SOLID STATE

1. Atoms of metals x, y, and z form face-centred cubic (fcc) unit cell of edge length L_x , body-centred cubic (bcc) unit cell of edge length L_y , and simple cubic unit cell of edge length L_z , respectively.

If
$$r_z = \frac{\sqrt{3}}{2}r_y$$
; $r_y = \frac{8}{\sqrt{3}}r_x$; $M_z = \frac{3}{2}M_y$ and $M_z = 3M_x$, then the correct statement (s) is (are)

[Given : M_x , M_y , and M_z are molar masses of metals x, y, and z, respectively.

 r_x , r_y , and r_z are atomic radii of metals x, y, and z, respectively.]

[JEE(Advanced) 2023]

- (A) Packing efficiency of unit cell of x >Packing efficiency of unit cell of y >Packing efficiency of unit cell of z >Packing efficiency of unit cell
- (B) $L_y > L_z$
- (C) $L_x > L_y$
- (D) Density of x > Density of y
- 2. Atom X occupies the fcc lattice sites as well as alternate tetrahedral voids of the same lattice. The packing efficiency (in %) of the resultant solid is closest to [JEE(Advanced) 2022]
 - (A) 25
- (B) 35
- (C) 55
- (D) 75
- 3. For the given close packed structure of a salt made of cation X and anion Y shown below (ions of only one face are shown for clarity), the packing fraction is approximately [JEE(Advanced) 2021]

$$(packing fraction = \frac{Packing efficiency}{100})$$

- (A) 0.74
- (B) 0.63
- (C) 0.52
- (D) 0.48
- 4. The cubic unit cell structure of a compound containing cation M and anion X is shown below. When compared to the anion, the cation has smaller ionic radius. Choose the correct statement(s).

[JEE(Advanced) 2020]

- (A) The empirical formula of the compound is MX.
- (B) The cation M and anion X have different coordination geometries.
- (C) The ratio of M-X bond length to the cubic unit cell edge length is 0.866.
- (D) The ratio of the ionic radii of cation M to anion X is 0.414.

1. Ans. (A, B, D)

Sol.

Element	X	Y	Z
Packing	FCC	BCC	Primitive
Edge	L_{x}	Ly	L_z
Relation between edge length and radius	$L_{x} = 2\sqrt{2}r_{x}$	$L_{y} = \frac{4}{\sqrt{3}} r_{y}$	$L_z = 2r_z$
Packing fraction	$\frac{\pi}{3\sqrt{2}}$	$\frac{\sqrt{3}\pi}{8}$	$\frac{\pi}{6}$

Now,
$$r_y = \frac{8}{\sqrt{3}} r_x \& r_z = \frac{\sqrt{3}}{2} r_y = \frac{\sqrt{3}}{2} \times \frac{8}{\sqrt{3}} r_x \Rightarrow r_z = 4r_x$$

So,
$$L_x = 2 \sqrt{2} r_x$$
, $L_y = \frac{4}{\sqrt{3}} \times \frac{8}{\sqrt{3}} r_x$, $L_z = 8r_x$

$$L_x = 2 \sqrt{2} r_x$$
, $L_y = \frac{32}{3} r_x$, $L_z = 8r_x$

So,
$$L_v > L_z > L_x$$

Density
$$\frac{4M_x}{L_x^3}$$
, $\frac{2 \times M_y}{L_y^3}$

Now,
$$3M_x = \frac{3M_y}{2}$$
 or $M_x \times 2 = M_y$

$$\frac{\text{density}(x)}{\text{density}(y)} = \frac{4M_x}{2M_y} \times \frac{L_y^3}{L_x^3} = \frac{4M_x}{4M_x} \times \frac{\left(\frac{32}{3}\right)^3}{\left(2\sqrt{2}\right)^3}$$

Hence d(x) > d(y)

2. Ans. (B)

Sol. Atom 'X' occupies FCC lattice points as well as alternate tetrahedral voids of the same lattice

$$\Rightarrow \frac{1}{4}$$
th distance of body diagonal

$$=\frac{\sqrt{3}a}{4}=2r_{x}$$

$$\Rightarrow a = \frac{8r_x}{\sqrt{3}}$$

Number of atoms of X per unit cell

$$=4$$
 + 4 $=8$

(FCC lattice points) (Alternate tetrahedral voids)

% packing efficiency =
$$\frac{\text{Volume occupied by X}}{\text{Volume of cubic unit cell}} \times 100$$

$$= \frac{8 \times \frac{4}{3} \pi (r_{X})^{3}}{a^{3}} \times 100 = \frac{8 \times \frac{4}{3} \pi (r_{X})^{3}}{\left(\frac{8r_{X}}{\sqrt{3}}\right)^{3}} \times 100$$

$$= \left(8 \times \frac{4}{3} \times \pi \times \frac{1}{8^3} \times 3\sqrt{3}\right) \times 100 = \frac{\sqrt{3}\pi}{16} \times 100 = 34\%$$

Hence, option (B) is the most appropriate option

3. Ans. (B)

Sol. Packing fraction (P.F.) =
$$\frac{1 \times \frac{4}{3} \pi r_{-}^{3} + 3 \times \frac{4}{3} \pi r_{+}^{3}}{a^{3}}$$

$$\frac{r_{_{+}}}{r_{_{-}}}=0.414 \ \ (square \ planar \ void), \ a=2r_{_{-}}$$

We get,

P.F. =
$$\frac{\frac{4}{3}\pi(r_{-}^{3} + 3r_{+}^{3})}{8r_{-}^{3}} = \left[\frac{\pi}{6}(1 + 3(0.414)^{3})\right] = 0.63$$

4. Ans. (A, C)

Sol. (A)
$$Z_{M} = 2 \times \frac{1}{2} = 1$$

 $Z_{X} = 4 \times \frac{1}{4} = 1$

:. Empirical formula is MX

(C) Bond length of M – X bond
= AB =
$$\sqrt{3} \cdot \frac{a}{2} = 0.866$$
ba

(D)
$$r_M : r_X = (\sqrt{3} - 1) : 1 = 0.732 : 1.000$$

5. Ans. (3)

Sol.
$$X^{\Theta} \Rightarrow O.V.$$

$$M^+ \Rightarrow FCC$$

 \mathbf{M}^{+}

$$\mathbf{X}^{-}$$

$$3+1$$

(iii)
$$4-3-1$$

$$3+1$$

$$Z = \frac{3}{1} = 3$$

6. Ans. (2)

Sol. Formula of density =
$$\frac{Z \times M}{N_A \times a^3}$$

For FCC unit cell Z = 4

Edge length $a = 4 \times 10^{-8}$ cm

$$M = \frac{d \times N_{_{A}} \times a^{^{3}}}{Z} = \frac{8 \times 6 \times 10^{^{23}} \times 64 \times 10^{^{-24}}}{4} \, gm/mol$$

No. of atoms =
$$\frac{\text{wt(gm)}}{\text{molar mass}} \times N_A = \frac{256 \times 10 \times 6 \times 10^{23}}{8 \times 6 \times 16} = 2 \times 10^{24} \text{ (Value of N = 2)}$$

7. Ans. (B, C, D)

Sol. CCP is ABC ABC type packing

(A) In topmost layer, each atom is in contact with 6 atoms in same layer and 3 atoms below this layer.

(B) Packing fraction =
$$\frac{4 \times \frac{4}{3} \pi r^3}{\left(\frac{4r}{\sqrt{2}}\right)^3} = (0.74)$$

(C) Each FCC unit has effective no of atoms = 4

Octahedral void = 4

Tetrahedral void = 8

(D)
$$4r = a\sqrt{2}$$

8. Ans. (A)

Sol. Effective number of $O^{-2} = 4$

Effective number of $Al^{+3} = 4 \text{ m}$

Effective number of $Mg^{+2} = 8 \text{ m}$

 \Rightarrow By charge balance 12 m + 16 n = 8

$$3 m + 4 n = 2$$

Possible value of m and n from given equation are

$$m = \frac{1}{2}$$
; $n = \frac{1}{8}$