KEY CONCEPTS (DIF-FERENTIABILITY)

THINGS TO REMEMBER:

1. Right hand & Left hand Derivatives; By definition

:
$$f'(a) = \underset{h\to 0}{\text{Limit}} \frac{f(a+h)-f(a)}{h}$$
 if it exist

(i) The right hand derivative of f' at x = a denoted

by f'(a⁺) is defined by : f'(a⁺) =
$$\lim_{h\to 0^+}$$

$$\frac{f(a+h)-f(a)}{h},$$

provided the limit exists & is finite.

(ii) The left hand derivative : of f at x = a denoted by $f'(a^+)$ is defined by :

$$f'(a^{-}) = \underset{h \to 0^{+}}{\text{Limit}} \frac{f(a-h)-f(a)}{-h}$$

Provided the limit exists & is finite.

We also write $f'(a^+) = f'_+(a) \& f'(a^-) = f'_-(a)$.

* This geometrically means that a unique tangent with finite slope can be drawn at x = a as shown in the figure.

(iii) Derivability & Continuity:

- (a) If f'(a) exists then f(x) is derivable at $x = a \Rightarrow f(x)$ is continuous at x = a.
- **(b)** If a function f is derivable at x then f is continuous at x.

For:
$$f'(x) = \underset{h \to 0}{\text{Limit}} \frac{f(x+h)-f(x)}{h}$$
 exists.

$$f(x + h) - f(x) = \frac{f(x + h) - f(x)}{h} \cdot h[h \neq 0]$$

Therefore:

$$\underset{h\to 0}{\text{Limit}} [f(x+h)-f(x)] = \underset{h\to 0}{\text{Limit}}$$

$$\frac{f(x+h)-f(x)}{h}.h=f'(x).0=0$$

Therefore $\underset{h\to 0}{\text{Limit}} [f(x+h)-f(x)] = 0 \Rightarrow \underset{h\to 0}{\text{Limit}}$

 $f(x+h) = f(x) \Rightarrow f$ is continuous at x.

Note: If f(x) is derivable for every point of its domain of definition, then it is continuous in that domain.

The Converse of the above result is not true:

" IF f IS CONTINUOUS AT x, THEN f IS DERIVABLE AT x" IS NOT TRUE.

e.g. the functions $f(x) = |x| & g(x) = x \sin \frac{1}{x}$; $x \ne 0 & g(0) = 0$ are continuous at x = 0 but not derivable at x = 0.

NOTE CAREFULLY:

- (a) Let $f'_{+}(a) = p \& f'_{-}(a) = q$ where p & q are finite then:
 - (i) $p = q \Rightarrow f$ is derivable at $x = a \Rightarrow f$ is continuous at x = a.
 - (ii) p≠q ⇒ f is not derivable at x = a.It is very important to note that f may be still continuous at x = a.

In short, for a function f:

Differentiability ⇒ Continuity

Continuity ⇒ derivability;

Non derivibality ⇒ discontinuous;

But discontinuity ⇒ Non derivability

(b) If a function f is not differentiable but is continuous at x = a it geometrically implies a sharp corner at x = a.

3. DERIVABILITY OVER AN INTERVAL:

f(x) is said to be derivable over an interval if it is derivable at each & every point of the interval f(x) is said to be derivable over the closed interval [a, b] if:

- (i) for the points a and b, f'(a+) & f'(b-) = x exist &
- (ii) for any point c such that a < c < b, f'(c+) & f'(c-c) = 0 exist & are equal.

Note

1. If f(x) & g(x) are derivable at x = a then the functions f(x) + g(x), f(x) - g(x), f(x).g(x) will also be derivable at x = a & if $g(a) \ne 0$ then

the function f(x)/g(x) will also be derivable at x = a

- 2. If f(x) is differentiable at x = a & g(x) is not differentiable at x = a, then the product function $F(x) = f(x) \cdot g(x)$ can still be differentiable at x = a e.g. f(x) = x & g(x) = |x|.
- 3. If f(x) & g(x) both are not differentiable at x = a then the product function;
 - $F(x) = f(x) \cdot g(x)$ can still be differentiable at x = a e.g. f(x) = |x| & g(x) = |x|.
- **4.** If f(x) & g(x) both are non-deri. at x = a then the sum function F(x) = f(x) + g(x) may be a differentiable function. e.g. f(x) = |x| & g(x) = -|x|.

5. If f(x) is derivable at $x = a \implies f'(x)$ is continuous at x = a.

e.g.
$$f(x) = \begin{bmatrix} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{bmatrix}$$

6. A surprising result : Suppose that the function f (x) and g (x) defined in the interval (x_1, x_2) containing the point x_0 , and if f is differentiable at $x = x_0$ with $f(x_0) = 0$ together with g is continuous as $x = x_0$ then the function $F(x) = f(x) \cdot g(x)$ is differentiable at $x = x_0$

e.g.
$$F(x) = \sin x \cdot x^{2/3}$$
 is differentiable at $x = 0$.

- 1. If $f(x) = x(\sqrt{x} \sqrt{x+1})$, then indicate the correct alternative(s)
 - (A) f(x) is continuous but not differentiable at x = 0
 - (B) f(x) is differentiable at x = 0
 - (C) f(x) is not differentiable at x = 0
 - (D) None of these
- 2. If $f(x) = \begin{cases} \frac{x(3e^{1/x} + 4)}{2 e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ then f(x) is
 - (A) continuous as well differentiable at x = 0
 - (B) continuous but not differentiable at x = 0
 - (C) neither differentiable at x = 0 not continuous at x = 0
 - (D) None of these
- 3. The function f(x) is defined as follows

$$f(x) = \begin{bmatrix} -x & \text{if} & x < 0 \\ x^2 & \text{if} & 0 \le x \le 1 \text{ then } f(x) \\ x^3 - x + 1 & \text{if} & x > 1 \end{bmatrix}$$

is

- (A) derivable & cont. at x = 0
- (B) derivable at x = 1 but not cont. at x = 1
- (C) neither derivable nor cont. at x = 1
- (D) not derivable at x = 0 but cont. at x = 1

4. If
$$f(x) = \begin{cases} \sqrt{x} \left(1 + \sin \frac{1}{x} \right) &, & x > 0 \\ -\sqrt{-x} \left(1 + \sin \frac{1}{x} \right) &, & x < 0 \text{, then } f(x) \text{ is} \\ 0 &, & x = 0 \end{cases}$$

- (A) continuous as well diff. at x = 0
- (B) continuous at x = 0, but not diff. at = 0
- (C) neither continuous at x = 0 nor diff. at x = 0
- (D) None of these
- 5. Let f(x) be defined in [-2, 2] by

$$f(x) = \begin{cases} \max(\sqrt{4 - x^2}, \sqrt{1 + x^2}), & -2 \le x \le 0\\ \min(\sqrt{4 - x^2}, \sqrt{1 + x^2}), & 0 < x \le 2 \end{cases}$$
 then

f(x)

- (A) is continuous at all points
- (B) is not continuous at more than one point
- (C) is not differentiable only at one point
- (D) is not differentiable at more than one point.

- 6. The function $f(x) = \sin^{-1}(\cos x)$ is
 - (A) discontinuous at x = 0
 - (B) continuous at x = 0
 - (C) differentiable at x = 0
 - (D) None of these

7. If
$$f(x) = [x]^2 + \sqrt{\{x\}^2}$$
, then

(where, [*] and { * } denote the greatest integer and fractional part functions respectively)

- (A) f(x) is continuous at all integral points
- (B) f(x) is continuous and differentiable at x = 0
- (C) f(x) is discontinuous $\forall x \in I \{1\}$
- (D) f(x) is differentiable $\forall x \in I$
- 8. If $f(x) = p |\sin x| + q$. $e^{|x|} + r|x|^3$ and f(x) is differentiable at x = 0, then

(A)
$$p = q = r = 0$$

(B)
$$p = 0, q = 0, r \in R$$

(C)
$$q = 0, r = 0, p \in R$$

(D)
$$p+q=0$$
, $r \in R$

- 9. If f(x) is differentiable everywhere, then
 - (A) | f | is differentiable everywhere
- (B) $|f|^2$ is differentiable everywhere
 - (C) f|f| is not differentiable at some point
 - (D) f + |f| is differentiable everywhere
- 10. Let f(x + y) = f(x) f(y) all x and y. Suppose that f(3) = 3 and f'(0) = 11 then f'(3) is given by

(B) 44

(D)33

11. If $f: R \to R$ be a differentiable function, such that $f(x+2y) = f(x) + f(2y) + 4xy \ \forall \ x, y \in R$, then

$$(A) f'(1) = f'(0) + 1$$

(B)
$$f'(1) = f'(0) - 1$$

$$(C) f'(0) = f'(1) + 2$$

(D)
$$f'(0) = f'(1) - 2$$

12. Let $f: R \to R$ be a function such that

$$f\left(\frac{x+y}{3}\right) = \frac{f(x)+f(y)}{3}$$
, $f(0) = 0$ and $f'(0) = 3$, then

- (A) $\frac{f(x)}{x}$ is differentiable in R
- (B) f(x) is continuous but not differentiable in R
- (C) f(x) is continuous in R
- (D) f(x) is bounded in R

13. If a differentiable function f satisfies

$$f\left(\frac{x+y}{3}\right) = \frac{4-2(f(x)+f(y))}{3} \quad \forall \ x, r \in R, \text{ find } f(x)$$

- (A) 1/7
- (B) 2/7
- (C) 8/7
- (D) 4/7
- 14. The functions defined by $f(x) = \max \{x^2, (x-1)^2, 2x (1-x)\}, 0 \le x \le 1$
 - (A) is differentiable for all x
 - (B) is differentiable for all x except at one point
 - (C) is differentiable for all x except at two points
 - (D) is not differentiable at more than two points
- 15. If f is an even function such that $\lim_{h\to 0^+} \frac{f(h)-f(0)}{h}$ has some finite non-zero value, then
 - (A) f is continuous and derivable at x = 0
 - (B) f is continuous but not derivable at x = 0
 - (C) f may be discontinuous at x = 0
 - (D) None of these
- 16. Let $f: R \to R$ be a function defined by f(x) = M in $\{x + 1, |x| + 1\}$. Then which of the following is true?
 - (A) $f(x) \ge 1$ for all $x \in R$
 - (B) f(x) is not differentiable at x = 1
 - (C) f(x) is differentiable everywhere
 - (D) f(x) is not differentiable at x = 0

17. If
$$f(x) = \begin{cases} \frac{x^2 - 1}{x^2 + 1}, & 0 < x \le 2\\ \frac{1}{4}(x^3 - x^2), & 2 < x \le 3, \text{ then} \\ \frac{9}{4}(|x - 4| + |2 - x|), & 3 < x < 4 \end{cases}$$

- (A) f(x) is differentiable at x = 2 & x = 3
- (B) f(x) is non-differentiable at x = 2 & x = 3
- (C) f(x) is differentiable at x = 3 but not at x = 2
- (D) f(x) is differentiable at x = 2 but not at x = 3.
- 18. A function f defined as f(x) = x[x] for $-1 \le x \le 3$ where [x] defines the greatest integer $\le x$ is
 - (A) conti. at all points in the domain of but nonderivable at a finite number of points
 - (B) discontinuous at all points & hence non-derivable at all points in the domain of f
 - (C) discont. at a finite number of points but not derivable at all points i the domain of f
 - (D) discont. & also non-derivable at a finite number of points of f.

- 19. Function $f(x) = \frac{x}{1+|x|}$ is differentiable in the set-
 - $(A)(-\infty,\infty)$
- (B) $(-\infty, 0)$
- $(C)(-\infty,0)\cup(0,\infty)$
- $(D)(0,\infty)$

20. If
$$f(x) = \begin{cases} x + \{x\} + x \sin\{x\} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$
 then

(where { * } denotes the fractional part function)

- (A) 'f' is cont. & diff. at x = 0
- (B) 'f' is cont. but not diff. at x = 0
- (C) 'f' is cont. & diff. at x = 2
- (D) None of these
- 21. Let $f: R \to R$ is a differentiable function satisfying the condition

$$f(x + y^5) = f(x) + (f(y))^5 \ \forall \ x, y \in R.$$

If
$$f'(0) > 0$$
 then the value of $\left[\frac{f(20)}{2}\right]$ is

(where [*] denotes greatest integer function)

- (A) 9
- (C) 11 (D) 12
- 22. For what triplets of real number (a, b, c) with $a \ne 0$

the function
$$f(x) = \begin{bmatrix} x & x \le 1 \\ ax^2 + bx + c & \text{otherwise} \end{bmatrix}$$
 is

differentiable for all real x?

- (A) $\{(a, 1-2a, a) | a \in \mathbb{R}, a \neq 0\}$
- (B) $\{(a, 1-2a, c) | a, c \in \mathbb{R}, a \neq 0\}$
- (C) $\{(a, b) | a, b, c \in R, a+b+c=1\}$
- (D) $\{(a, 1-2a, 0) | a \in \mathbb{R}, a \neq 0\}$
- 23. Let $f(x) = [n + p \sin x], x \in (0, \pi), n \in I$ and p is a prime number. Then number of points where f(x) is not differentiable is

(where [*] denotes greatest integer function)

- (A) p 1
- (B) p + 1
- $(C)^{2}p+1$
- (D) 2p-1
- 24. Let $f: R \to R$ be a function defined by $f(x) = Min \{x + 1, |x| + 1\}$. Then which of the following is true

[AIEEE 2007]

- (A) $f(x) \ge 1$ for all $x \in R$
- (B) f(x) is not differentiable at x = 1
- (C) f(x) is differentiable everywhere
- (D) f(x) is not differentiable at x = 0

25. Let
$$f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1} & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$$

Then which one of the following is true?

[AIEEE 2008]

- (A) f is differentiable at x = 0 and at x = 1
- (B) f is differentiable at x = 0 but not at x = 1
- (C) f is differentiable at x = 1 but not at x = 0
- (D) f is neither differentiable at x = 0 nor at x = 1
- Let $f(x) = x \mid x \mid$ and $g(x) = \sin x$. 26.

Statement – 1 : gof is differentiable at x = 0 and its derivative is continuous at that point.

[AIEEE 2009]

Statement - 2: gof is twice differentiable at = 0.

- (A) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement -1
- (B) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement -1.
- (C) Statement -1 is true, Statement -2 is false.
- (D) Statement -1 is false, Statement -2 is ture.

27. If the function
$$g(x) = \begin{cases} k\sqrt{x+1} &, & 0 \le x \le 3 \\ mx+2 &, & 3 < x \le 5 \end{cases}$$
 is dif

ferentiable, then the value of k + m is:

[JEE MAIN 2015]

(A)
$$\frac{10}{3}$$

28. If
$$f(x) = \begin{cases} x \left(\frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 then at $x = 0$, $f(x)$ is

- (A) differentiable
- (B) not differentiable
- $(C) f(0^{+}) = -1$

29. If
$$f(x) = \begin{bmatrix} x + \{x\} + x \sin\{x\} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{bmatrix}$$
 where

- $\{x\}$ denotes the fractional part function, then -
- (A) 'f' is continuous & differentiable at x = 0
- (B) 'f' is continuous but not differentiable at x = 0
- (C) 'f' is continuous & differentiable at x = 2
- (D) none of these

30. If
$$f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & x \neq 1 \\ \frac{-1}{3}, & x = 1 \end{cases}$$
, then f'(1) equals -

(A)
$$\frac{2}{9}$$
 (C) 0

(B)
$$-\frac{2}{9}$$

(D) does not exist

31. Let
$$f(x) = \begin{bmatrix} 4x^2 + 2[x]x & \text{if } -\frac{1}{2} \le x < 0 \\ & & \text{where } [x] \\ ax^2 - bx & \text{if } 0 \le x < \frac{1}{2} \end{bmatrix}$$

- (A) f(x) is continuous and differentiable in $\left(-\frac{1}{2}, \frac{1}{2}\right)$ for all a, provided b = 2
- (B) f(x) is continuous and differentiable in $\left(-\frac{1}{2}, \frac{1}{2}\right)$ if f(a) = 4, b=2
- (C) f(x) is continuous and differentiable in $\left(-\frac{1}{2}, \frac{1}{2}\right)$ if a = 4 and b = 0
- (D) for no choice of a and b, f(x) is differentiable in
- **32.** A function f defined as f(x) = x[x] for $-1 \le x \le 3$ where
 - [x] defines the greatest integer $\leq x$ is -
 - (A) continuous at all points in the domain of f but non-derivable at a finite number of points
 - (B) discontinuous at all points & hence non-derivable at all points in the domain of f
 - (C) discontinuous at a finite number of points but not derivable at all points in the domain of f
 - (D) discontinuous & also non-derivable at a finite number of points of f

33. Consider

$$f(x)=$$

$$\begin{cases} \left[\frac{2(\sin x - \sin^3 x) + |\sin x - \sin^3 x|}{2(\sin x - \sin^3 x) - |\sin x - \sin^3 x|} \right], x \neq \frac{\pi}{2} & \text{for } x \in (0, \pi) \\ 3 & x = \frac{\pi}{2} \end{cases}$$

where [] denotes the greatest integer function, then -

- (A) f is continuous & differentiable at $x = \pi/2$
- (B) f is continuous but not differentiable at $x = \pi/2$
- (C) f is neither continuous not differentiable at $x = \pi/2$
- (D) none of these
- 34. If f is a real-valued differentiable function satisfying $|f(x)-f(y)| \leq (x-y)^2, \ x, \ y \in R \ and \ f(0)=0, \ then \ f(1)$ equals
 - (A) 1

(B) 2

(C)0

(D)-1

35. Let $f(x) = \begin{bmatrix} g(x) \cdot \cos \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{bmatrix}$ where g(x) is an even

function differentiable at x = 0, passing through the origin. Then f(0)

- (A)is equal to 1
- (B) is equal to 0
- (C) is equal to 2
- (D) does not exist

DIFFERENTIABILITY

1.	В	2.	В	3.	D	4.	В	5.	D	6.	В	7.	C
8.	D	9.	В	10.	D	11.	D	12.	C	13.	D	14.	C
15.	В	16.	C	17.	В	18.	D	19.	A	20.	D	21.	В
22.	A	23.	D	24.	C	25.	В	26.	C	27.	C	28.	В
29.	D	30.	В	31.	A	32.	D	33.	Α	34.	C	35.	В