Relation and Functions

Multiple Choice Questions :-

1) A relation R on set A = $\{1, 2, 3, 4, 5\}$ is defined as R = $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}$ then R is relation						
		c) Transitive	d) Equivalence.			
2) Let R be the relation on set A = { $x \in Z : x \le 20$ }, defined by R = {(a, b) : Ia - bI is a multiple of 3}, then [4], the equivalence class of 4, is a) {0, 4, 8, 12, 16, 20} b) {1, 4, 7, 10, 13, 16, 19} c) {0, 1, 4, 7, 10, 13, 16, 19} d) A						
)}, then R is relation d) simply a relation			
4) The function $f: \mathbb{R} \to \mathbb{Z}$, defined as $f(x) = [x]$ is (Z is set of integers)a) neither one – one nor ontob) one – one but not ontoc) onto but not one – oned) one – one and onto						
5) The function $f(x) = 5 - \sin(4x) $ has maximum value 'a' and minimum value 'b', then (a, b) = a) (4, 5) b) (5, 4) c) (5, 6) d) (6, 5)						
	$f: R \rightarrow R$, given by $f(x b)$ Injective) = x is c) Bijective	d) neither surjective nor injective.			
7) A relation R on set A = $\{a, b, c\}$ is defined as R = $\{(a, b), (b, b)\}$ then R will be relation when						
(b, a) will be add a) Reflexive		c) Transitive	d) Equivalence			
	$f: R \rightarrow R$, given by $f(x)$ b) Injective) = 3x + 2 is c) Bijective	d) neither surjective nor injective.			
9) The maximum a) 2 b) 3	-	ce relation on the set) 6	$A = \{a, b, c\}$ are			
10) A relation R on set A = {a, b, c} is defined as R = {(a, b), (b, b), (c,c), (a, a)} then R will be relation when (b, a) will be added						
a) Reflexive	b) Symmetric	c) Transitive	d) Equivalence.			

11) The function $f: \mathbb{R} \to \mathbb{R}$, defined as $f(x) = [x] + x$ is				
a) neither one – one nor onto	b) one – one but not onto			
c) onto but not one – one	d) one – one and onto			

Answers:

Q. No.	Answer	Q. No.	Answer	Q. No.	Answer
1	d	5	b	9	d
2	b	6	d	10	d
3	С	7	b	11	d
4	С	8	С		

Case Study Based Questions :-

Case Study Question – 1

A general election of Lok Sabha is a gigantic exercise. About 900 million people were eligible to vote and voter turnout was about 75%, the highest ever. Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation 'R' is defined on I as follows:

 $R = \{(V_{1,2}): V_1, V_2 \in I \text{ and both use their voting right in general election } - 2019\}$. Based on given information, answer the following questions

, 0	•		01	
Q1) Is R a reflexive	relation? Justify your	answer.		(1M)
Q2) Is R a symmetr	ric relation? Justify yo	ur answer.		(1M)
Q3) Is R a transitiv	e relation? Justify you	r answer.		(1M)
Q4) Is R an equival	ence relation? Justify	your answer.		(1M)

Case Study Question - 2

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes A i.e. A ={S, D} and B = {1,2,3,4,5,6}, based on given information, answer the following questions. Q1) Let R : B \rightarrow B be defined by R = {(x, y) : y is divisible by x}. Is R an equivalence relation? Justify your answer. (3M)

Q2) Raji wants to know the number of functions from A to B. How many number of functions are possible?

Case Study Questions – 3

An organization conducted bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let $G = \{g_1, g_2\}$ and $B = \{b_1, b_2, b_3\}$ where B represents the set of boys selected and G the set of

girls who were selected for the final race. based on given information, answer the following questions. Q1) Ravi wishes to form all the relations possible from B to G. How many such relations are possible? (1M) Q2) Ravi wants to know among those relations, how many functions can be formed from B to G? (1M) Q3) Let R: $B \rightarrow B$ be defined by $R = \{(x, y): x \text{ and } y \text{ are students of same sex}\}$, then verify whether R is an equivalence relation? (2M)

Case Study Questions – 4

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by $y = x^2$. Answer the following questions using the above information.

Q1) Let $f: R \rightarrow R$ be defined by $(x) = x^2$, then verify whether f is a bijective function? (2M)

Q2) Let $f: N \rightarrow R$ be defined by $(x) = x^2$, then find the range of R? (1M)

Q3) Let $f: \mathbb{Z} \to \mathbb{R}$ be defined by (x) =

 x^2 , Is f Injective function? Justify your answer?

(1M)