordinates of the third vertex cannot be

oRH B3
of%  ef

34.

35.

36.

37.

38.

If the lines x =2y =6 =0,3x + y —4 =0and
Ax +4y +A 2 =0 are concurrent, then

@A=2 (A=-3 (OA=4 ()r=-4

Equation of a straight line passing through the point of
intersection of x —y +1 =0and3x + y =5 =0 are
perpendicular to one of them is

(a)x+y+3=0 (byx+y-3=0

(c)x =3y -5=0 (d)x-3y+5=0

If one vertex of an equilateral triangle of side a lies at the
origin and the other lies on the line x — \By =0, the
coordinates of the third vertex are

V3a -a0 0-v3a a0
(2) (0, a) (b) Biz , 75 (©)(0.—a) (d) 5 3
If the line ax + by +¢ =0, bx + ¢y +a =0and

cx +ay +b =0are concurrent (a + b + ¢ #0) then
(a)a®+b® +¢* =3abc =0 (b)a=b

(c)a=b=c (d)a® + b* +¢* —=be —ca —ab =0

A(1,3) and C(7,5) are two opposite vertices of a square.
The equation of a side through A is

(a)x+2y-7=0 (b) x -2y +5=0

(c)2x+y -5=0 d2x-y+1=0



39.

40.

41.

42.

If6a® —3b* —c?® +7ab —ac +4bc =0, then the family of
lines ax + by + ¢ =0is concurrent at

(@) (-2 -3) (b)3,-1)

(©)(23) (d)(=3,1)

Consider the straight lines x +2y +4 =0and

4x +2y —1 =0 The line 6x +6y +7 =0is

(a) bisector of the angle including origin

(b) bisector of acute angle

(c) bisector of obtuse angle
(d) None of the above

Two roads are represented by the equations y — x =6
and x + y =8 An inspection bungalow has to be so
constructed that it is at a distance of 100 from each of
the roads. Possible location of the bungalow is given by
(a) (100+/2 + 1, 7) (b) (1 —100~/2,7)

(c) (1,7 + 100+/2) (d) (1, 7 = 100+/2)

If (a, b) be an end of a diagonal of a square and the other

diagonal has the equation x — y = a, then another vertex
of the square can be
(@)(a-1b,a)

(©) (0, —a)

(b) (a, 0)
(d)(a+ b,b)

The Straight Lines Exercise 3:

Paragraph Based Questions

= The section contains 5 Paragraphs based upon each of
the paragraphs 3 multiple choice questions have to be
answered. Each of these questions has four choices (a), (b),
(c), and (d) out of which ONLY ONE is correct.

Paragraph I
(Q. Nos. 46 to 48)

For points P = (xy, y; )and Q = (x4, ¥, ) of the coordinate
plane, a new distance d(P, Q) is defined by

d(P,Q)=|x; —x2[+|y ~ 12l

LetO=(0,0) 4=(1,2) B=(2,3)and C = (4, 3)are four
fixed points on x-y plane.

46.

47.

Let R(x, ), such that Ris equidistant from the point O
and A with respect to new distance and if 0< x <1and
0< y <2, then Rlie on a line segment whose equation is
(ayx+y=3 (b) x +2y =3

(c)2x+y =3 (d)2x +2y =3

Let S(x, y), such that S is equidistant from points O and B

with respect to new distance and if x>2and 0< y <3,
then locus of Sis

43.

4.

45.

48.

Consider the equation y —y; =m(x —x;). If mand x4

are fixed and different lines are drawn for different
values of y,, then

(a) the lines will pass through a fixed point

(b) there will be a set of parallel lines

(c) all the lines intersect the line x = x;

(d) all the lines will be parallel to the line y = x;

Let L, =ax +by +ai/b =0and L, =bx —ay +b%a =0
be two straight lines. The equations of the bisectors of
the angle formed by the foci whose equations are

AL, =A,L, =0andA,L; +A,L, =0,A, and A , being
non-zero real numbers, are given by

(@)L, =0 (b)L,=0
() ALy + AL, =0 () Azl =ML, =0

The equation of the bisectors of the angles between the

. . . Xx=3_y+5 x—=3_y+5
two intersecting lines = and = are

cos® sinB cos@ sin@
-3 +5 -3 +5

x =Y and * =Y , then
cosa sina B Y
®a=g%9 (b) B = —sina
(c) y =cosa (d) B =sina

(a) a line segment of finite length
(b) a line of infinite length

(c) a ray of finite length

(d) a ray of infinite length

Let T(x, y), such that T is equidistant from point O and C

with respect to new distance and if T lie in first quadrant,
then T consists of the union of a line segment of finite
length and an infinite ray whose labelled diagram is

3.5

) 1/.2 3.5



Paragraph 11
(Q. Nos. 49 to 51)

In a triangle ABC, if the equation of sides AB, BC and CA are
2x—y+4=0x—-2y—1=0and x + 3y — 3 =0respectively.

49. Tangent of internal angle A is equal to
(a) =7 (b) =3

1
(€ (d)7

50. The equation of external bisector of angle Bis

(ax-y-1=0 (b)x—-y+1=0
()x+y-5=0 dx+y+5=0
§1. The image of point B w.r.t the side CA is
3 26 3 26
W3 Sl
26 26
@558 Sli
Paragraph III

(Q. Nos. 52 to 54)

A (1,3)and C%% , %@are the vertices of a triangle ABC and

the equation of the angle bisector of JABC isx+ y =2
§2. Equation of BC is
()7x +3y -4 =0
(©)7x -3y +4=0

(b)7x+3y +4 =0
(d)7x -3y -4 =0

53. Coordinates of vertex B are

@B & B =H

010
59 5
22 o, -2
© 53 @ -8
84. Equation of ABis
(a)3x +7y =24
(b)3x+7y +24=0
(©)13x+7y +8 =0
(d)13x =7y +8 =0
Paragraph IV
(Q. Nos. 55to 57)
Let S" = 0be the image or reflection of the curve S = 0about
line mirror L = 0. Suppose P be any point on the curve S =0

and Q be the image or reflection about the line mirror L = (,
then Q will lie on S' = 0.

How to find the image or reflection of a curve?

Let the given curve be S : f(x, y) = 0and line mirror
L:ax + by + ¢ =0 We take a point P on the given curve in
parametric form. Suppose Q be the image or reflection of point
P about line mirror L = 0, which again contains the same
parameter. Let Q = (@(t), (1)), where t is parameter. Now let
x=q@t)and y= (1)
Eliminating t, we get the equation of the reflected curve S'.
85. The image of the line 3x — y =2in the line y = x —11is
(a) x +3y =2 (b)3x+y =2
(c)x—3y =2 d)x+y=2
56. The image of the circle x> +y® =4 in the line x +y =2
is
(@) x*+y*—2x-2y =0 (b)x*+y*—-4x—4y +6 =0
(c) x*+y*-2x—2y +2 =0 (d)x*+y*—4x—4y +4 =0

57. The image of the parabola x* = 4y in the line x + y =ais
(a)(x —a)* =4(a -y) (b) (v —a)* =4(a —x)
(©(x-a)’ =4 +y) A -a)* =4 +x)
Paragraph V

(Q. Nos. 58 to 60)

In a AABC, the equation of the side BC is 2x —y =3 and its
circumcentre and orhtocentre are (2, 4) and (1, 2) respectively.

58. Circumradius of AABC is
41 43
i 4 |22
(c) 5 (d) 5
92

61 51

o S

(a) 5 (b) \E
59. sin B8in C =

@—— ©— (@

2:/61 4+f61 NG 5461

60. The distance of orthocentre from vertex A is

1 6 3 2
(a) E (b) E () E (d) E



The Straight Lines Exercise 4 :
Single Integer Answer Type Questions

= The section contains 10 questions. The answer to eaeh
question is a single digit integer, ranging from 0 to 9
(both inclusive).

61.

62.

63.

64.

65.

The number of possible straight lines passing through
(2, 3) and forming a triangle with the coordinate axes,
whose area is 12 sq units, is

The portion of the line ax + 3y —1 =0, intercepted
between the lines ax + y +1 =0and x + 3y =0 subtend a
right angle at origin, then the value of | a| is

Let ABC be a triangle and A =(1,2), y = x be the

perpendicular bisector of ABand x —2y +1 =0be the
angle bisector of UJC. If the equation of BC is given by
ax + by —5 =0, then the value of a —2b s

A lattice point in a plane is a point for which both
coordinates are integers. If n be the number of lattice
points inside the triangle whose sides are x =0,y =0and
9x + 223y =2007, then tens place digit in n is

The number of triangles that the four lines y = x +3,
y=2x+3,y=3x +2andy + x =3 form is

The Straight Lines Exercise 5 :

Matching Type Questions

= The section contains 5 questions. Questions 1, 2 and 3
have four statement (A, B, C and D) given in Column I
and four statements (p, q, r and s) in Column II and
questions 74 and 75 have three statements (A, B and C)
given in Column I and five statements (p, q, r, s and t) in
Column II. Any given statement in Column I can have
correct matching with one or more statement (s) given in
Column II.

1.

Let Ly, L,, L5 be three straight lines a plane and n be the
number of circles touching all the lines.

Column I Column II
(A) The lines are concurrent, thenn + lisa (p) natural number
(B) The lines are parallel, then2n + 3isa  (q) prime number
(C) Two lines are parallel, thenn + 2isa (r) composite number

(D) The lines are neither concurrent nor
parallel, thenn + 2 is a

(s) perfect number

66.

67.

68.

69.

70.

72,

In a plane there are two families of lines : y = x +n,
y = —x +n, where n [0{0, 1, 2, 3, 4}. The number of squares
of the diagonal of length 2 formed by these lines is

Given A(0,0) and B(x, y) with x [1(0, 1) and y > 0. Let the

slope of line ABbe m;. Point C lies on line x =1 such
that the slope of BC is equal to m,, where 0< m, <m;.
If the area of triangle ABC can be expressed as

(my — my)f(x)and the largest possible value of f(x)is

A, then the value of % is

If (A, A + 1)is an interior point of AABC, where A =(0,3),
B=(-20)and C =(6,1), then the number of integral
values of A is

For all real values of a and b, lines
(2a + b)x +(a +3b)y +(b —3a) =0and Ax +2y +6 =0and
Ax +2y +6 =0are concurrent, then the value of | A| is

If from point (4, 4) perpendiculars to the straight lines
3x +4y +5 =0and y = mx +7 meet at Q and R and area
of triangle PQR is maximum, then the value of 3m is

Match the Columns

Column I Column II

(A) Linesx -2y —6 =0,3x+y—4 =0and (p) 2
Ax + 4y + A? =0 are concurrent, then the

value of |A| is

(B) The variable straight lines (q) 3
3x(a+ 1)+ 4y(a—1) —3(a —1) =0 for
different value of ‘a’ passes through a fixed
point (p, q) if A = p — g, then the value of 4| A|

© If thelinex +y —1- ® 4

=0 passing through

the intersection of x —y +1 =0 and
3x +y —5=0, is perpendicular to one of
them, then the value of |\ + 1] is

(D) Iftheliney —x —1+ A =0 is equidistant from = (s) 5
the points (1, — 2) and (3, 4), then the value of
|A]is




73. Consider the triangle formed by the lines y +3x +2 =0,
3y —2x —-5=0and4y +x —14 =0

Column I Column II

75.
(A) If (0, A) lies inside the triangle, then (p)

integral values are less than [3A|

(B) If (1, A) lies inside the triangle, then (@ 5
integral values are less than [3A|

(C) If(A,2) lies inside the triangle, then (r) 6
integral values of |6A| are

(D) If(N,7/2) lies inside the triangle, then (s) 7
integral value of |6A| are

74. Match the following

Column I Column II

(A) The area bounded by the curve (p) 0
max. {| x|,|y|} =1is

(B) If the point (g, a) lies between the lines (9 1
|x + y|=6,then[|a|]is (where[.]
denotes the greatest integer function)

(C) Number of integral values of b for which  (r) 2
the origin and the point (1, 1) lie on the
same side of the st. line a’x + aby +1=0
forallaOR~ {0} is

The Straight Lines Exercise 6 :
Statement | and Il Type Questions

= Directions (Q. Nos 76 to 83) are Assertion-Reason type 78.
questions. Each of these question contains two statements.
Statement I (Assertion) and
Statement II (Reason)

Each of these questions has four alternative choices, only 79,
one of which is the correct answer.
You have to select the correct choice.

(a) Statement I is true, statement II is true; statement II
is a correct explanation for statement I

(b) Statement I is true, statement II is true; statement II
is not a correct explanation for statement I

(c) Statement I is true, statement II is false
(d) Statement I is false, statement II is true

80.

76. Statement I The lines x(a +2b) + y(a +3b) =a +bare
concurrent at the point (2, —1)
Statement II The lines x + y =1 =0and 2x +3y -1 =0
intersect at the point (2, —1)

77. Statement I The points (3,2) and (1, 4) lie on opposite
side of the line 3x —2y —1 =0

Statement II The algebraic perpendicular distance
from the given point to the line have opposite sign.

Match the following

Column I Column II

(A) If the distance of any point (x, y) (p) (A,p)lieson x =3y
from origin is defined as
d(x,y)=2|x| + 3|y| If perimeter
and area of figure bounded by
d(x,y) =6 are A unit and I sq units
respectively, then

(B)  If the vertices of a triangle are (6, 0), (q) (A,H)lies on
(0, 6) and (6, 6). If distance between xP-y* =64
circumcentre and orthocentre and
distance between circumcentre and
centroid are A unit and [l unit
respectively, then

(C) The ends of the hypotenuse of a (r) (A,p)lies on
right angled triangle are (6, 0) and xP+y* —6x -6y =0
(0, 6). If the third vertex is (A, ),
then

(s) (A,p)lies on
x?-16y =16

(t) (A,p)lies on
x? —y2 =16

Statement I If sum of algebraic distances from points
A(1,2), B(2,3), C(6,1) is zero on the line ax + by +c¢ =0,
then2a +3b+c =0

Statement II The centroid of the triangle is (3, 2)

Statement I Let A =(0,1)and B =(2,0) and P be a point

on the line 4x +3y +9 =0, then the co-ordinates of P

such that| PA — PB| is maximum is %E, 17
5 5

Statement II | PA — PB|<| AB|

Statement I The incentre of a triangle formed by the

line x cos %§+ ysin%rﬁ= T
X cosgi[§+ ysingig
9 9
= Ttand x cos §?§+ ysinélz—n@: Ttis (0, 0).

Statement II Any point equidistant from the given
three non-concurrent straight lines in the plane is the
incentre of the triangle.



81.

82,

The Straight Lines Exercise 7 :

Statement I Reflection of the point (5, 1) in the line
x+y=0is(-1, =5).
Statement II Reflection of a point P(q,[3) in the line
. Loral BRI
+by+c =0 a',B)if ,———1
ax +by +c¢ =0is Q( B)IET 5 Hleson

the line.

Statement I The internal angle bisector of angle C of a
triangle ABC with sides AB, AC and BC as y =0,

3x +2y =0, and 2x + 3y +6 =0, respectively, is

5x +5y +6 =0.

Subjective Type Questions

= In this section, there are 15 subjective questions.

84.

85.

86.

87.

8s.

89.

If A(xy,¥1),B(x,,y,)and C (x5, ys)are the vertices
of a triangle, then show that the equation of the line
joining A and the circumcentre is given by

Ox vy 10 Ox y 10
(sin 2 B)%(1 Y1 1E+ (sin 2 C)%)(1 Vi 1E= 0
2 y2 10 s ys 10

Find the coordinates of the point at unit distance from
the lines

3x =4y +1=0,8x +6y +1 =0.

A variable line makes intercepts on the coordinate axes,
the sum of whose squares is constant and equal to k*.
Show that the locus of the foot of the perpendicular
from the origin to this line is

(xz +y2)2 (x—Z +y—2) :kz.

A variable line intersects n lines
y=mx,(m=1,2,3,...,n)in the points

A, Ay Ag,.. A, respectively.

Iy !
p=lOAP

= ¢ (constant). Show that line passes through

a fixed point. Find the coordinates of this fixed point
(O being origin).

Given n straight lines and a fixed point O. A straight line
is drawn through O meeting these lines in the points
R, Ry, Rs,...., R, and a point R is taken on it such that

n_§ 1

OR r=10R,
Prove that the locus of R is a straight line.
Prove that all lines represented by the equation

(2cos B +3sin ) x +(3 cos O —5sin 6) y
=5cosB-2sin B

83.

90.

91.

92,

93.

94.

Statement II The image of point A with respect to
5x +5y +6 =0lies on the side BC of the triangle.

Statement I If the point (2a — 5, a*) is on the same side of
the line x + y —3 =0as that of the origin, then a [J(2, 4).

Statement II The point (x;, y;)and (x,, y, ) lie on the
same or opposite sides of the line ax + by +¢ =0, as
ax; + by, +candax, + by, +chave the same or
opposite signs.

pass through a fixed point for all 6. What are the
coordinates of this fixed point and its reflection in the
line x +y =+/2 ? Prove that all lines through reflection
point can be represented by equation

(2cos B +3sin 0) x +(3cos B —5sin ) y
=(~2 =1) (5 cos ® —2sin 6)

Pis any point on the line x —a =0.If A is the point (a, 0)
and PQ, the bisector of the angle OPA, meets the X-axis
in Q. Prove that the locus of the foot of the
perpendicular from Q on OPis

(x—a)* (x* +y*) =a’y".

Having given the bases and the sum of the areas of a
number of triangles is constant, which have a common
vertex. Show that the locus of this vertex is a straight
line.

A (3,0) and B(6,0) are two fixed points and U (0,3) is a
variable point on the plane. AU and BU meet the y-axis
at C and D respectively and AD meets OU at V. Prove
that CV passes through (2, 0) for any position of U in the
plane.

A variable line is drawn through O to cut two fixed

straight lines L, and L, in R and S. A point P is chosen
m+n_ m n
=— +—.Show
OP OR OS
that the locus of Pis a straight line passing through the

point of intersection of L; and L,.

A line through A (-5, — 4) meets the lines
x+3y+2=0,2x +y +4 =0and x —y —5 =0at the
points B, C and D respectively, if

it

find the equation of the line.

on the variable line such that




95.

96.

Two fixed straight lines X-axis and y = mx are cut by a
variable line in the points A (a, 0) and B (b, mb)
respectively. P and Q are the feet of the perpendiculars
drawn from A and B upon the lines y = mx and X-axis.
Show that, if ABpasses through a fixed point (h, k), then
PQ will also pass through a fixed point. Find the fixed
point.

Find the equation of straight lines passing through point
(2,3) and having an intercept of length 2 units between
the straight lines 2x + y =3,2x +y =5.

The Straight Lines Exercise 8 :

97.

98.

Let 0(0,0), A (2,0)and B @ %@be the vertices of a
3
triangle. Let R be the region consisting of all those

points P inside AOAB which satisfy
d (P,0A)< min{d (P, OB),d (P, AB)}

where d denotes the distance from the point to the
corresponding line. Sketch the region R and find its area.

Two triangles ABC and PQR are such that the

perpendiculars from A to QR, Bto RP and C to PQ are
concurrent. Show that the perpendicular from P to BC,Q
to CA and Rto AB are also concurrent.

Questions Asked in Previous 13 Year's Exams

= This section contains questions asked in IIT-JEE, AIEEE,
JEE Main & JEE Advanced from year 2005 to 2017.

99.

100.

101.

102.

The line parallel to the X-axis and passing through the
intersection of the lines ax + 2by +3b =0and
bx —2ay —3a =0, where (a, b) #(0,0)is  [AIEEE 2005, 3M]

3

(a) below the X-axis at a distance of — from it
2
2

(b) below the X-axis at a distance of — from it
3
3

(c) above the X-axis at a distance of — from it
2
2

(d) above the X-axis at a distance of 3 from it

A straight line through the point A(3, 4) is such that its
intercept between the axes is bisected at A. Its equation
is [AIEEE 2006, 4.5M]
(@x+y=7 (b)3x —4y +7 =0

(c)4x +3y =24 (d)3x + 4y =25

If (a, a* ) falls inside the angle made by the lines y = g

x>0and y =3x, x>0, then a belong to

@ 5.1 56, )

© 5.3 @ Ha -

Lines L, : y — x =0and L, :2x + y =0intersect the line
Ly :y+2=0at Pand Q respectively. The bisector of the
acute angle between L, and L, intersects L;at R.

[IT-JEE 2007, 3M]

Statement I The ratio PR: RQ equals 2+/2 : /5 because

[AIEEE 2006, 6M]

Statement II In any triangle, bisector of an angle
divides the triangle into two similar triangles.

103.

104.

105.

(a) Statement I is true, statement II is true; statement II is not
a correct explanation for statement I

(b) Statement I is true, statement II is true; statement II is not
a correct explanation for statement I

(c) Statement I is true, statement II is false
(d) Statement I is false, statement II is true
Let P =(-1,0), 0 =(0,0)and R = (3,3+/3) be three point.
The equation of the bisector of the angle PQR is
[AIEEE 2007, 3M]

(a)§x+y:0 (b)x+«/§y:0

©+Bx+y=0 (d>x+§y:0
Consider the lines given by
Li:x+3y—-5=0
Ly,:3x—ky—-1=0
Ls:5x+2y—12=0
Match the statements/Expressions in Column I with the
statements/Expressions in Column II

Column I Column II
(A) L, L,, Lsare concurrent, if (p) k=-9
(B) oneoflL,,L,, L is parallel to at (q) k=-— 6
least one of the other two, if 5
(C) Ly, L,, Lsform a triangle, if (r) k=2
6
(D) L,,L,,Lsdonotform a triangle, if = (s) k=5

[NIT-JEE 2008, 6M]

The perpendicular bisector of the line segment joining

P (1, 4) and Q (k, 3) has y-intercept —4. Then a possible
[AIEEE 2008, 3M]

(d) -4

value of k is

(@)1 (b) 2 (c) -2



106.

107.

108.

109.

110.

The lines p(p?® +1)x —y +q =0and
(p? +1)%x +(p? +1)y +2q =0are perpendicular to a
[AIEEE 2009, 4M]

(b) exactly two values of p
(c) more than two values of p (d) no value of p

common line for

(a) exactly one values of p

The line L given by % + % =1 passes through the point

(13, 32). The line K is parallel to L and has the equation

XY= 1. Then the distance between L and K is
¢ [AIEEE 2010, 4M]
17
17 b) —
23 23
e d) 22
(o) Niti (d) NG

A straight line L through the point (3, —2) is inclined at
an angle 60° to the line +/3x + y = 1. If L also intersects
the X-axis, then the equation of Lis  [IIT-JEE 2011, 3M]
(@)y +Bx +2 =33 =0 (b)y —Bx+2+343 =0

(©)By —x+3+2J3 =0 (d)\By +x-3+23 =0

The lines L, :y —x =0and L, :2x + y =0intersect the
line L4 : y +2 =0at P and Q respectively. The bisector of
the acute angle between L, and L, intersects L at R.
[AIEEE 2011, 4M]
Statement I : The ratio PR: RQ equals 24/2: /5

Statement II : In any triangle, bisector of an angle
divides the triangle into two similar triangles.

(a) Statement I is true, statement II is true; statement II is not

a correct explanation for statement 1.
(b) Statement I is true, statement II is false.
(c) Statement I is false, statement II is true.
(d) Statement I is true, statement II is true; statement II is a
correct explanation for statement I
If the line 2x + y =k passes through the point which
divides the line segment joining the points (1, 1) and
(2, 4) in the ratio 3 : 2, then k equals [AIEEE 2012, 4M]
29
(@) — (b) 5
5
E
5

(c) 6 (d)

111.

112.

113.

114.

115.

116.

117.

A ray of light along x + /3y = /3 gets reflected upon

reaching X-axis, the equation of the reflected ray is
[JEE Main 2013, 4M]

@y=x++3 (b)\By =x -3
(0y =3x -3 (d)«/§y=x—1

For a>b>c¢ >0, the distance between (1, 1) and the

point of intersection of the lines ax + by + ¢ =0and
bx +ay +c¢ =0is less than 2¢/2. Then
[JEE Advanced 2013, 3M]
(b)a—-b+c<0
(da+b-c<o0

(@a+tb-c>0
(c)a—-b+c>0
Let PS be the median of the triangle with vertices P(2, 2),
Q(6, —1) and R(7, 3). The equation of the line passing
through (1, —1) and parallel to PSis  [JEE Main 2014, 4M]
(a)4x +7y +3 =0 (b)2x -9y —-11 =0

(c)4x -7y -11 =0 (d)2x+9y +7=0

Let a, b, ¢ and d be non-zero numbers. If the point of

intersection of the lines 4ax + 2ay + ¢ =0and

5bx +2by +d =0lies in the fourth quadrant and is
equidistant from the two axes, then [JEE Main 2014, 4M]
(a)3bc —2ad =0 (b) 3bc + 2ad =0

(c)2bc =3ad =0 (d) 2bc +3ad =0

For a point P in the plane, let d;(P) and d, (P) be the

distance of the point P from the lines x —y =0and
x +y =0respectively. The area of the region R
consisting of all points P lying in the first quadrant of
the plane and satisfying 2< d,(P) +d,(P)< 4, is

[JEE Advanced 2014, 3M]

The number of points, having both co-ordinates as
integers, that lie in the interior of the triangle with
vertices (0, 0), (0, 41) and (41, 0) is

[JEE Advanced 2015, 4M]
(a) 820
(c) 901

(b) 780
(d) 861
Two sides of a rhombus are along the lines, x —y +1 =0

and 7x — y —5 =0. If its diagonals intersect at (=1, —2),
then which one of the following is a vertex of this

rhombus? [JEE Main 2016, 4M]
8 10 7

@8~ Rlishrt

(9)(-3,-9) (d) (=3, -8)
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Solutions

1. Equation of line passing through (2, 0) and perpendicular to
ax+by +c=0

Then, required equation is

d

22

119!

ad

O

b
y=—0=—(x-2)
a
ay =bx —2b
ay —bx +2b =0
2 1 2"
+—=—
3170 515! n!
1 [ex10! 2x10! 10!g_2"
1000 119! 317! 55!0 n!
m
L {210C1 + 210c3 + 10C5} :27
10! n!
1 10 10 10 10 10 _2m
—{7G+ TG+ TG+ TG+ TG =
10! n!
L(z)lﬂ‘l :g
10! n!

m=9 andn =10

Hence, x —y +1 =0and x + y +3 =0 are perpendicular to
each other, then orthocentre is the point of intersection which
is(-2, —1)

0 -2 2m 2nand -1=m-n

U Point is 2m —2n, m —n).

3. O Required area

1@ @ 64 2°
=4 X— X4[]= — = —
2 3 3

flx+y) = f0fy)

f@) = fQ)fQ)=2°
fB) = fa +2) = f(1)f@) =2°

flmy=2"
_2° _f©

Area = — ==~ sq units
3 3

4. We have,

y =cosxcos(x +2) — cos¥(x +1)

1
y= 5{2 cosxcos(x +2) —2cos’(x +1)}

1
=E{cos(2x +2) + cos2 —1 —cos(2x +2)}

1
=—(cos2 —1
2( )
1
:5(1 -2sin®1 —1)

= —sin’1

which is a straight line passing through (A, —sin®1); N 0 R

and parallel to the X-axis.

. Let line E+X=1

a

Its passes through (2, 2), then
2 2
2+ 2 =1
a b

X' H »X

Y

v
1
" Area of AAOB = Eab =|A|
d ab =2|\|
from Eq. (ii), a + b =|A]
Hence, required equation is
x* =(a +b)x +ab =0
or x2=|Ax+2A =0
Value of (a’x + aby + 1) at (1,1) >0

" Value of (a’x + aby +1) at (0, 0)

or 7a2+?b+1>0;[lcﬂR
or a*+ab+1>0,0d] R
] D<o

0 b -4 <0

O - & K 2butb>0

O 0<b<2

ie. b (0, 2)

()

... (ii)

(given)



7. Equation of L is% + " =1 and let the axis be rotated through Slope of BD = V3-1 _ (B -3 -1) =3 -2

-1-+/3 -2
an angle 0 and let (X, Y) be the new coordinates of any point 3
P(x, y) in the plane, then Y

A C

x =X cosB —YsinB, y = XsinB +7Y cos6, the equation of the
line with reference to original coordinates is ; 5

Xy

—+ L =1 <. :

a b P E -

i ; o B
. X cos® —Ysin@ XsinB+ YcosB . ;790
ie. + =1 (1) 2 ;
¢ b "
and with reference to new coordinates is ~><30° X
0,0)A "

Xi Yo (i) 0.0

P q
Comparing Egs. (i) and (ii), we get 0 Equation of BD is

cosB + sin® _ 1 (i) y=1=(\3 =2)(x =+3)
a b p O @-B)x+y =23 -1)
and _sin® + cos® -1 (iv) and equation of the circumcircle of the triangle ABE
a b q (Apply diametric form as AB is diameter)

Squaring and adding Eqgs. (iii) and (iv), we get (x = 0)(x =~/3) +(y —0)(y ~1) =0

ATt . x4 y? —xf3 -y =0

a® b

p 11. 1f (@, B) be the image of (4, 1) w.r.t y = x — 1, then (0, B) = (2 3),
8. d(x, y) = max{| x|, [y} (1) say point Q

but d(x,y)=a ... (ii) N
From Egs. (i) and (ii), we get

a = max{| x|, |y[} R
if |x| >y, thena =|x|
O x=%a
and if |y|>|x|, thena =|y]|
O y = +a 0 (1’ O) > X
Therefore locus represents a straight line.

sinZa After translation through a distance 1 unit along the positive

9. P, =|m®cosa +2msina +

cosQl \ direction of X-axis at the point whose coordinate are R = (3, 3).

. T C
(mcosal + sinal )2 After rotation through are angle n about the origin in the

|cosa| anticlockwise direction, then R goes toR' such that
;2 — O =
a OR =OR' =32
P2 IEnm' cosQ + (m+ m')sina + M . )
O cosa[] [ The coordinates of the final point are (0, 3/2).
_ [(mcosa + sina )| [m' cosa + sind | 12. - A=(0,0;B=(20);C=(22).D=(0,2)
|cosa| (i) filx,y) - (y, x), then
J 2 sin®al A=(0,05;B=(0,2);C=(22),D=(20)
=|m a + 2m'sina + ..
" Py S cosa antsina (i) fi(x. ) ~ (x+3y,y), then
_ (m cosa + sinat )? A=(0,0;B=(62),C=(82).D=(20)

| cosal (i) fi(x, y) Q";J xTJ'VQ then

2 _
b2 = ubs A=(0,0;B=(24);C=(3,5)D=(11)
Hence, p;, p,, p; are in GP.

10 Now, AB =DC =2/5, AD = BC =+/2
. Side of the square = 2 unit and AC =534, BD = V10
i - +
Coordinates of B, C and D are (\/g, 1), («/5 1, NE) 1) and e AC # BD

(-1, 3) respectively. O Final figure is a parallelogram.



13.

14.

15.

Let AN =A
BN

U a a\ O
Then, coordinate of N are R
L+ A1+ )\H
Slope of AB = -1
/
B(0, a)
N
X+y=a
! .
0 a0 X

O Slope of MN =1
0 Equation on MN is

ah th-Aa0

a
- =x - 0 x-y=a
T 1+ A Y=
. 0 -1
So, the coordinates of M are E(),a
+1

Therefore, area of AAMN = Z area of AOAB

0 ‘ouvoun =2 dan
2 8 2
a lﬁl—)\ﬁ J—Eaﬁ =§E]fra|]l
200+A 1+A 8 2
2
0 @A =3 a’
(1+A)? 82
a A= 3 or )\21
3

1
For A = e then M lies outside the segment OB and hence the

required value of A = 3.
LetS =(x, y), given (SQ)* + (SR)? =2(SP)*

O (x+1)°+y° +(x —2)* +y? =2[(x =1°) +y*]

O 2x +2y% —2x +5 =2(x* +y® —2x +1)
a 2x+3=00 x=—§

A straight line parallel to Y-axis.
Value of 3x —2y +1) atA S
Value of 3x —2y +1) at B
(sina — 3) — (cosa —2) +1 S
(B3-2+1)

g 0

0 sina = cosa > 0 [ sina > cosd
Y

A

X

, —1 =3n/4

yr

T OEE T
2 4 2 ;

It is clear from the figure

a D%n,ﬂgD EET@
4 4

16. - Equation of ABis x + y =1, then coordinates of A and B are

17.

(1, 0) and (0, 1) respectively.
1
[0 Coordinates of P are % E@

PP, is perpendicular to OA

A
B(0, 1)
P
M, +><J/
M, S
A
(1’0):X
O| P3P Py
Equation of OPis y = x
1
Then, OP, = PP, :5
We have,  (OM,_,)* =(OR,)* + (B,M, -,)*
=2(0p,)*
=201, (say)
Also, (Opn—l)z :(OMn—l)Z + (B, -1M, —1)2
1
Op—y =20, + =0,
2
0 —0, o =,
1
0 (xn _Ean—l
1
0 Or, =q, Ean_l
_1 _1
zizun—z 23an—3
_ 1
_2n—1a1
_ 1 _1
1RO v
Let O =(0,0),A=(1,1)and B=(9,1)
1
Area of AOAB =5 X8 X1 =4
It is clear that1 <¢<9
and M=(c,1)and N = % g@

try=x



18.

19.

»<

X =cC
@1
A(1, 1) JM B
N__y-9
0 >X
0 Areaof ABMN =2 (given)

1 c
0O -X0O-c X@—f§=2
2 ( ) 9
or (9-¢)?=36
or 9-c=26 0 c=30r15
but 1<c¢<9
0 c=3
The three lines are concurrent if
1 2 -9
3 =5 -5|=0
a b -1
or 5a +2b =1
which is three of the line 5x + 2y =1 passes through (a, b).
*BC = AC
a 224 (N —1)* =A?
O 4=N -\ -1)°
=(A —1)(1)
O r=2
2
C
@
B
©,1)
D
0 Al 0)
X=2

-+ Equation. of ABis g + % =1,D= Q %Q (mid-point of AB)
U Equation of CDis2x —y =}
*. CD pass through D, thus

2—1—L,loru—3
2 2

3
2x —y =— N
Y= ()
and Eq. (i) of line [Jto AC and pass through Bisy =1 ..(ii)
from Egs. (i) and (ii), we get

Orthocentre = %, 1@

O Equation of CD is

20. Let A=(3,4), B=(0,y),C=(x,0), D=(8, 2)

21.

22,

23.

J Slope of AB = = Slope of BC
y-4__[b—y|]

0 =
0-3 -0
or 4x — xy =3y ..(1)
and slope of BC = —slope of CD
0 b-yO_ [k-o0
E - OH g - xH
or 2x + xy =8y ...(ii)
adding Egs. (i) and (ii), we get
6x =11y ...(iii)
from Egs. (ii) and (iii), we get
13 1
X=—=4—-
3 3
A }: X
(=n,m) C B (n, m)
A (m, n)
X'~ 5 X
D (-n, -m) E (n,—-m)
"Y/

Area of rectangle BCDE = (2n)(2m)
=4mn

and area of AABE :% x2m X(m —n)
=m(m —n)
0  Area of pentagon = 4mn + m(m —n)
=m(m + 3n)

The equation of the line L,bey =2 =m(x —8),m <0

2
coordinates of P and Q are P@ -—, Ogand Q0,2 —8m).
m
2
So, OP+0Q =8 —= +2 —8m
m

= 2 e
—10+(_m)+8( m) =

2
10 +2 " x 8(—-m) =18

So, absolute minimum value of OP + OQ =18

Let the two perpendiculars through the origin intersect
2x + y =aat A and B so that the triangle OAB is isosceles.

OM =length of perpendicular from O to

a
AB,OM = —.
5



24,

25.

26.

YAL
B
M
2X+y=a
0 AN
Also, AM = MB =OM
2a
O AB =—
5

Area of AOAB = % [AB [OM

1 2a _a a’
== 0= =— sq units
2B 5
Solving given equations, we get
_ 5
X =
3+4m

x is an integer, if 3 + 4m =1, —1,5, -5

_ =2 -4 2 =8
or m=—,—,—, —
4 4 4 4
1 1
or m=--—-1,—-, -2
2 2

Hence, m has two integral values.

Let the coordinates of A be (a, 0). Then the slope of the
reflected ray is
3-0

=tan0 (say) ...(1)
5-a
Then the slope of the incident ray
-2-0 = tan(Tt — 6)
1-a

From Egs. (i) and (ii), we get
tan® +tan(Tt —6) =0

3 2
0 + =0
5-a 1-a
0 3-3a +10 —2a =0
_ 13
a=-"

5
. R 3
Thus, the coordinate of A is %, 0@

Lines5x + 3y —2 + A(3x —y —4) =0 are concurrent at (1, —1)
and lines

x—y +1+u@Rx —y —2) =0are concurrent at (3, 4).

Thus equation of line common to both family is

y+1= (x=1)
or 5x =2y =7=0
0 a=5b=-20a+b=3

27. - Bis the reflection of A(5,7) w.r.t the line x + y =0

O B=(-7, -5)
and C is the reflection of A(5,7) w.r.t the linex —y =0

O c=(@7,5)

5+5
0 Equationof BCisy +5 :ﬁ(x +7)or7y =5x
+

28. LetP =(2, -1)

29. -

P(2, —1) goes 2 units along x + y =1 upto A and 5 units along
x —2y =4upto B.

Now, slope of x + y = —1is -1 = tanB (say)
d 6= 13%

and slope x =2y =4 isé =tan@ (say)
O

sin @ =%, cos(@ =%

The coordinates of A

ie. (2 +2c0s135° —1 +2sin135°)

or 2-+2,42-1)

The coordinates of B

ie (2+5cos@ —1 +5sin Qor(2 + 25,5 —1)

P=(53)

Let P' and P" be the images of P w.r.t y = xand y = 0 (X-axis)

respectively, then P' =(3,5) and P" = (5, — 3)
PQ + QR + RP is minimum

O P',R QP are collinear.

P'(3, 5)
Y A
A \l
R NP, 3)
X< = o\‘ %
(5, -3)

v
0 Equation of P'P' is
5 + 30
+3= x =5
y B —spx %)
or 4x +y =17

O QEQ%,OQ

(. Q on Y-axis)



30.

31.

32,

33.

34.

Equation of incident ray is
y — 0 =tan(90° + 60 °)(x —2)

1
y= _f(x -2)
or (x=2)+y43 =0
and equation of refracted ray is
y — 0 = —tan60°(x —2)
or y = =3(x -2)

or (x—2)+l=0

NG

0 Combined equation is

[ =2) + yB1x -2) + TH=o0

4
ie. x=2)%+9%+—(x -2)y =0
(x=2)"+y ﬁ( )y

Point of intersection 0f£+1=land£+l=lis

a b b a
U ab ab U
P R this point P satisfies alternates (a), (b), (c
v asot TP @ ®-0
and (d).

The two lines will be identical if their exists some real number
k such that

b =¢* =k(b —c),¢* —a® =k(c —a)and a® - b =k(a —b)
a b-c=0orb®+c*+bc =k

c—a=0orc’+a’+ca=k

and a-b=0ora®+b*+ab=k
a a=borb=corc=a

or b*+c* +be=c? +a* +ca
a b=corc=a

or a=bora+b+c=0

As the third vertex lies on the line y = x + 3, its coordinates

are of the form (x, x + 3). The area of the triangle with vertices
(2, 1), (3, —2) and (x, x + 3) is given by

x x+3 1
1
- 1 1H=12x —2| =5 i
LB H=l2x -2 (given)
m -2 10
0 2x—2=i5|:|x=_—3,z
2 2

13
Thus, the coordinates of the third vertex are %, ?Qor

5
272

a -2 -60

@ 1 —45:0

A 4 NO

O A 2R -8=0
0 A+ A -2)=0
0 A=— 42

35. Equation of any line through the point of intersection of the
given linesis 3x + y =5) + Nx —y +1) =0.
Since this line is perpendicular to one of the given lines

3+ A 1
=—-lor—
A-1 3
[A == 1or -5, therefore the required straight line is
x+y-3=0
or x=3y +5=0
36. If B lies on Y-axis, then coordinates of B are (0, a) or (0, —a)
Y
A
B
60°
A
a o
A 603 T x-l3y=0
60°
» 3078 D30 »
) 30° 30°
- 60°
yy A
A
B
Y.
v

If third vertex in IV quadrant or in I quadrant, then its
coordinates are (a cos30°, —asin30°) and (—a cos30°, asin30°)
03 _al 0 a3 al]

>

ie. ) 2anH—2 )

37. Since,ax + by + ¢ =0,bx +cy +a =0andcx + ay + b =0are

concurrent
b O
0 H) c aHZO
x a bO

3abc —a® -b* -¢* =0
O- (@ & c)a¥% b% c¢* ab—bc—ca) =0
a+b+c#0
0 a’+b® +c? —ab —bc —ca =0
b + (b= (e )’} =0
As a, b, c are real numbers
O b-c=0,c—a=0,a-b=0
O a=b=c
38. - E=(4,4)
Oze=7+5i,zp =4+ 4i
Now, (in ABEC)

iT[
Zgp —Z2 Y
BTE e =
Zc T Zg
O Zp —4 —4i =i(7+5i —4 —4i)

or zg =3 +7i



O B=(37),thenD=(51) After solving, we get

B C .5 X =121004/2,1
and yi =7,7 £ 10042
Hence, (1 +100+/2,7), (1 = 100/2, 7),
X (1,7 + 100v/2), (1,7 — 100+/2)
42. Equation of the other diagonal is x + y = A which pass
through (a, b), then

A(1,3) D a+b=A

Equation of AB i O Equation of other diagonal is
quation o is T s x+y=a+h
y-3= 3 (x-1or2x -y +1=0 i.e. then centre of the square is the point of intersection of

_ _ . bb
and equation of AD is x—y=aandx+y=a+bis Q] + > EQ then vertex
—3—g(x—1)0rx+2 -7=0
R g (@+22)
39. Given, B 22
6a’? =3b* —¢® +7ab —ac +4bc =0 Ala, b)
O 6a*+(7b —c)a —(3b* —4be +c?) =0
. ~(7b = c) £ (7b —c)? +24(3b° —dbc +c?) R
a =
12
a 12a +7b —c¢ = £(11b —5¢) c
d 12a — 4b + 4c =0
or 12a + 18b —6¢ =0
O 3a=b+c=0 C=@a+b-ab-b)
or —2a =3b +¢ =0 O C=(a+b,0)
Hence (3, —1) or (-2, —3) lies on the line ax + by + ¢ =0, If B=2
40. x +2y +4=0and4x +2y -1 =0 b b
£ @ ot *Q BO &
0 x+2y +4=0 Then, 22— =00 =i (~BO= AO)
and —4x -2y +1 =0 (a+ib)—§1+é+&§ AO
Here, (1)(=4) + 2)(=2) = -8 <0 2 2
OBisector of the angle including the acute angle bisectors and 0 z - %} + b + &Qz l%ﬁ + &Q: _ib b
origin is 2 2 2 2 2 2
x+2y+4 _(-4x -2y +1) 0 z=a
V5 25 O B =(a, 0)
0 6x +6y +7=0 then, D=(a+bb)
41, Let position of bunglow is P(xy, y;), then PM =100 and Hence, other vertices are (a + b, 0), (a, 0) and (a + b, b).
PN =100 43. (y - y,) —m(x — x,) =0 is family of lines
nt+y —8 _
O T—iloo g Y-y =0,x—-x =0
Then, y =y,and x = x;
d BINTO -0
an N = 44. Given lines I, = 0 and L, = 0 are perpendicular and given

bisectors are A\;I; = A ,L, =0and A{L; + A,L, =0
Obisectors are perpendicular to each other.

Hence, bisectors of A\;L; =A,L, =0and AL, + A,L, =0 are
L, =0and L, =0.

+
45. O One bisector makes an angle g% with X-axis, then

>
>

+
other bisector makes an angle 90° + é.%p@with X-axis.



46.

47.

48. --oT =CT

0 [x =0 +]y =0 =|x —4] +]y -3
. x20,y20
0 x+y=|x—4 +[y -3

CaseI:If0<x<4and0<y<3
x+ty=4-x+3 -y

7
O x+y=—
Y 2
CaseIl:If0<x<4andy =3
0 Equations of bisectors are x+y=4-x+y -3
x—3 +5 . 1
el Y o () 0 c=1
cosép Q sinép 2
2 2 CaseIll : Ifx>4and 0<y <3
and x—2+ = y+56+ x+ty=x-4+3-y
Tt = -
cos@E + (pg sin%» + (PQ y 1/2
2 2 2 2 CaseIV:Ifx>4andy =3
- + =x - —
0 x i =Y +5 (i) xty=x-a+y 3
—sinép (PQ cosEp (PQ O 0=-7
2 2 Combining all cases, we get
-3 +5 7
Butgivenbisectorarex :y.i x+y=—0E x 4and0<y<3
cosO  sind 2
+ - + 1
0 =3 : ? and XB 3Y*5 Ifrom Eq. (1)]...ii) and x= 00 < dandy 23

Y
a B=-sin g%pg = —sina [from Eq. (ii)] 4
and Yy = cos g%pg = cosa 31

*OR = AR
0 |x = 0] +]y 0] =|x -1 +y 2| o 12 35
0 [ + |yl =[x =1 +|y 2|
0sx<land0s<y<2 Sol. (Q. Nos. 49 to 51)
O xty=—(x-1)-( -2 AB:2x —y +4 =0,
g 2x +2y =3 BC:x—-2y -1=0
OS = BS and CA:x+3y -3=0
O [x=0 +|y =0 =[x =2 +|y -3] A
y /
A
A
o e
infinte ray X« > X
> X
o T T
1 2
B wy,
| Mag =My =2
O [« +[yl =lx =2 +[y -3 1
x22 and 0<y<3 ch:mzzg
g x+y=x-2+3 -y 1
O 2y =1 and mCA:m3=_§
g y=l m >my >ms

2

(impossible)

(impossible)



49. -- OA is obtuse

ms — m
a tanA = ———1
1+ mym

50. For external bisector of B
AB:2x—-y +4=0
BC:=x+2y +1=0
@)(-1) +(-1)(2) = -4 <0
[0 External bisector of B is

x—y+4_ (-x+2y +1)
5 5
or x+y+5=0

§1. Let(a,P) be the image of B(-3, —2) w.r.t. the line
x +3y =3 =0, then
a+3 _pB+2_-2-3-6-3)

1 3 1+9
a+3 +
1 3 5
3
or o=-=andf =2
5 5
2
0 Required image is §~§—6
55
Sol. (Q. Nos. 52 to 54)
Let B=(A,2-A)
. 1+A
Slope of line AB =m;, =
1-A
A -
and Slope of line BC = m, =3A 12
=5\ —2
_12 -5\
2 + 5\
Let slope of bisector (x + y =2)=my = -1
Now, myTm _ M TN
1+mm 1+ mymg
1+A 12 =5\
-1- +1
O 1-A _ 2+5A
_1+A 12-5A
1-A 2 + 5\
-2 14
or —_—
-2\ =10 + 10A
or 14N = =10 + 10A
=5
O A= —
2
52. Equation of BC is
2
-—=-@2-MN)
y-@-A)==2 (x=2)

(- Bliesonx +y =2)

53.

54.

55.

56.

29
5_ 5 2 5
2 e .0 2
5 2
or 7x+3y +4=0

Coordinates of vertex B are (A, 2 —\)
. %5 9
ie. -, =

2 2

59
AE(1,3)andBE§‘7,f
2 2

[from Eq. (i)]

0 Equation of AB is

or 3x +7y =24
Any point on the line 3x —y =21is (¢, 3t — 2), t being parameter.
If (x, y) be image of the point (t, 3t —2) in the liney =x —1or
x =y —1=0, then

x—t_y—-Q@t-2)

1 -1
2t -3t +2-1)
- 1+1
D XTE_YTIEE g
1 -1
or x—t=2t -1
O x+1=3t (1)
and y-—3t+2=-2t+1
O y+1=t ..(id)
From Egs. (i) and (ii), we get
x+1=3(y +1)
O x =3y =2

Any point on the circle x* + y* = 4is (2cos8, 2sinB)8 being
parameter.
If (x, y) be image of the point (2 cos, 2sinB), in the line
x +y =2, then
x —2cosB _y —2sinB

1 1

_ —2(2cosB + 2sinB —2)

- 1+1
or x —2cosB =y —2sin®

= —2cos0 —2sinB +2 (1)
or x —2cosB = —2cosO —2sinB +2
O x —2 =—2sinB
and Yy —2sinB = —2cosO —2sinB +2
O y —2=-2cosb ...(id)

From Egs. (i) and (i),
(x=2)" +(y —2)° =4
g xi+yt—4x -4y +4 =0



§7. Any point on the parabola x* = 4y is (2t, t*), t being parameter.

If (x, y) be image of the point (2t, t*) in the x+ y =a, then

_ _ .2
x 2t+y t

1
or x — 2t
a x—a
and y -t
a y-—a

1

1+1
=-2t —t* +a
=-2t —t* +a
= —42

=-2t —-t* +a

= -2t

From Egs. (i) and (ii) we get

&y —a)? =4 = -4(x —a)

or v -a?
Sol. (Q. Nos. 58 to 60)

=4(a - x)

Given orthocentre O =(1, 2)

and circumcentre

-2(2t +t* —a)

...(ii)

0=24)
A
E
F ’
,,’ A TA R
2 h h s
B D M 2x7y:3

Slope of OO" = Slope of 2x —y =3)

3
and OD=0'M=—
5
Let R be the circumradius
0 O'M = RcosA
3
O RcosA =—
\5
58. R = AO' = \/(AOD)* + (00')*

= (2RcosA)* +5

i

6

5

w1 5

59. -- OD =2RcosBcosC

O

3
2RcosBcosC = —

NG

=RcosA

[from Eq. (i)]

[from Eq. (i)] ...(ii)

0 cosA =2cosBcosC
- cos(B C¥ 2cosBcosC
O- (cosBcosG sinBsinCy 2cosBcosC

or sinBsinC =3cosBcosC

(FA+B+C=m)

3
=3 X
2R5
-9 D-R— 610
2461 b 51
60. - AO=2RcosA
3
=2 X— from Eq. (i
NG [ q. ()]
-6
5

61.

62.

The equation of straight line through (2, 3) with slope m is
y—=3=m(x —-2)

or mx —y =2m =3
or X + Y =1
é@m—?@ (3 —2m)
m
Here, 0A=2""3  0B=3-2m
m

*» The area of AOAB =12

0 O x 04 x 0BP=12
) a
1[Pm-3

or 7g;§3 —-2m)=%12
2 m

or (@m —3)% = +24m

Taking positive sign, we get 4m®> —36m +9 =0

Here D > 0, This is a quadratic in m which given two value of
m, and taking negative sign, we get (2m + 3)* = 0.

-3
This gives one line of m as o

Hence, three straight lines are possible.

- Point of intersection of ax + 3y -1 =0andax +y +1 =0is

2
A Q‘*, lgand point of intersection of ax + 3y —1 =0 and
a

+3y =0is B 1 g

x =0is -

Y Bt 3(a—1)H

0 Slope of OA is ""’A:_g

and Slope of OB is mgp :—%
Moa X Mop = ~1

O o

2 3
or a=-6
N la| =6



63. Here, B is the image of Aw.rtliney = x
0 B=(21)andCisthe image of Aw.r.tline x =2y +1 =0if

C =(a,B), then
a-1_B-2_-21-4+1)
1 -2 1+4
9 2
or o0==and B=-
5 B 5
. = 2F
5
O Equation of BC is
S
y-1= (x-2)
S
or 3x -y -5=0 (- Eq.of BCisax + by =5 =0)
Here, a=3b=-1
a a—2b=5

64. On the line y =1, the number of lattice points is
(2007 —223[]_

L2017 20 L qog
H o H
I
0,98
>
1
0 A X
(223, 0)

Hence, the total number of points
_ & @007 -223y 00
D

=198 +173 +148 +123 +99 +74 + 49 + 24 =888
Hence, tens place digit is 8.
65. A rough sketch of the lines is given.
There are three triangle namely ABC, BCD and ABD

X<

66. Leta be the length of side of square
| a*+a?=2" 0 a=2
i.e. distance between parallel lines is +/2
Now, let two lines of family y = x + narey = x + n, and
Yy = x + ny, where
m, ny, {0, 1,2, 3, 4}

Iy —ny| _
- I —nl 5
V2

or |n —nyl =2
O {m,n,}are{0,2},{1,3}and {2, 4}
Hence, both the family have three such pairs. So, the number

of squares possible is3 X3 =9.

67. Let the coordinate of C be (1, ¢), then

_c-y
m, =2
: 1-x
c—mx
or my = ——— (. slope of AB=m)
1-x
O my(1 —x)=c —myx
or c=(m —my)x +my,

1
Now, the area of AABC is 5|cx -y
—_— 1 —_—
= 5(("11 —my)x +my)x —mx| (- y =mx)

= 1(ml —-my)(x —=x*)  [m >myand x 0(0,1)]

Hence, f(x) = %(x - x?)
O LACI I PP
dx 2
2
and df(zx)=_1<0
dx
For maximum of
df(x) 1
x), =00 x=-
fx) . )
1 1
0 =1 % - 7@
f0 o =2 -1
=1 A (given)
3 g
O Log
A
68. Equation of ABis3x —2y +6 =0
Y A
A0 3)
<P, A+1)
C®6,1)
X< B 0 >
20 |,




69.

70.

Equation of BCis x =8y +2 =0,

Equation of CAis x +3y =9 =0

Let P=(A\ A +1)

‘> Band P lie on one side of AC, then
A+3A+1)-9 S

0
-2+0-9
or AN -6<0
3
or A<Z

and C and P lie on one side of AB, then
BA-2A+1)+6
7 >0

18-2+6

or A+4>0

or A>-—4

Finally, A and P lie on one side of BC, then

)\—8()\+1)+2>0

0—-24+2
or =7\ =6 <0
or A > -6
7
From Egs. (i), (ii) and (iii), we get
_é < )\ <§
2

Integral values of A are 0 and 1.
Hence, number of integral values of A is 2.

Lines

(2a + b)x +(a +3b)y +b —-3a =0
or a@x+y —=3) +b(x +3y +1) =0
are concurrent at the point of intersection of lines
2x+y -3 =0and x + 3y +1 =0 whichis (2, —1).

...(iii)

Now, line Ax + 2y + 6 =0 must pass through (2, —1), therefore,

2AN—2+60rA=-2
O [A[=2
Since, PQ is of fixed length.

Area of APQR = é\ PQ| | RP|sin®

This will be maximum, if sin® =1 and RP is maximum.

| |
Q 3x+4y+5=0

Since, line y = mx + 7 rotates about (0, 7), if PR’ is

perpendicular to the line than PR’ is maximum value of PR.

-oQ
q o _Bt-od_4

“THHS

Hence, 3m=4

71.

72,

(A)

Ly
In this case no circle
0 n=00 n+1=1
(B)

In this case no circle
O n=00 2n+3=3

© /
O
/

In this case two circle which are touching all three lines
t n=20 n+2=4
(D)

In this case four circle which are touching all three lines

| n=40 n+2=6
(A) The given lines an concurrent. So,

1 -2 -6

31 -4|=0

N4 N
or N 42\ -8 =0
or A=2—4
a [A|=24
(B) Given family is

3x(a +1) +4y(a —1) —3(a —1) =0
or a@Bx + 4y —3) +(3x —4y +3) =0
for fixed point=

3x+4y -3 =0
and 3x —4y +3 =0

3

t x=0y= "

Fixed point is @%@



73.

3
Here p=0,q=Z

0 4A[=4lp-q|=3
(C) The point of intersection of x —y +1 =0and
3x +y =5 =0is (1, 2). It lies on the line

x+y—1—§\—D:0
0
a 1+2—1—§‘—D:0
0
or [A|=4 or AN=-4,4
t A+ E- 350r|A+1=35

(D) The mid-point of (1, —2) and (3, 4) will satisfy
y—x—-1+A =0

or 1-2-1+A=0

O A= 2or |A=2

(A) The points on the line x = 0, whose y-coordinate lies

5 7
between 3 and 5 inside the triangle ABC.

5 7
O —<A<- or 5<3A<105
3 2
O 13\ =6,7,8,9,10
(B)C=@23)
The points on the line x =1, whose y-coordinate lies between
8
3 (putx=1in3y —2x =5 =0)
13 .
and " (putx =1in4y + x —14 =0)
1
O §<)\<—3 or8 <3\ <975
3 4
O BA|=9
(C)- B=(-1,1)
The point on the line y =2, whose x-coordinate lies between
—4 )
5 (puty =2iny +3x +2 =0)
1 .
and 3 (puty =2in3y —2x =5 =0)

-4 1
0 ?<)\<50r_8<6)\ <3

Integral values of 6A are
=7,-6,=5,-4,-3,-2,-1,0,1, 2

O 6A[=7,6,5,4,3,2,1,0

(D) A =(-2 4)

. . 7 . .
The points on the line y = 7 whose x-coordinates lies between

7
0 (puty=gin4y+x—l4=0)
-11 7
and o (putyZEiny+3x+2=O)
-11
0 —— <A <0
6
or -11 <6\ <0

Integral value of 6A are
-10, =9, =8, =7, =6, =3, =2, -1
0 I6A| =10,9,8,7,6,5,4,3,2,1

. (A)~ max.{|.|yl} =1

If |x=1landif|y|=1
thenx=%1 andy = *1

Y
A y:‘]
X~ > X
X=— @) x=1
y"'y;1

0 Required area =2 X 2 = 4 sq units
(B) The line y = x cuts the lines|x + y| =6

ie. x+y=%6

at x=%3,y=4%3

or (-3, —3)and (3, 3)

then -3 <a<3

ad 0<|a <3

d [lal]=0,1,2

(C) Since (0, 0) and (1, 1) lie on the same side.
So, a®+ab+1>0

-+ Coefficient of a® is > 0

O D<O0
b —4<0or —2<b<2
0 b=-10,1

[0 Number of values of b is 3.



75. (A) - d(x,y) =2/x +3|y| =6 (given) (C)0O Slope of AC X slope of BC = —1

Y
O M+M:1 A
5002 Clk, )

0,6) B

C A
X'« = X
] Q >
( 3 O) '''''''''''''''''''''''''''''''''''''''''''''''' (3,0 o) A6, 0) X
[N i3
D|(0.-2) 0 -oQ -60
X =-1
b ot
A
y' D u 2 —'.6 = A‘ 2 +}6
OPerimeter, A = 4+/13 or A +p? —6A —6u =0
and area, =4 <1 X3 X2 =12 Hence, locus of (A, 1) is
2 x*+y?—6x —6y =0
2
then )\— -u=1 76. - x(a +2b) + y(a +3b) =a +b
16
0 +y-1)+ +3y —-1) =
and M —pi? =64 a(x+y—1) +b@2x +3y —-1) =0
then x+y-1=0and2x+3y -1 =0
Hence, locus sz()\’ W)are O point of intersection is (2, —1)
x" —16y =16 Hence, both statement are true and statement Il is correct
and x2 = yz =64 explanation for statement I.
(B) 1t is clear that orthocentre is (6, 6) 77. - Algebraic perpendicular from (3, 2) to the line
O =(6,6), 3x —2 +1—0'w L—
y =0is ie. =p (say)
Circumcentre is C' = (3, 3) and centroid is G' = (4, 4) VO +4) V13
Y and algebraic perpendicular distance from (1, 4) to the line
I 3x =2y +1=0is
B (6, 6) 3-8+1 -4
06)C g e ie.—— = sa
et s2)
6 -4 —24
O - —— X—=——-X<(
L SN TN TRT
Hence, both statements are true and statement II is a correct
explanation for statement L.
' x 78. Sum of algebraic distances from points A(1, 2), B, 3), C(6, 1) to
o] A®B,0) the line ax + by + ¢ =0is zero (given), then
a+t2b+c +(2a+3b +c)+(6a+b+c)_
O A=0C=(0-3)2+(6-3) J@@+p%)  J@+p?) @+ )
=/9+9 =32 0 9a +6b +3c =0
and L=C'G=J(4-3) +(4-3)° or 3a+2b+c=0
[ Statement I is false.
=J1+1=42 +2+6 243 +1
2 2 Also, centroid of AABC is Ql , Q
O AN“fH “=16 and A=3u 3 3
Hence, locus of (A, 1) are ie. (3,2)

x? - y2 =16 and x =3y [J Statement II is true.



79. Equation of AB is

0-1

y l—m(x 0) 0 x+2y-2=0
. |PA — PB| <| AB|
0 | PA — PB| to be maximum, then A, B and P must be
collinear.
Solving x+2y-2=0
and 4x +3y +9 =0,
we get = gﬂ H@

5 5

Hence, Statement I is false and Statement II is obviously true.

80. Statement IT is false as the point satisfying such a property can
be the excentre of the triangle.

Let Excosggg+ sin% T =0,
L 9 Y 9
Tt .
L,= xcos%§+ ysm% —T=0and

3T
Excos§—§+ siné‘L -T=0
L 9 Y 9

and P =(0,0)
Length [from P to I, =Length of [lfrom P to L,
from P to L; = Ttand P lies inside the triangle.

=Length of []

L P(0, 0) is incentre of triangle.
Hence, statement I is true and statement II is false.
81. - Mid-point of (5, 1) and (=1, =5) i.e. (2, —2) lieson x + y =0
and (slope of x + y =0) % (slope of line joining (5, 1)
and (1, =5)) = (~1) x lz
[J Statement I is true.
Statement II is also true.
Hence, both statements are true but statement II is not correct
explanation of statement L.
82. Equation of AC and BC are3x + 2y =0and2x +3y +6 =0
= (3)2) +(2)3) =12 >0
Ulnternal angle bisector of C is

§x+2y§ é}&x+3y+6

or 5x+5y +6 =0
[0 Statement I is true.

Also, the image of A about the angle bisectors of angle B and C
lie on the side BC. (by congruence).
[] Statement II is true.
Both statements are true and statement II is not correct
explanation of statement I.
83. - Points (x;, y;) and (x,, y,) lie on the same or opposite sides of
the line
ax + by +c =0,as
GG TN TE thy e >0o0r<0
ax, + by, +c¢

[0 Statement Il is true.

Also, (2a — 5, az) and (0, 0) on the same side of x + y =3 =0,
then

2a =5 +a* -3

— >0

0+0-3

0 a® +2a-8<0
or (a+4)(a-2)<0
0 aOf 4,2)

[0 Statement I is false
Hence, statement I is false and statement II is true.

84. 1n AOBD, BD - R ()
sin (Tt =2C) sin ©
In AODC, bc __ R (i)
sin (Tt 2B)  sin(TT—§
BD _sin2C

From Egs. (i) and (ii),

DC  sin2B

[0 Coordinates of D are
[k, sin2B + x3sin2C  y,sin 2B + y; sin 2C0
sin 2B + sin2C sin2B +sin2C

Let (x, y) be any point on AD, then equation of AD is

g g
O X y 1D
O bl V1 1%0

g
[¥28in2B + x35in2C  y,sin2B + y;sin2C 14
[] sin2B +sin2C sin 2B + sin 2C 0

0 x y
or H X V1
[, sin2B + x3sin2C  y,sin2B + y;sin2C
1 0
1 H=0
sin 2B + sin 2C[]
o x y 1 0
orH X A2t 1 H
X, sin2B y,sin2B sin 2B[]
o x y 10
+H X1 Vi 1 HZO
[X3sin2C  y3;sin2C sin2(]
Ox y 10 Ox y 10
or (sin2B)E|x1 B2 IH+(sm2C)Hx A 15—
O Y2 s ys 10



85. Let(x,, y;) be the coordinates of a point at unit distance from

86.

each of the given lines.
- + + +
Bx — 4y, +1| =1 and Bx; + 6y, + 1] =1

a
3%+ 4 /8% + 6’
g 3x; —4y; +1 =%5 and 8x + 6y, +1 = %10
a 3x; —4y;, —4 =0
or 3x; —4y; +6 =0
8x; +6y; =9 =0
or 8x; + 6y, +11 =0
1Hn G
g x/60=y,/—-5=1/50,
1
0 Xi, =%,——§
(o1 1) 10
1Hn@®
O x /=20 =y, /—65=1/50,
2 13
a X1, =§~7,——
(o1 1) 5 10
2)n B
g x /0=y /75=1/50,00(x;, y;) =(0,3/2)
@ n@
8 3
O x/—80=y,/15=1/50,0(x,y,) = g,BQ

Hence, the required four points have the coordinates
% ol B 1ok B 5 108
©10 57 10007200 57100
Let HOAB= o

a OA = AB cos0 and OB = ABsina
(OA)? + (OB)? = k*

R4
5
P
5 90°-a
X' < o) A\ > X

"Y’
ie. (AB)? (cos®at + sin’a ) = k?
or AB =k
then OA =kcosa and OB =ksina
0 Equation of ABis + Y =

kcosa ksina
or * + y =k

cos  sina

Let P be the foot of perpendicular from O on AB.

GaZ

()
(i)
(i)
(V)

()

87.

0 Equation of OPis y = x tan (90° —a)

or

O

and

cot(X=X

X
Sina:%
(x"+y%)
COSGZ%
(x"+y7)

(i)

Substituting the values of sin 0 and cos 0 from Eq. (i) in (i)
then we get the required locus of P

O

O

X

y —k

+
YINEE YY) x

(x* + %) J(x* + y?) =kxy

Squaring both sides, we get
(xZ + y2)2 (xz + y2) :k2x2y2

or (x4

or

DnyZ

2

I+ y?)

O x? O
ZDX + Y 0= k2

x*y*0
(< + P (7 +y™) =k

Let the equation of variable line be
ax + by =1.Then the coordinates of A, will be

01

A"EELTP

bp a+

p

O
pr

§ o p Ho,
= Ja+ pHH
& p

P+ )



88.

So, line always passes through a fixed point whose coordinates
are

] 0
n 1 n

Ox 2 + z 4 0

0 Poa+ph)  ra+ )

a ¢ ¢ 0
Let the equation of given n lines be

y=m,Xx + Crs
where r=1,23,...,n (1)
Let equation of line through origin O is

y =mx (i)

N

y =mx
Rﬂ
y = mx+c
Rs
Ro
Y = MgX+Cy
R
R, Y = MyX+Cy
v < [ ¥ = myx+cy ‘X
A 4 Y'

Solving Egs. (i) and (ii) , we get

c me, U

O
il Sr——
0 ORr:\/ﬁnc mc,g
m,

m -
o .0
H B
24 Hlt+m) (i)

om - m0]
Let  R=(xy)
g Y =mx; O m=L . (iv)
X
Given, s Z L
OR =1 0R,
0 n sHr-mg 1 [from Eq . (iii)]
Vo + D) "0 o oJa + m?)
1 Uhepga@ ¢ |
m 02 [ %+Z ﬁgm
(t+m O EEN A 0
=1 (ma+b)
(1+m")
O

RZRp )
then Zn == al [from Eq. (iv)]
\/(xl + 1) \/ %DZ
1+ H
1
O n=ay; + bx

Hence, locus of point Ris bx + ay =n.

89. First equation can be expressed as

(2x +3y —5) cos 8 +(3x =5y +2)sin B =0
O (2x +3y =5) +(3x =5y +2)tan =0
It is clear that these lines will pass through the point of
intersection of the lines
2x +3y =5 :OE )
3x =5y +2=0[]
for all values of 6.
Solving the system of Eq. (i), we get (1, 1).
Hence, the fixed point is P (1, 1). Let Q (0, B) be the reflection of
P(1,1)inthelinex +y =

Then G T1oB1_ —21+1—f) _ 7 -2
1 1 12 + 12

0 a=+2-1,p=+2-1

ie. 0=(2 -1,+2 -1)

If the required family of lines is
(2cosB +3sinB) x +(3cosB —5sin B) y =A

in order that each member of the family pass through Q, we
have

A =2 -1)(2 cos® +3sinB® +3 cosB —5sin B)
A =(2 -1)(5 cos® —25sin0)
Hence, equation of required family is
(2cosB +3sinB) x +(3cos® —5sin ) y
=2 —=1) (5 cos 8 -2 sin B).

90. Let R (h, k) be the foot of perpendicular from Q on OP.

Let equation of OP be
Y A A
P(a,ma)
Tk
A x-a=0
X' < 6 > X
0 Q A(@,0)
wY' Y
y =mx
then k =mh
k .
or m=— (0
3 )
and coordinates of P = (a, ma)



91.

92,

PQ is the bisector of OPA

0 0 APOO  RPQ

and OPAG-0 QRP 90

a PA = PR

then |mal = \/(h -a)? +(k —ma)®

. ak
From Eq. (i), Dh[l \/(h -a) + % g
O alk|=|(h = a)| /(R + &%)

Hence, required locus is
(x-a) (x* + %) =a'y’
Let the coordinates of the vertex be (h, k) and equations of the
bases be
xcosO,+ ysind,—p, =0 wherer=1,2,3,....,n
and their lengths be respectively [, I, I, ...., I,

-+ Length of perpendicular from (h, k) on
xcos0,+ ysind, — p, =0is
|hcosa, + ksina, — p,|

\/(cosza + sin’a)
ie. |hcosa, + ksina, — p,|
Given, sum of areas of all triangles = constant
then

n

,1 Oh cosa, + ksina, = p|=C'

r=12

a zé.l,.(i(hcosc(r+ksin0(,—pr)):C
r=1
Ue 1 WL 1, g
O h[@2 £-1Icosa,J+k 55 + 1 ina
£ frk g s e ]

0 Ah+Bk=-C
U Required locus is
Ax+ By +C =0

where A, B, C are constants.

The equation of BUis
0-B
y-B=—-(@x-a)
6—0a
a a
So that the coordinates of D are H), 6B
6—0a
LY
C
DR
\U(p)
% N
X~ 20 Ao Beo X
Y YY

93.

a 30
Similarly, the coordinates of C are B), B
3-a
Now, the equation of AD is
6—0q
E + u y = 1
3 6B
and the equation of OU is
Bx =ay
Solving Eqs. (i) and (ii), we get
60 6
x = 5 y = B
6+ 6+ q
U 6a o U
Hence, coordinates of V are 157 —
+a 6+0
Then, the equation of CVis
6B _ 3B
3 6+a 3-a
y- B (x=0)
3-a 6a 0
6+0a
3 -9a
O y - B 7B x

3-a 60 @B-q)

“orm a3

O

which pass through the point (2, 0) for all values of (a, 3).

Let the equation of the variable line through ‘O’ be
X _Y

cos® sin®

and let OR =1, 0S =r,and OP =1,

Ly py

S

R y==¢ L
P(h,k)

X' < 0 ) > X

>
Y Q
7

Then coordinates of R, Sand P are :

()

.(ii)

R (1 cos 6, r; sin 0), S (r, cos 6, 1, sin 6), P (r; cos 6, r; sin 0)

Rlies on L, and S lies on L,.

Let L=y-c=0
and Ly=ax +by -1 =0
0 rsin® =¢ and ar, cos® +br,sin B =1
1
0 K= and = ———
sin © acosB+bsinB

From the given condition
m+n_m n
=—+

3 it 1)

m+n _msin®

+n(a cos® + b sin 0)
r c

()



94.

95.

Let the coordinates of P be (h, k), then
h=r;cosB, k =r;sin 0

FromEq. (i), m+n= mr sin @ + n (ar; cos © + bry sin 0)
c
mk
a m+n=— +n(ah +bk)
c
Locus of Pis n(ax + by) + my =(m +n)
c
m
a nax+by -1)+—(y —c) =0
c
a (ax+by—l)+ﬂ(y —c) =0
nc
ad L,+ AL =0 @uhere, A= ﬁ@
ne
Hence, locus of Pis a point of intersection of L; and L,.
The given lines are
x+3y+2=0 ...(1)
2x+y +4=0 (i)
x—y -5=0 ..(iid)

Equation of the line passing through A (-5, — 4) and making
an angle 0 with the positive direction of X-axis is

+ +
X*S _Y* 4 (AB AC, AD)

(V)

cos® sin©

0 Points(—=5 + AB cos 6, —4 + ABsin 0),
(=5 + AC cos 6, —4 + AC sin 0) and
(=5 + AD cos 6, =4 + AD sin 0) lie on Egs. (i), (ii) and (iii)
respectively.
(-5+ AB cosB) +3(—4 + ABsin0) +2 =0
AB (cos 0 +3sin 8) =15

15
—— =cosB +3sin 0O
AB

1
Similarly, 10 2cosB +sin b
AC
6 .
and —— =cos0 —sin O
AD
From given condition

faf + Bef -85

we get (cos® +3sin 8)> +(2 cos 8 +sin ) (cos B -sin §)°

a 4 cos’0 +95sin’0 +12sin O cos 6 =0
ad (2 cos © +3sin 8)* =0

2
ad tan® = ——

3

Hence the equation of the line from Eq. (iv) is

2
y+4=—g(x +5) 0 2x+3y +22 =0

.+ A, R and B are collinear
then, k—Ozmb—O
h—a b-a

0 %k—am+mh -k =0 ()

96.

Let P =(a,)

LY e

\l -
P B(b,mb)
R(h,k)

X' < >
@) (b,00Q A(a0)
A YI

"+ Pbe the foot of perpendicular from A on y = mx, then
od-a_B-0_-(0-ma)

-m 1 1+ m?)
D q= a ) - am
1+ m? 1+ m?
O O
ie. p=" am

0+ m® 1+ m?0

0 Equation of PQ is

am
+ m? -0
y—0:1 m (x - b)
a
5~ b
1+m
O %(y—mx) +am -1 +m®)y =0 ..(ii)

Adding Egs. (i) and (ii), then
%(y —mx + k) +(mh —k -(1 +m?)y) =0

0 (mh—k -1 +m*)y) +A(y —mx +k) =0

@Nhere, A= EQ
b

Hence PQ pass through a fixed point.
For fixed point
mh-k—-1+m®)y =0,y —-mx +k =0
_mh-k _ h+mk
) Ca+m)

1 +m?)

+ -k
Hence, fixed point is M, mh ]ZCD
+m” 1+m"0

Given lines are parallel and distance between them <2

Given lines are

2x+y =3 (i)
2x+y =5 ..(i1)
Equation of any line through Eqs. (ii) and (iii) is

and

y—3=m(x —2)
or y =mx —2m +3 ..(iii)
Let line (iii) cut lines (i) and (ii) at A and B respectively.
Solving Egs. (i) and (iii), we get

d2m 6-mO

A= B2 meal]




and solving Eqs. (ii) and (iii), we get
m+2 m+ 60

b= m+2’m+ZH

According to question AB =2

0 (AB)Z =4
O U 2m 4
BTH WB -
g 1+m*=m? +4m +4 (iv)

Case I: When mis finite (line is not perpendicular to X-axis)
then from Eq. (iv).

1=4m+4
3
u m=-—
4

Case II: When m is infinite (line is perpendicular to X-axis)
then from Eq. (iv),
1 4 4
4+ 1=14+—+—
m? m  m?
0+1=1+0+0
1 =1 which is true
Hence m — oo acceptable.

Hence, equation of the required lines are

y- f(x -2)
and Y- =x-2 Ox-2=0
ie. 3x+4y =18 and x-2=0
Aliter 1:

2x +y =3 cuts Y-axis at (0, 3) and line 2x + y =5 cuts
Y-axis at (0, 5)

ALY
\2 A
AN
D P(2,3)
\ A
X —f M > X
“5 >
1 \% 2\2x+y:5
d B
,,\2x+y=3

Therefore intercept on Y-axis is 2.

Also, AM = distance between parallel lines
_|=5+3]_
J28 + 17 «/g
4 4
O MB = [(AB)* =(AM)* = [4 —— =—
(AB)” —(AM) 5 6

AM 1
then tana =——=-
M 2

Also  tanB =-2
Now, equation of required lines are
y—3=tan(®@ £ a)(x —2)
_ Htan + tana 0

0 117
¥ tan0 tana B(

(slope of 2x + y =5)

(-2 t%

a y—3—m%(x—2)
G2

0 y-3= 2= (x = 2)

)
O aF(¢-1) -3) :%2 i%@(x -2)

O x=2=0 and 2y—6=—%(x—2)

ie. x—2=0 and 3x+4y —18 =0

Aliter IT : Any line through (2, 3) is
x—=2_y-—3_

cos@  sinB

Suppose this line cuts 2x + y =5and2x + y =3 at Dand C
respectively but given DC =2

then D=2 +rcosb,3 +rsinb)
and C=@2+(r +2)cosb, 3 +(r +2)sin0)
* DandC lies on
2x+y=5 and 2x+y =3

then 2(2 +rcosB) +(3 +rsinB) =5 (V)
and 2@+ (r+2)cosB) +(3 +(r +2)sinB) =3 ... (vi)
Subtracting Eq. (v) from Eq. (vi), then

4 cosB +2sinb = -2

or 2 cose +5sin@ = -

D 0 - tan %QD 02 tan %@
o w2
0 2—2tan2%§+2tan %Q:—l—taﬁ%@
O tanzgg—zmngg—3:0

0 tan%@z—lorB

3
0 tan® = or _Z

DD
|

g 2 =-1

EI]:EIDDD

0 Required lines are
y —3=0(x —2)

and y—3=—%(x -2)

ie. x—=2=0
and 3x+4y -18 =0



97. If I be the incentre of AOAB. 99. The line passing through the intersection of lines
If inradius =r ax + 2by +3b =0and bx —2ay —3a =0is
then ID=IE=IF = r ax +2by +3b + A(bx —2ay —3a) =0

O (a + bA)x +(2b —2al)y +3b —3Aa =0

AY
As this line is parallel to X-axis.
1 0 a+br=00 A=-2
5[1.3) b
F& TIE
7 rirI' X O ax+2by +3a —%(bx —2ay —3a) =0
15 :\-'..‘:'...-/’o 15 2 2
X < A AT Y U ax+2by +3b —ax +2iy +3i =0
@) D A(2,0) b b
i 0 220 2
Ty y2b+ 20+ 3p +2% =
O b O b
If P at Lthen , . , -
d (P,0A) =d (P,OB)=d (P, AB) =r yEPb +2a°d_ Bb° + 307
But  d (P,0A) < min{d (P, OB), d (P, AB)} o v 0O 0O b O
which is possible only when P lies in the AOIA. )= —-3(a® +b*) _ -3
0 tan15° = 12 =T 202 +a%) 2
OD 1 3
O r=2-43) So, it is 3 units below X-axis.
U Required area = é @0 =r =2 —+/3) sq units. 100. Y
98. Let A =(x,,y,), B =(xy, y,) and C = (x5, y5) are the vertices of \ P(0. b)

a triangle ABC and P =(a,, by), Q =(ay,, b,) and R = (as, bs) are
the vertices of triangle PQR.

Equation of perpendicular from A to QR is A3 4)
a, —a
y-y =GBy
(bZ - b3) Q(a, 0)
or (a; —as) x +(b; =bs)y —x(a; —as) =yi(by —bs3) =0 ..(J) @) \ >X
Similarly, equations of perpendiculars from B to RP and C to
PQ are respectively, “» A is the mid-point of PQ, therefore
(a5 —a) x +(by =b)y —xy(as —a) ~y, (bs —by) =0 ..(ii) a+0 —5 0+b —y
and(a; = ay) x + (b —b,) y —x3(ay —az) ~ys (b —by) =0..(iii) 2 )
Given that lines (i), (ii) and (iii) are concurrent, then adding, O a=6b=8
we get . L. X Yy
(g = x3) @y + (x5 —x1) ap +( —x3) a3 +(y, —y3) by + HEquation of line is E Tl
s =y)by + (0 —y2) by =0 -(1v) or 4x +3y =24
Now, equation of perpendicular from P to BCis 101. Clearly for point P
Xy = X ’
y_blz_M(x_al) y
(y2 = ¥3) A y=3x
or (2 =x3) x +(y2 =y3) ¥y ~@

(3 = x3) =bi(y2 —y3) =0 ..(v)
Similarly, equations of perpendiculars from Q to CA and R to
AB are respectively,

(x5 =x) x+(y3 —y)y —ay y:%
(x5 = %) = by (y5 —y1) =0 (Vi) 0

and (0 =x) x+(y1 ~y2)y —as >x
(1 = x3) =bs (31 —y2) =0 (vii)
Adding Egs. (v), (vi) and (vii), we get , , a
. . . a“—3a<0anda® —-—>0
LHS = 0 (identically) [ from Eq. (iv)] 2
Hence perpendiculars from P to BC, Q to CA and R to AB are 1
concurrent. O 9 <a<3



102. Point of intersection of L, and L, is A(0, 0).
Also P(-2, —2), O(1, —2)

‘R

Ly:y+2=0

~2,-2 /P Q\(ﬁ, -2)

* AR is the bisector of [1PAQ, therefore R divides PQ in the
same ratio as AP : AQ.

Thus PR: RQ = AP: AQ=22:/5
0 Statement I is true.
Statement II is clearly false.
103. Given : The coordinates of points P, Q, R are (-1, 0), (0, 0),
(3, 3\/37) respectively.

i R (3,3V3)
M
. 2n/3 /3 X
G0 laoog X

'Y'

Slope of equation QR = Y27y 393
Xy — X 3
T
a tand=+3 0 0= 3
O ORQX= g
O ORgP= 7= =20
3 3

Let QM bisects the [JPQR,
O Slope of the line QM = tanz?n =-3

0 Equation of line QM is(y — 0) = -\B(x -0)

a y==Bx 0 Bx+y=0
104. (A) . L, L,, L, are concurrent, then
1 3 =5
3 -k -1|=00k=5
5 2 -12
(B) slope of (L;) = slope of (L,)
O 123 gk=—9
3 k
and slope of (L;) = slope of (L,)
O —g :E 0O k= —E
2k 5

(C) Lines are not concurrent or not parallel, then

6
k7t5,k:t—9,k;t—g

O k==

(D) The given lines do not form a triangle if they are
concurrent or any two of them are parallel.
O k:5,k:—9,k:—§

3-4 -1
105. sl fPO=" "=~
ope ol PO = =]

O Slope of perpendicular bisector of PQ = (k —1)

. . +17
Also mid-point of PQ gT,EQ

0 Equation of perpendicular bisector is

y-% =(k-1) @-%@

2y =7 =2(k —1)x —(k* -1)

0 2(k —=1)x =2y +(8 —=k*) =0
_ 1.2
0  Y-intercept = 8 ;C =—4
0 8-k*=-8 or k=160 k+ 4

106. 1f the line p(p* + 1)x =y +¢q =0
and  (p* +1)’x +(p® +1)y +2q =0

are perpendicular to a common line, then these lines must be
parallel to each other,

2 2 2
. m=m, 0 PP D@ D)
-1 p-+1
0 (p* +1)(p +1) =0
g p=-1

U p can have exactly one value.
107. Slope of line L = —g

Slope of line K = 23
c

Line L is parallel to line K.

b _3
O —==0 be=15
5 ¢
(13, 32) is a point on L.
1
0 B 32_,p32__8
5 b b 5
3
O b=-200 c=-=
4
Equation of K : y —4x =3
a 4x -y +3 =0
-32 +
Distance between L and K = pz=32+3
V17
23
V17



108. Let the slope of line L be m. 111. Suppose B(0, 1) be any point on given line and coordinate of A

+ is «/g, 0). So, equation of
Then B+ BE. 5 (3, 0)- 50, eq
0 = ~3m0
N gr©@ 1
\V3x+y=1
1) - ,
X< X “AB0)
0 0"
L (Sv 72)
Y 2B (0,1
a m++3 =+(3 —3m) -1-0_ y-0
0 4m=0or2m=23 Reﬂectedraylso_\/g=x_\/g
0 m=0orm=+/3 0 \/§y=x—«/§
- L intersects X-axis, 0 - — O
= 112. The intersection point of two lines is R
0 m=+/3 p H o+ 2+ b0
OEquation of Lis y + 2 =+3(x —3) 0 0
- —-c
. - - Distance between (1, 1) and , <22
or Bx—y -2 +33) =0 (1,1) %a+bH
109.
£ o 0 2+ d <3
B a+ bH
O_AP (-2, -2
a 1+ <2
R(-1,-2) a+b
_______________________________ »
O atb-c>0
943( > 113. Let P, Q, R, be the vertices of APQR
%0 \
P22
b 2.2
L:y—-x=0 Ly:2x+y =0, Ly:y+2=0
On solving the equation of lines L, and L,, we get their point of
intersection (0, 0) i.e. origin O.
On solving the equation of lines L, and L,
we get P =(-2, -2)
Similarly, we get 0=(-1-2) )
We know that bisector of an angle of a triangle, divide the Q®6,-1) S f7.3)
opposite side the triangle in the ratio of the sides including the
angle [Angle Bisector Theorem of a Triangle] Since, PS is the median, S is mid-point of QR
02 4 ()2 + _
- m_or o2 o o sefeai.me g
RO 0Q [-1)* +(-2 5 2 2 2
2-1 2
110. Let the joining points be A(1, 1) and B(2, 4). Now, slope of PS = 5 —g
Let point C divides line AB in the ratio 3 : 2. So, by section 2= 9
formula we have Since, required line is parallel to PS therefore slope of required
C = [Bx2+2x1 3x4+2x 1D= % EQ line = slope of PS Now, eqn of line passing through (1, —1) and
5+2 ° 3+2 O 53 havi .
aving slope —g is
Since Line 2x + y =k passes through C%, %@ y—=(-1) = _g(x -1)
OC satisfies the equation2x + y =k. 9y +9=-2x +2
2+8 14
ad T+?=ka=6 O 2x+9y +7=0



114. Given lines are
4ax + 2ay +c¢ =0
5bx +2by +d =0
The point of intersection will be
X _ -y 1

2ad —2bc  4ad —5bc  8ab — 10ab
x_2(ad —bc) _bc—ad

a
—2ab ab

O _ 5bc — 4ad _ 4ad —5bc
—2ab 2ab

- Point of intersection is in fourth quadrant so x is positive
and y is negative.
Also distance from axes is same

So x =-y (. distance from X-axis is —y as y is
negative)
be —ad _ 5bc — 4ad 0 3be —2ad =0
ab 2ab
115. Let the point P be (x, y)
- +
Then dy(P) =B MWand d,(p) =B~ 0
For P lying in first quadrant x >0,y > 0.
Also 2<d(P)+dy(P)<4
X -y x+ty
t 2< + <4
V2 V2
If x >y, then
-y +x+
2 XY T chorzsx<2v2
V2
If x <y, then

—x+x+
2s%s4or«55yszﬁ

The required region is the shaded region in the figure given

below.
Y
A
LYy=x
y=2[2 ’
y=12 =
0 Pt T,

U Required area = @2V2)* =(2)* =8 -2 =6 sq units

116. Total number of integral points inside the square OABC

=40 x40 =1600

Number of integral points on AC
= Number of integral points on OB
=40 [namely (1, 1), (2, 2) ... (40, 40)]

o, 41)(; (41,41)8
0 A
©, 0) (41,0)

0 Number of integral points inside the AOAC

1600 — 40
=— =780

117. x-y+1=0

xy+A=0

Let other two sides of rhombus are

x—y+A=0
and 7x -y +H=0
then O is equidistant from AB and DC and from AD and BC
d [-1+2+1| =|-1 +2 +A\| OA =~ 3
and |=7 +2 =5 =|7 +2 +y| Op= 15
UOther two sides are

x—y—3=0

and 7x—y +15 =0

On solving the equation of sides pairwise, we get the vertices

as % %SQ 1,2, % _?4@ (-3, -6)



