

Objective Questions

Characteristics and Measurable properties of gases

- Which one of the following statements is not correct about the three states of matter i.e. solid. liquid and gaseous
 - (a) Molecules of a solid possess least energy whereas those of a gas possess highest energy
 - (b) The density of solid is highest whereas that of gases is lowest
 - (c) Gases like liquids possess definite volumes
 - (d) Molecules of a solid possess vibratory motion
- The temperature and pressure at which ice, liquid water and water 2. vapour can exist together are
 - (a) $0^{\circ} C$, 1 atm
- (b) $2^{\circ} C$, 4.7 atm
- (c) $0^{\circ} C, 4.7 \, mm$
- (d) $-2^{\circ} C.4.7 mm$
- Which of the following is true about gaseous state 3.
 - (a) Thermal energy = Molecular attraction
 - (b) Thermal energy >> Molecular attraction
 - (c) Thermal energy << Molecular attraction
 - (d) Molecular forces >> Those in liquids
- Kinetic energy of molecules is highest in
 - (a) Gases

- (b) Solids
- (c) Liquids
- (d) Solutions
- Which of the following statement is correct
 - (a) In all the three states the molecules possess random translational motion
 - Gases cannot be converted into solids without passing through liquid state
 - One of the common property of liquids and gases is viscosity
 - (d) According to Boyle's law V/P is constant at constant T
- A volume of 1 m^3 is equal to 6.
 - (a) $1000 \, cm^3$
- (b) $100 \, cm^3$
- (c) $10 \, dm^3$
- (d) $10^6 cm^3$
- Which one of the following is not a unit of pressure 7.
 - (a) Newton
- (b) Torr
- (c) Pascal
- (d) Bar
- $1^{o}C$ rise in temperature is equal to a rise of 8.
- (a) $1^{o} F$

- (b) $9/5^{\circ}F$
- (c) $5/9^{o}F$
- (d) $33^{o} F$
- Which of the following relations for expressing volume of a sample 9.
 - (a) $1L = 10^3 \, ml$
- (b) $1 dm^3 = 1 L$
- (c) $1L = 10^3 m^3$
- (d) $1L = 10^3 cm^3$
- One atmosphere is numerically equal to approximately 10.
 - (a) $10^6 \, \text{dvnes} \, cm^{-2}$
- (b) $10^2 \, \text{dynes} \, cm^{-2}$
- (c) $10^4 \text{ dynes } cm^{-2}$
- (d) $10^8 \text{ dynes } cm^{-2}$
- 2gm of O_2 at $27^{o}C$ and 760mm of Hg pressure has volume[BCECE 2005] 11.

- (a) 1.5 *lit.*
- (b) 2.8 lit.
- (c) 11.2 lit.
- (d) 22.4 lit.
- Pressure of a gas in a vessel can be measured by
 - (a) Barometer
- (b) Manometer
- Stalgometer
- (d) All the baove
- Volume occupied by a gas at one atmospheric pressure and $0^{o}C$ is V mL. Its volume at 273 K will be

[Bihar MADT 1982]

(a) *V ml*

(b) V/2 ml

(c) 2 V

- (d) None of these
- Which one of the following statements is wrong for gases

[CBSE PMT 1999]

- Gases do not have a definite shape and volume
- Volume of the gas is equal to the volume of the container confining the gas
- Confined gas exerts uniform pressure on the walls of its container in all directions
- Mass of the gas cannot be determined by weighing a container in which it is enclosed
- Which of the following exhibits the weakest intermolecular forces [AIIMS 2000] 15.
 - NH_3

(b) HCl

(c) He

- (d) H_2O
- N_2 is found in a litre flask under $100 \mbox{\it kPa}$ pressure and O_2 is 16. found in another 3 litre flask under 320 kPa pressure. If the two flasks are connected, the resultant pressures is

[Kerala PMT 2004]

- (a) 310 kPa
- (b) 210 kPa
- (c) 420 *kPa*
- (d) 365 kPa
- (e) 265 kPa

Ideal gas equation and Related gas laws

If P, V, T represent pressure, volume and temperature of the gas, 1. the correct representation of Boyle's law is

[BIT Ranchi 1988]

- (a) $V \propto \frac{1}{T}$ (at constant P) (b) PV = RT
- (c) $V \propto 1/P$ (at constant T) (d) PV = nRT
- At constant temperature, in a given mass of an ideal gas 2.

[CBSE PMT 1991]

- (a) The ratio of pressure and volume always remains constant
- (b) Volume always remains constant
- Pressure always remains constant
- (d) The product of pressure and volume always remains constant
- Air at sea level is dense. This is a practical application of

[Kerala CEE 2000]

- (a) Boyle's law
- (b) Charle's law
- (c) Avogadro's law
- (d) Dalton's law

If 20 cm^3 gas at 1 atm. is expanded to 50 cm^3 at constant T, then what is the final pressure [CPMT 1988]

- (a) $20 \times \frac{1}{50}$
- (b) $50 \times \frac{1}{20}$
- (c) $1 \times \frac{1}{20} \times 50$
- (d) None of these

Which of the following statement is false

[BHU 1994]

(a) The product of pressure and volume of fixed amount of a gas is independent of temperature

- (b) Molecules of different gases have the same K.E. at a given temperature
- (c) The gas equation is not valid at high pressure and low temperature
- $(d) \quad \text{The gas constant per molecule is known as Boltzmann constant} \\$
- **6.** Which of the following graphs represent Boyle's law

- 7. Densities of two gases are in the ratio 1 : 2 and their temperatures are in the ratio 2 : 1, then the ratio of their respective pressures is [BHU 2000]
 - (a) 1:1
- (b) 1:2
- (c) 2:1
- (d) 4:1
- **8.** At constant pressure, the volume of fixed mass of an ideal gas is directly proportional to [EAMCET 1985]
 - (a) Absolute temperature
- (b) Degree centigrade
- (c) Degree Fahrenheit
- (d) None
- Which of the following expression at constant pressure represents Charle's law [AFMC 1990]
 - (a) $V \propto \frac{1}{T}$
- (b) $V \propto \frac{1}{T^2}$
- (c) $V \propto T$
- (d) $V \propto d$
- Use of hot air balloons in sports and meteorological obsevations is an application of [Kerala MEE 2002]
 - (a) Boyle's law
- (b) Newtonic law
- (c) Kelvin's law
- (d) Charle's law
- 11. A 10 g of a gas at atmospheric pressure is cooled from $273^{\circ}C$ to $0^{\circ}C$ keeping the volume constant, its pressure would become
 - (a) 1/2 atm
- (b) 1/273 atm
- (c) 2 atm
- (d) 273 atm
- **12.** Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction of its volume at

[CBSE PMT 1989]

- (a) $0^{o} C$
- (b) Its critical temperature
- (c) Absolute zero
- (d) Its Boyle temperature
- 13. A certain sample of gas has a volume of 0.2 *litre* measured at 1 *atm.*
 - pressure and 0° C. At the same pressure but at 273° C, its volume will be [EAMCET 1992, 93; BHU 2005]
 - (a) 0.4 *litres*
- (b) 0.8 litres
- (c) 27.8 litres
- (d) 55.6 litres
- 14. 400 cm^3 of oxygen at $27^{\circ}C$ were cooled to $-3^{\circ}C$ without change in pressure. The contraction in volume will be
 - (a) $40 cm^3$
- (b) 30 cm^3
- (c) 44.4 cm³
- (d) $360 \ cm^3$
- **15.** The pressure p of a gas is plotted against its absolute temperature T for two different constant volumes, V_1 and V_2 . When $V_1>V_2$, the
 - (a) Curves have the same slope and do not intersect
 - (b) Curves must intersect at some point other than T = 0
 - (c) Curve for V_2 has a greater slope than that for V_1

- (d) Curve for V_1 has a greater slope than that for V_2
- Two closed vessels of equal volume containing air at pressure P_1 and temperature T_1 are connected to each other through a narrow tube. If the temperature in one of the vessels is now maintained at T_1 and that in the other at T_2 , what will be the pressure in the vessels
- (a) $\frac{2P_1T_1}{T_1 + T_2}$

16.

18.

- (b) $\frac{T_1}{2P_1T_2}$
- (c) $\frac{2P_1T_2}{T_1 + T_2}$
- $(d) \quad \frac{2P_1}{T_1 + T_2}$
- "One gram molecule of a gas at N.T.P. occupies 22.4 *litres.*" This fact was derived from [CPMT 1981, 1995]
- (a) Dalton's theory
- (b) Avogadro's hypothesis
- (c) Berzelius hypothesis
- (d) Law of gaseous volume
- In a closed flask of 5 *litres*, 1.0 g of H_2 is heated from 300 to 600 K. which statement is not correct [CBSE PMT 1991]
 - (a) Pressure of the gas increases
 - (b) The rate of collision increases
 - (c) The number of moles of gas increases
 - (d) The energy of gaseous molecules increases
- Which one of the following statements is false

[Manipal PMT 1991]

- (a) Avogadro number = 6.02×10^{21}
- (b) The relationship between average velocity (\overline{v}) and root mean square velocity (u) is $\overline{v}=0.9213\,u$
- (c) The mean kinetic energy of an ideal gas is independent of the pressure of the gas
- (d) The root mean square velocity of the gas can be calculated by the formula $(3RT/M)^{1/2}$
- 20. The compressibility of a gas is less than unity at STP. Therefore [IIT 2000]
 - (a) $V_m > 22.4$ litres
- (b) $V_m < 22.4$ litres
- (c) $V_m = 22.4$ litres
- (d) $V_m = 44.8$ litres
- 21. In the equation of sate of an ideal gas PV = nRT, the value of the universal gas constant would depend only on

[KCET 2005]

- (a) The nature of the gas
- (b) The pressure of the gas
- (c) The units of the measurement
- (d) None of these
- **22.** In the ideal gas equation, the gas constant R has the dimensions of [NCERT 1982]
 - (a) mole-atm K
- (b) litre mole
- (c) litre-atm K mole
- (d) erg K
- 23. In the equation PV = nRT, which one cannot be the numerical value of R [BIT 1987]
 - (a) $8.31 \times 10^7 erg K^{-1} mol^{-1}$
 - (b) $8.31 \times 10^7 \, dyne \, cm \, K^{-1} mol^{-1}$
 - (c) $8.31 JK^{-1} mol^{-1}$
 - (d) $8.31 atm. K^{-1} mol^{-1}$
- **24.** Which one of the following indicates the value of the gas constant R[EAMCET 1]
 - (a) 1.987 cal *K* mol
- (b) 8.3 cal K mol
- (c) 0.0821 lit K mol
- (d) 1.987 Joules K mol
- **25.** The constant *R* is (a) Work done per molecule

[Orissa 1990]

	(c) Work done per degree pe	er mole		pressure and 00 C. The to	otal volume occupied by the mixture will
	(d) Work done per mole			be nearly	[Vellore CMC 1991]
26.	•	n the gas equation, $PV = nRT$ [CBSE PA	(T 1992]	(a) 22.4 <i>litres</i>	(b) 33.6 <i>litres</i>
	(a) <i>n</i> is the number of molec		992	(c) 448 <i>litres</i>	(d) 44800 <i>ml</i>
	(b) <i>V</i> denotes volume of one	_	38.	Pure hydrogen sulphide is	stored in a tank of 100 litre capacity at
	(c) <i>n</i> moles of the gas have a	•		$20^{\circ}C$ and 2 atm pressure	. The mass of the gas will be [CPMT 1989]
	• •	e gas when only one mole of gas is		(a) 34 g	(b) 340 g
	present			(c) 282.4 g	(d) 28.24 g
27.	The correct value of the gas co		39.	At N.T.P. the volume of a g	gas is found to be 273 <i>ml</i> . What will be
	() - t	[CBSE PMT 1992]		the volume of this gas at 60	00 <i>mm Hg</i> and 273° C
	(a) 0.082 <i>litre-atmopshere K</i>				[CPMT 1992]
	(b) 0.082 litre-atmosphere I	$K^{-1} mol^{-1}$		(a) 391.8 <i>mL</i>	(b) 380 <i>ml</i>
			40.	(c) 691.6 <i>ml</i>	(d) 750 <i>ml</i> 2 <i>g</i> at 300 <i>K</i> and 1 <i>atm</i> pressure. If the
	(c) 0.082 litre-atmosphere	'K mole'	40.		at which of the following temperatures
	(d) 0.082 $litre^{-1}$ atmosphe	ere ⁻¹ K mol		will one <i>litre</i> of the same ga	
-0				()	[CBSE PMT 1992]
28.	S.l. unit of gas constant <i>R</i> is	[CPMT 1994]		(a) 450 <i>K</i> (c) 800 <i>K</i>	(b) 600 <i>K</i> (d) 900 <i>K</i>
	(a) 0.0821 litre atm K mole				() -
	(b) 2 calories K mole		41.		with hydrogen at 1 atm and $27^{\circ}C$ has
	(c) 8.31 <i>joule K^e mole</i>			•	s. On ascending it reaches a place where
	(d) None				C and pressure is 0.5 <i>atm</i> . The volume of
29.	Gas equation $PV = nRT$ is of	obeyed by [BHU 2000]		the balloon is	[CBSE PMT 1991]
	(a) Only isothermal process	(b) Only adiabatic process		(a) 24000 <i>litres</i>	(b) 20000 <i>litres</i>
	(c) Both (a) and (b)	(d) None of these		(c) 10000 <i>litres</i>	(d) 12000 <i>litres</i>
30.	For an ideal gas number of mo	oles per litre in terms of its pressure P,	40		C^{o} and 1 <i>atm</i> is <i>d</i> . Pressure remaining
	gas constant R and temperature		42.		following temperatures will its density
	(-) PTIP	[AIEEE 2002]		become 0.75 d	[CBSE PMT 1992]
	(a) <i>PT</i> / <i>R</i> (c) <i>P</i> / <i>RT</i>	(b) <i>PRT</i> (d) <i>RT</i> / <i>P</i>		(a) $20^{o} C$	(b) $30^{o}C$
31.		546 <i>K</i> occupy a volume of 44.8 <i>litres</i> ,		(c) 400 K	(d) 300 K
0				(c) 400 K	(a) 300 A
	the pressure must be				1 270 C 1
		[NCERT 1981; JIPMER 1991]	43.		00 ml at 27° C and 740 mm pressure.
	(a) 2 <i>atm</i>	[NCERT 1981; JIPMER 1991] (b) 3 atm	43.	When its volume is chang	ed to 80 <i>ml</i> at 740 <i>mm</i> pressure, the
	(a) 2 atm (c) 4 atm	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm	43.		ed to 80 <i>ml</i> at 740 <i>mm</i> pressure, the
32.	(a) 2 atm (c) 4 atm How many moles of He gas of	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one	43.	When its volume is chang temperature of the gas will	ed to 80 <i>ml</i> at 740 <i>mm</i> pressure, the be [Vellore CMC 1991]
32.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992]	43.	When its volume is chang temperature of the gas will (a) $21.6^{\circ} C$	ed to 80 ml at 740 mm pressure, the be $ \begin{tabular}{c c c c c c c c c c c c c c c c c c c $
32.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11		When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$	ed to 80 ml at 740 mm pressure, the be $ \begin{tabular}{c c c c c c c c c c c c c c c c c c c $
	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0	43. 44.	When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted	ed to 80 ml at 740 mm pressure, the be $\begin{tabular}{ccccc} [Vellore CMC 1991] \\ (b) & 240^{o} C \\ (d) & 89.5^{o} C \\ \begin{tabular}{c} (d) & 89.5^{o} C \\ \end{tabular}$
32. 33.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is		When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) 240^{o} C (d) 89.5^{o} C by a number of non-reacting gases is partial pressures of the gases under the
	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0		When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the property of the pro	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) 240^{o} C (d) 89.5^{o} C by a number of non-reacting gases is partial pressures of the gases under the
	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992]		When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the parame conditions is known as (a) Boyle's law (c) Avogadro's law	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) $240^{o}C$ (d) $89.5^{o}C$ by a number of non-reacting gases is pressures of the gases under the specific pressure of the gases under the gases u
	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm pressure	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the		When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the parame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases"	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) 240^{o} C (d) 89.5^{o} C by a number of non-reacting gases is partial pressures of the gases under the s [CPMT 1986] (b) Charle's law (d) Dalton's law at the same temperature and pressure
33.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is	44.	When its volume is chang temperature of the gas will (a) 21.6° C (c) -33° C The total pressure exerted equal to the sum of the pame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) 240^{o} C (d) 89.5^{o} C by a number of non-reacting gases is partial pressures of the gases under the s [CPMT 1986] (b) Charle's law (d) Dalton's law at the same temperature and pressure particles." This statement is a direct
33.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorber.	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the	44.	When its volume is chang temperature of the gas will (a) 21.6° C (c) -33° C The total pressure exerted equal to the sum of the pame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of	ed to 80 <i>ml</i> at 740 <i>mm</i> pressure, the be [Vellore CMC 1991] (b) 240° C (d) 89.5° C by a number of non-reacting gases is partial pressures of the gases under the search of the gases under the gases und
33.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of	44.	When its volume is chang temperature of the gas will (a) 21.6° C (c) -33° C The total pressure exerted equal to the sum of the pame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) 240^{o} C (d) 89.5^{o} C by a number of non-reacting gases is partial pressures of the gases under the s [CPMT 1986] (b) Charle's law (d) Dalton's law at the same temperature and pressure particles." This statement is a direct
33.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorber.	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is	44. 45.	When its volume is chang temperature of the gas will (a) 21.6° C (c) -33° C The total pressure exerted equal to the sum of the pame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation	ed to 80 <i>ml</i> at 740 <i>mm</i> pressure, the be [Vellore CMC 1991] (b) 240° C (d) 89.5° C by a number of non-reacting gases is partial pressures of the gases under the s [CPMT 1986] (b) Charle's law (d) Dalton's law s at the same temperature and pressure particles." This statement is a direct [Kerala MEE 2002] (b) Charle's law (d) Law of partial pressure
33.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorbe gas will be	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of	44.	When its volume is chang temperature of the gas will (a) 21.6° C (c) -33° C The total pressure exerted equal to the sum of the pasame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases has	ed to 80 <i>ml</i> at 740 <i>mm</i> pressure, the be [Vellore CMC 1991] (b) 240° C (d) 89.5° C by a number of non-reacting gases is partial pressures of the gases under the second (b) Charle's law (d) Dalton's law seat the same temperature and pressure particles." This statement is a direct [Kerala MEE 2002] (b) Charle's law
33.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorbe gas will be (a) 80 cc	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc	44. 45.	When its volume is chang temperature of the gas will (a) 21.6° C (c) -33° C The total pressure exerted equal to the sum of the pasame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases has	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) 240^{o} C (d) 89.5^{o} C by a number of non-reacting gases is partial pressures of the gases under the s [CPMT 1986] (b) Charle's law (d) Dalton's law (3 at the same temperature and pressure particles." This statement is a direct [Kerala MEE 2002] (b) Charle's law (d) Law of partial pressure
33. 34.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorbe gas will be (a) 80 cc (c) 66.7 cc Correct gas equation is	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc [CBSE PMT 1989; CPMT 1991]	44. 45.	When its volume is chang temperature of the gas will (a) 21.6° C (c) -33° C The total pressure exerted equal to the sum of the pame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases had and their moles are 1, 2 and will be	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) 240^{o} C (d) 89.5^{o} C by a number of non-reacting gases is partial pressures of the gases under the second of the gases under the gases under the second of the gases under the gases u
33. 34.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorbe gas will be (a) 80 cc (c) 66.7 cc	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30° C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc	44. 45.	When its volume is chang temperature of the gas will (a) 21.6° C (c) -33° C The total pressure exerted equal to the sum of the pame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases had and their moles are 1, 2 and will be	ed to 80 ml at 740 mm pressure, the be [Vellore CMC 1991] (b) 240^{o} C (d) 89.5^{o} C by a number of non-reacting gases is partial pressures of the gases under the s [CPMT 1986] (b) Charle's law (d) Dalton's law (3 at the same temperature and pressure particles." This statement is a direct [Kerala MEE 2002] (b) Charle's law (d) Law of partial pressure aving partial pressures P_A, P_B and P_C d 3 respectively then their total pressure
33. 34.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At $0^o C$ and one atm prespressure is increased to one increased by one-third of absorbed gas will be (a) 80 cc (c) 66.7 cc Correct gas equation is (a) $\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30^{o} C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc [CBSE PMT 1989; CPMT 1991] (b) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$	44. 45.	When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the pame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases ha and their moles are 1, 2 and will be (a) $P = P_A + P_B + P_C$	ed to 80 ml at 740 mm pressure, the be
33. 34.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorbe gas will be (a) 80 cc (c) 66.7 cc Correct gas equation is	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30^{o} C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc [CBSE PMT 1989; CPMT 1991] (b) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$	44. 45.	When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the pame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases ha and their moles are 1, 2 and will be (a) $P = P_A + P_B + P_C$	ed to 80 ml at 740 mm pressure, the be
33. 34.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorbed gas will be (a) 80 cc (c) 66.7 cc Correct gas equation is (a) $\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$ (c) $\frac{P_1 T_2}{V_1} = \frac{P_2 V_2}{T_2}$	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30^{o} C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and 273 K is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc [CBSE PMT 1989; CPMT 1991] (b) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$	44. 45. 46.	When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the pasame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases have and their moles are 1, 2 and will be (a) $P = P_A + P_B + P_C$ (c) $P = \frac{\sqrt{P_A + P_B + P_C}}{3}$	ed to 80 ml at 740 mm pressure, the be
33. 34. 35.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorbe gas will be (a) 80 cc (c) 66.7 cc Correct gas equation is (a) $\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$ (c) $\frac{P_1 T_2}{V_1} = \frac{P_2 V_2}{T_2}$ Two separate bulbs contain in A is twice that of gas B. The interpretation of the properties of the pro	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at 30^{o} C and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and $273K$ is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc [CBSE PMT 1989; CPMT 1991] (b) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$ (d) $\frac{V_1V_2}{T_1T_2} = P_1P_2$ deal gases A and B. The density of gas molecular mass of A is half that of gas	44. 45.	When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the pasame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases ha and their moles are 1, 2 and will be (a) $P = P_A + P_B + P_C$ (c) $P = \frac{\sqrt{P_A + P_B + P_C}}{3}$ Dalton's law of partial properties of the gas will be	ed to 80 ml at 740 mm pressure, the be
33. 34. 35.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0^{o} C and one atm prespressure is increased to one increased by one-third of absorbe gas will be (a) 80 cc (c) 66.7 cc Correct gas equation is (a) $\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$ (c) $\frac{P_1 T_2}{V_1} = \frac{P_2 V_2}{T_2}$ Two separate bulbs contain in A is twice that of gas B. The in B. The two gases are at the	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at $30^{\circ} C$ and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and $273K$ is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc [CBSE PMT 1989; CPMT 1991] (b) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$ (d) $\frac{V_1V_2}{T_1T_2} = P_1P_2$ deal gases A and B. The density of gas molecular mass of A is half that of gas same temperature. The ratio of the	44. 45. 46.	When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the pasame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases ha and their moles are 1, 2 and will be (a) $P = P_A + P_B + P_C$ (c) $P = \frac{\sqrt{P_A + P_B + P_C}}{3}$ Dalton's law of partial profollowing mixture of gases	ed to 80 ml at 740 mm pressure, the be
33. 34. 35.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0° C and one atm prespressure is increased to one increased by one-third of absorbe gas will be (a) 80 cc (c) 66.7 cc Correct gas equation is (a) $\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$ (c) $\frac{P_1 T_2}{V_1} = \frac{P_2 V_2}{T_2}$ Two separate bulbs contain in A is twice that of gas B. The interpretation of the properties of the pro	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at $30^{\circ} C$ and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and $273K$ is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc [CBSE PMT 1989; CPMT 1991] (b) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$ (d) $\frac{V_1V_2}{T_1T_2} = P_1P_2$ deal gases A and B. The density of gas molecular mass of A is half that of gas same temperature. The ratio of the is	44. 45. 46.	When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the pasame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases ha and their moles are 1, 2 and will be (a) $P = P_A + P_B + P_C$ (c) $P = \frac{\sqrt{P_A + P_B + P_C}}{3}$ Dalton's law of partial profollowing mixture of gases (a) H_2 and SO_2	ed to 80 ml at 740 mm pressure, the be
33. 34. 35.	(a) 2 atm (c) 4 atm How many moles of He gas of atmospheric pressure (a) 0.90 (c) 0.11 Volume of 0.5 mole of a gas at (a) 22.4 litres (c) 44.8 litres At 0^{o} C and one atm prespressure is increased to one increased by one-third of absorbe gas will be (a) 80 cc (c) 66.7 cc Correct gas equation is (a) $\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$ (c) $\frac{P_1 T_2}{V_1} = \frac{P_2 V_2}{T_2}$ Two separate bulbs contain in A is twice that of gas B. The in B. The two gases are at the	[NCERT 1981; JIPMER 1991] (b) 3 atm (d) 1 atm occupy 22.4 litres at $30^{\circ} C$ and one [KCET 1992] (b) 1.11 (d) 1.0 1 atm. pressure and $273K$ is [EAMCET 1992] (b) 11.2 litres (d) 5.6 litres ssure, a gas occupies 100 cc. If the and a half-time and temperature is olute temperature, then final volume of [DCE 2000] (b) 88.9 cc (d) 100 cc [CBSE PMT 1989; CPMT 1991] (b) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$ (d) $\frac{V_1V_2}{T_1T_2} = P_1P_2$ deal gases A and B. The density of gas molecular mass of A is half that of gas same temperature. The ratio of the	44. 45. 46.	When its volume is chang temperature of the gas will (a) $21.6^{\circ}C$ (c) $-33^{\circ}C$ The total pressure exerted equal to the sum of the pasame conditions is known as (a) Boyle's law (c) Avogadro's law "Equal volumes of all gases contain equal number of consequence of (a) Avogadro's law (c) Ideal gas equation If three unreactive gases ha and their moles are 1, 2 and will be (a) $P = P_A + P_B + P_C$ (c) $P = \frac{\sqrt{P_A + P_B + P_C}}{3}$ Dalton's law of partial profollowing mixture of gases	ed to 80 ml at 740 mm pressure, the be

37.

16 g of oxygen and 3 g of hydrogen are mixed and kept at 760 mm

(b) Work done per degree absolute

48.	Which of the following mix of partial pressure	tures of gases does not obey Dalton's law		(a) 4 (c) 16	(b) 1/4 (d) 1/16	
	F F	[CBSE PMT 1996: Kerala PMT 2000]	60.	` '	times that of B_i , what will be the dens	sitv
	(a) O_2 and CO_2	(b) N_2 and O_2		ratio of A and B	[AFMC 199	
	(c) Cl_2 and O_2	(d) NH_3 and HCI		(a) 1/25	(b) 1/5	
49.	To which of the following applicable	g gaseous mixtures is Dalton's law not	61.	•	(d) 4 are in the ratio of 1 : 16. The ratio of th	
	(a) $Ne + He + SO_2$	(b) $NH_3 + HCl + HBr$		rates of diffusion is	[CPMT 199	95]
	- · ·	•		(a) 16:1 (c) 1:4	(b) 4:1 (d) 1:16	
		(d) $N_2 + H_2 + O_2$	62.	` '	nperature conditions, the rate of diffusi	ion
50.		ses of molecular weight 4 and 40 are mixture is 1.1 <i>atm.</i> The partial pressure of			and B having densities $ ho_A$ and $ ho_B$ a	
	the light gas in this mixture			related by the expression	[iiT 19	
	() 077	[CBSE PMT 1991]			Γ ¬1/2	•
	(a) 0.55 <i>atm</i> (c) 1 <i>atm</i>	(b) 0.11 <i>atm</i> (d) 0.12 <i>atm</i>		(a) $D_A = D_B \cdot \frac{\rho_A}{\rho_B}$	(b) $D_A = \left[D_B \cdot \frac{\rho_B}{\rho_A} \right]^{1/2}$	
51.	Rate of diffusion of a gas is	[IIT 1985; CPMT 1987]				
	(a) Directly proportional t	o its density		(c) $D_A = D_B \left(\frac{\rho_A}{\rho_A}\right)^{1/2}$	(d) $D_A = D_B \left(\frac{\rho_B}{\rho_A}\right)^{1/2}$	
	(b) Directly proportional t			$(c) D_A - D_B \left(\rho_B \right)$	(d) $D_A = D_B \left(\rho_A \right)$	
		to the square root of its molecular mass	63.	Atmolysis is a process of		
	.,	to the square root of its molecular mass		(a) Atomising gas molecul	es	
52.	Which of the following gas	will have highest rate of diffusion		• •	to sub-atomic particles	
	() NII	[Pb. CET Sample paper 1993; CPMT 1990]			om their gaseous mixture	
	(a) NH_3	(b) N ₂	64.	(d) Changing of liquids to	itheir vapour state ad a bottle of dry hydrogen chlori	ide
	(c) <i>CO</i> ₂	(d) O_2	о - д.		tube are opened simultaneously at bo	
53.		tionship is correct, where r is the rate of		ends, the white ammonium	chloride ring first formed will be [IIT 19	88]
	diffusion of a gas and d is in	ts density [CPMT 1994]		(a) At the centre of the tu		
	(a) $r \propto \sqrt{1/d}$	(b) $r \propto \sqrt{d}$		(b) Near the hydrogen chlo(c) Near the ammonia bot		
	(c) $r = d$	(d) $r \propto d$		(d) Throughout the length		
54.	According to Grahman's lav	w at a given temperature, the ratio of the	65.		rs will diffuse at the same rate through	h a
	rates of diffusion r_A / r_B o	f gases A and B is given by [IIT 1998]		porous plug	[EAMCET 199	_
	(a) $(P_A / P_B)(M_A / M_B)$	1/2		(a) <i>CO</i> , <i>NO</i> ₂	(b) NO_2, CO_2	
				(c) NH_3, PH_3	(d) NOC_2H_6	
	(b) $(M_A / M_B)(P_A / P_B)$		66.		hrough a very narrow hole, how mu ed under identical conditions [CPMT 19	
	(c) $(P_A / P_B)(M_B / M_A)$	1/2		(a) 16 g	(b) 1 g	נייי
	(d) $(M_A / M_B)(P_B / P_A)$	1/2		(c) 1/4 g	(d) 64 g	-1
	(where <i>P</i> and <i>M</i> are the prand <i>B</i> respectively)	essures and molecular weights of gases A	67.	ratio of molecular weights of	of A to B is [EAMCET 194]	
55.	• • •	diffusion of a given element to that of		(a) 1.0	(b) 0.75	
33.		annusion of a given element to that of		(c) 0.50	(d) 0.25	
	helium is 1.4. The molecular	· weight of the element is	68	Two grams of hydrogen diff	fuse from a container in 10 <i>minutes</i> . He	οw
	helium is 1.4. The molecular	· weight of the element is [Kerala PMT 1990]	68.		fuse from a container in 10 <i>minutes</i> . He all diffuse through the same container	
	(a) 2		68.	many <i>grams</i> of oxygen wou the same time under similar	ald diffuse through the same container conditions [MNR 198	· in
	(a) 2 (c) 8	[Kerala PMT 1990] (b) 4 (d) 16		many <i>grams</i> of oxygen wou the same time under similar (a) 0.5 <i>g</i>	ald diffuse through the same container conditions [MNR 194] (b) $4 g$	· in
56.	(a) 2 (c) 8	[Kerala PMT 1990] (b) 4	/T 19 <u>9</u> 2; B	many grams of oxygen wou the same time under similar (a) 0.5 g (black CEE 1982]	ald diffuse through the same container r conditions [MNR 194 (b) 4 (b) 4 (b) 8 (b) 9	· in 80]
56.	(a) 2 (c) 8	[Kerala PMT 1990] (b) 4 (d) 16		many grams of oxygen wou the same time under similar (a) 0.5 g (black CEE 1982]	ald diffuse through the same container ronditions [MNR 194 (b) 4 g (d) 8 g	· in 80]
56.	(a) 2 (c) 8 A gas diffuse 1/5 times as fa	[Kerala PMT 1990] (b) 4 (d) 16 ast as hydrogen. Its molecular weight is[CPM	/T 19 <u>9</u> 2; B	many <i>grams</i> of oxygen wou the same time under similar (a) 0.5 g (bihar CEE 982] The rate of diffusion of met	ald diffuse through the same container ronditions [MNR 194 (b) 4 g (d) 8 g	• in 80] hat
56. 57.	(a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) $25\sqrt{2}$ The molecular weight of a g	[Kerala PMT 1990] (b) 4 (d) 16 (st as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug	1T 1992; B 69.	many grams of oxygen wou the same time under similar (a) 0.5 g Sihar CEE 982] The rate of diffusion of met of X. The molecular weight (a) 64.0	ald diffuse through the same container ronditions [MNR 198] (b) $4g$ (d) $8g$ Thane at a given temperature is twice the form X is [MNR 1995; Kerala CEE 20] (b) 32.0	• in 80] hat
	(a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) $25\sqrt{2}$ The molecular weight of a g	[Kerala PMT 1990] (b) 4 (d) 16 (b) 4st as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$	1T 1992; B 69.	many grams of oxygen wou the same time under similar (a) 0.5 g Sihar CEE 1982] The rate of diffusion of met of X. The molecular weight (a) 64.0 (c) 40.0	ald diffuse through the same container ronditions [MNR 198 (b) 4 g (d) 8 g (d) 8 g (d) 8 g (d) 8 g (d) 1 (d) 8 (d) 8 (d) 8 (d) 80.0	hat
	(a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) $25\sqrt{2}$ The molecular weight of a gat 1/6th of the speed of hyd (a) 27	[Kerala PMT 1990] (b) 4 (d) 16 Ist as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug rogen under identical conditions is [EAMCET (b) 72	1T 1992; B 69.	many grams of oxygen wou the same time under similar (a) 0.5 g Sihar CEE 1982] The rate of diffusion of met of X . The molecular weight (a) 64.0 (c) 40.0 X ml of H_2 gas effuses th	ald diffuse through the same container reconditions [MNR 198] (b) $4g$ (d) $8g$ Chane at a given temperature is twice the form of X is [MNR 1995; Kerala CEE 20] (b) 32.0 (d) 80.0 rough a hole in a container in 5 second	in 80] hat
57.	(a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) $25\sqrt{2}$ The molecular weight of a gat 1/6th of the speed of hyd (a) 27 (c) 36	[Kerala PMT 1990] (b) 4 (d) 16 st as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug rogen under identical conditions is [EAMCET (b) 72 (d) 48	/T 1992; B 69. 「1990]	many grams of oxygen wou the same time under similar (a) $0.5 g$ Sihar CEE 982] The rate of diffusion of met of X The molecular weight (a) 64.0 (c) 40.0 $X ml$ of H_2 gas effuses th The time taken for the elements.	and diffuse through the same container reconditions [MNR 194] (b) $4g$ (d) $8g$ Than at a given temperature is twice the form of X is [MNR 1995; Kerala CEE 20] (b) 32.0 (d) 80.0 The rough a hole in a container in 5 secont flusion of the same volume of the g	in 80] hat 001]
	(a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) $25\sqrt{2}$ The molecular weight of a gas 1/6th of the speed of hyd (a) 27 (c) 36 Molecular weight of a gas	[Kerala PMT 1990] (b) 4 (d) 16 st as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug rogen under identical conditions is [EAMCET (b) 72 (d) 48 that diffuses twice as rapidly as the gas	/T 1992; B 69. 「1990]	many grams of oxygen wou the same time under similar (a) 0.5 g Sihar CEE 1982] The rate of diffusion of met of X . The molecular weight (a) 64.0 (c) 40.0 X ml of H_2 gas effuses th	and diffuse through the same container reconditions [MNR 194] (b) $4g$ (d) $8g$ Than at a given temperature is twice the form of X is [MNR 1995; Kerala CEE 20] (b) 32.0 (d) 80.0 The rough a hole in a container in 5 secont flusion of the same volume of the g	hat (100)
57.	 (a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) 25√2 The molecular weight of a gat 1/6th of the speed of hyd (a) 27 (c) 36 Molecular weight of a gas with molecular weight 64 is 	[Kerala PMT 1990] (b) 4 (d) 16 st as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug rogen under identical conditions is [EAMCET (b) 72 (d) 48 that diffuses twice as rapidly as the gas [EAMCET 1994]	/T 1992; B 69. 「1990]	many grams of oxygen wou the same time under similar (a) $0.5 g$ Sihar CEE 982] The rate of diffusion of met of X The molecular weight (a) 64.0 (c) 40.0 $X ml$ of H_2 gas effuses th The time taken for the elements.	ald diffuse through the same container reconditions [MNR 194] (b) $4g$ (d) $8g$ Than at a given temperature is twice the form of X is [MNR 1995; Kerala CEE 20] (b) 32.0 (d) 80.0 The rough a hole in a container in 5 secont flusion of the same volume of the good condition is	hat (100)
57.	(a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) $25\sqrt{2}$ The molecular weight of a gas 1/6th of the speed of hyd (a) 27 (c) 36 Molecular weight of a gas with molecular weight 64 is (a) 16	[Kerala PMT 1990] (b) 4 (d) 16 st as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug rogen under identical conditions is [EAMCET (b) 72 (d) 48 that diffuses twice as rapidly as the gas [EAMCET 1994]	/T 1992; B 69. 「1990]	many <i>grams</i> of oxygen wou the same time under similar (a) $0.5 g$ Share CEE 1982] The rate of diffusion of met of X . The molecular weight (a) 64.0 (c) 40.0 $X ml$ of H_2 gas effuses th The time taken for the elspecified below under ident (a) $10 seconds: He$	ald diffuse through the same container reconditions [MNR 198] (b) $4 g$ (d) $8 g$ (hane at a given temperature is twice the of X is [MNR 1995; Kerala CEE 20] (b) 32.0 (d) 80.0 rough a hole in a container in 5 seconfusion of the same volume of the glical condition is [IIT 198] (b) 20 seconds: O_2	hat (100)
57. 58.	(a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) $25\sqrt{2}$ The molecular weight of a gas 1/6th of the speed of hyd (a) 27 (c) 36 Molecular weight of a gas with molecular weight 64 is (a) 16 (c) 64	[Kerala PMT 1990] (b) 4 (d) 16 Ist as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug rogen under identical conditions is [EAMCET (b) 72 (d) 48 that diffuses twice as rapidly as the gas [EAMCET 1994] (b) 8 (d) 6.4	HT 1992; B 69. 「1990] 70.	many grams of oxygen wou the same time under similar (a) $0.5 g$ Sihar CEE 982] The rate of diffusion of met of X . The molecular weight (a) 64.0 (c) 40.0 $X ml$ of H_2 gas effuses th The time taken for the elspecified below under ident (a) $10 seconds: He$ (c) $25 seconds: CO$	and diffuse through the same container reconditions [MNR 194] (b) 4 g (d) 8 g (d) 82.0 (d) 80.0 (d) 80.1 (d) 80.0 (d) 8	hat (1900)
57.	 (a) 2 (c) 8 A gas diffuse 1/5 times as far (a) 50 (c) 25√2 The molecular weight of a gast 1/6th of the speed of hydrogen the rate of diffusion of hydrogen the rate of diffusion of hydrogen 	[Kerala PMT 1990] (b) 4 (d) 16 ast as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug rogen under identical conditions is [EAMCET (b) 72 (d) 48 that diffuses twice as rapidly as the gas [EAMCET 1994] (b) 8 (d) 6.4 and oxygen are 0.09 and 1.44 g L^{-1} . If rogen is 1 then that of oxygen in the same	/T 1992; B 69. 「1990]	many <i>grams</i> of oxygen wou the same time under similar (a) 0.5 <i>g</i> Shar CEE 1982] The rate of diffusion of met of <i>X</i> . The molecular weight (a) 64.0 (c) 40.0 <i>X ml</i> of <i>H</i> ₂ gas effuses th The time taken for the elspecified below under ident (a) 10 <i>seconds</i> : <i>He</i> (c) 25 <i>seconds</i> : <i>CO</i> At what temperature, the	and diffuse through the same container of conditions [MNR 198] (b) $4 g$ (d) $8 g$ (thane at a given temperature is twice the of X is [MNR 1995; Kerala CEE 20] (b) 32.0 (d) 80.0 (d) 80.0 rough a hole in a container in 5 seconfusion of the same volume of the glical condition is [IIT 199] (b) 20 seconds: O_2 (d) 55 seconds: CO_2 rate of effusion of N_2 would be 1.6	hat (1000)
57. 58.	(a) 2 (c) 8 A gas diffuse 1/5 times as fa (a) 50 (c) $25\sqrt{2}$ The molecular weight of a gas 1/6th of the speed of hyd (a) 27 (c) 36 Molecular weight of a gas with molecular weight 64 is (a) 16 (c) 64 The densities of hydrogen	[Kerala PMT 1990] (b) 4 (d) 16 ast as hydrogen. Its molecular weight is [CPN (b) 25 (d) $50\sqrt{2}$ gas which diffuses through a porous plug rogen under identical conditions is [EAMCET (b) 72 (d) 48 that diffuses twice as rapidly as the gas [EAMCET 1994] (b) 8 (d) 6.4 and oxygen are 0.09 and 1.44 g L^{-1} . If	HT 1992; B 69. 「1990] 70.	many grams of oxygen wou the same time under similar (a) $0.5 g$ Sihar CEE 982] The rate of diffusion of met of X . The molecular weight (a) 64.0 (c) 40.0 $X ml$ of H_2 gas effuses th The time taken for the elspecified below under ident (a) $10 seconds: He$ (c) $25 seconds: CO$	and diffuse through the same container of conditions [MNR 198] (b) $4 g$ (d) $8 g$ (thane at a given temperature is twice the of X is [MNR 1995; Kerala CEE 20] (b) 32.0 (d) 80.0 (d) 80.0 rough a hole in a container in 5 seconfusion of the same volume of the glical condition is [IIT 199] (b) 20 seconds: O_2 (d) 55 seconds: CO_2 rate of effusion of N_2 would be 1.6	hat (1000)

	(a) 110 <i>K</i> (c) 373 <i>K</i>	(b) 173 <i>K</i> (d) 273 <i>K</i>	83.	A closed vessel contains eq molecules at a pressure of <i>P</i> system then the pressure will	<i>mm</i> . If 1		
72.		$O(l) \rightarrow CO(g) + H_2(g)$ calculate the		,			[MP PMT 1985]
	volume of the gases produced a (a) 179.2 <i>L</i>	(b) 89.6 <i>L</i>		(a) <i>P</i>	(b)	2 <i>P</i>	
	(c) 44.8 L	(d) 22.4 <i>L</i>		(c) P/2	(d)	P^2	
73.	. ,	a volume of 2.24 L , the gas can be [Haryan	а (812ДЕТ				pressure with
	(a) O_2	(b) <i>CO</i>		N_2, O_2, H_2 and \emph{Ne} separate	ely, then	which one will	be filled first[Manipal PM
	(c) NO ₂	(d) <i>CO</i> ₂		(a) N_2	(b)	O_2	
74.	· · · · · · · · · · · · · · · · · · ·	pure sample of an ideal gas not only		(c) H ₂	(d)	=	
		but also a concentration of 1 <i>mole</i>	85.	Which of the following gas mi of partial pressure	()		or Dalton's law [Pb. CET 2002]
	$(R = 0.082 litreatm mol^{-1} d$	leg ⁻¹) [CBSE PMT 1993]		(a) SO_2 and Cl_2	(b)	CO_2 and N_2	
	(a) At STP					CO and N_2	
	(b) When $V = 22.4 \ litres$					_	0.00
	(c) When $T = 12 K$		86.	At what pressure a quantity of	-		
	(d) Impossible under any cond			if it occupies a volume of (while temperature is constant		at a pressure	of 720mm? [Pb. CET 2000]
75.		ules each of N_2, O_2 and H_2 which		(a) $700 mm$	(b)	800mm	
		and 273 K. The mass of the mixture		(c) 100 mm	(d)	1200 mm	
	in grams is (a) 6.2	[Pb. PMT 1997] (b) 4.12	87.	At constant temperature and	pressur	e which gas w	ill diffuse first
	(c) 3.09	(d) 7		H_2 or O_2 ?			[Pb. CET 2000]
76.	Volume of 4.4 g of CO_2 at N	TP is [Pb. CET 1997]		(a) Hydrogen			
	(a) 22.4 <i>L</i>	(b) 44.8 <i>L</i>		(b) Oxygen			
	(c) 2.24 L	(d) 4.48 <i>L</i>		(c) Both will diffuse in same	time		
77.	The energy of an ideal gas depe			(d) None of the above			
	(a) Pressure	(b) Volume	88.	When a jar containing gaseon			
70	(c) Number of moles	(d) Temperature		and H_2 is placed in a solut	ion of so	odium hydroxid	
78.		s 200 ml liquid in which CO_2 is 0.1		level will	(L)	r-11	[Pb. CET 2001]
		s like an ideal gas, the volume of the		(a) Rise (c) Remain constant	(b)	Become zero	
	dissolved CO_2 at STP is	[CBSE PMT 1991]	89.	At S.T.P. $1g CaCO_3$ on deco	` '		
	(a) 0.224 <i>litre</i> (c) 22.4 <i>litre</i>	(b) 0.448 <i>litre</i> (d) 2.24 <i>litre</i>	٠,.	71. 51.11. 18 00.003 01. 00.00	,,,poo.c.o		[Pb. CET 2000]
79.	. ,	11.2. The volume occupied by 11.2 g of		(a) 22.4 litre	(b)	2.24 litre	[, .,,
,,,	this gas at N.T.P. is	, , , , ,		(c) 0.224 litre	(d)	11.2 litre	
	()	[MNR 1982; CBSE PMT 1991]	90.	At NTP, the density of a gas, w	hose mol		
	(a) 1 <i>L</i>	(b) 11.2 <i>L</i>		(a) 44 9 cm litro	(b)		b. CET 2001, 03]
80.	(c) 22.4 L	(d) 20 <i>L</i> I with oxygen at N.T.P. and weighted.		(a) 44.8 gm/litre (c) 2 gm/ litre		11.4 gm/litre 3 gm/litre	
50.		with SO_2 at the same temperature	91.	What is the ratio of diffusion			ogen
		ed. The weight of oxygen will be[NCERT 19	989]				[Pb. CET 2003]
	(a) The same as that of SO_2			(a) 1:4	` '	4:1	
	_		00	(c) 1:8 The maximum number of mol	()	8 : 1	
	(b) $\frac{1}{2}$ that of SO_2		92.	The maximum number of mor	ecules is	•	CBSE PMT 2004]
	(c) Twice that of SO_2			(a) 0.5 g of H_2 gas	(b)	10 g of O_2 ga	-
	_			(c) 15 L of H_2 gas at STP	(d)	$5 L \text{ of } N_2 \text{ gas}$	s at STP
	(d) One fourth that of SO_2		93.	One litre oxygen gas at STP w			[Pb. CET 2004]
81.	Five grams each of the follow	wing gases at $87^{\circ}C$ and 750 mm		(a) 1.43 g		2.24 g	
	pressure are taken. Which of th	nem will have the least volume[MNR 1991]		(c) 11.2 g	. ,	22.4 g	[ATMAG and all
	(a) HF	(b) HCl	94.	How will you separate mixture (a) Fractional distillation tecl		gases	[AFMC 2004]
82.	(c) HBr Who among the following sci	(d) <i>HI</i> Sentists has not done any important		(b) Grahams law of diffusion		ue	
02.	work on gases	[Bihar MADT 1980]		(c) Osmosis			
	(a) Boyle	(b) Charles	05	(d) Chromatography The rate of diffusion of budges	~ ·	•	
	(c) Avogadro	(d) Faraday	95.	The rate of diffusion of hydrog	gen gas 1:		3; Pb. CET 2000]
				(a) 1.4 times to He gas	(b)	Same as He	•
					. ,	•	-

9 0.	Trydrogen directs six times faster than gas 11. The moral mass of		(a) Atom is indivisible
	gas A is [KCET 2004] (a) 72 (b) 6		(b) Gases combine in a simple ratio
	(c) 24 (d) 36		(c) There is no influence of gravity on the molecules of a gas
97.	At what pressure will a quantity of gas, which occupies $100 ml$ at		(d) None of the above
37.		2.	According to kinetic theory of gases, [EAMCET 1980]
	a pressue of $720 mm$, occupy a volume of $84 ml$ [DPMT 2004]		(a) There are intermolecular attractions
	(a) 736.18 mm (b) 820.20 mm		(b) Molecules have considerable volume
_	(c) 784.15 <i>mm</i> (d) 857.14 <i>mm</i>		(c) No intermolecular attractions
98.	Containers A and B have same gases. Pressure, volume and		(d) The velocity of molecules decreases after each collision
	temperature of A are all twice that of B , then the ratio of	3.	In deriving the kinetic gas equation, use is made of the root mean
	number of molecules of A and B are [AFMC 2004]		square velocity of the molecules because it is
	(a) 1:2 (b) 2		[Bihar MADT 1980]
	(c) 1:4 (d) 4		(a) The average velocity of the molecules
99.	A mixture of NO_2 and N_2O_4 has a vapour density of 38.3 at		(b) The most probable velocity of the molecules
	$300K$. What is the number of moles of NO_2 in $100g$ of the		(c) The square root of the average square velocity of the molecules
	mixture [Kerala PMT 2004]		(d) The most accurate form in which velocity can be used in these
	(a) 0.043 (b) 4.4		calculations
	(c) 3.4 (d) 3.86	4.	Kinetic energy of a gas depends upon its[Bihar MADT 1982]
100	(e) 0.437		(a) Molecular mass (b) Atomic mass
100.	A cylinder of 5 litres capacity, filled with air at NTP is connected with another evacuated cylinder of 30 litres of capacity. The		(c) Equivalent mass (d) None of these
	resultant air pressure in both the cylinders will be [BHU 2004]	5.	The kinetic theory of gases perdicts that total kinetic energy of a
	(a) 10.8 <i>cm</i> of <i>Hg</i> (b) 14.9 <i>cm</i> of <i>Hg</i>		gaseous assembly depends on [NCERT 1984]
	(c) 21.8 cm of Hg (d) 38.8 cm of Hg		(a) Pressure of the gas
101.	A certain mass of gas occupies a volume of 300 c.c. at 27 C and 620		(b) Temperature of the gas
	mm pressure. The volume of this gas at $47^{\circ}C$ and 640 mm		(c) Volume of the gas
	pressure will be [MH CET 2003]		(d) Pressure, volume and temperature of the gas
	(a) 400 c.c. (b) 510 c.c. (c) 310 c.c. (d) 350 c.c.	6.	According to kinetic theory of gases, the energy per mole of a gas is
102.	(c) 310 c.c. (d) 350 c.c. What will be the volume of the mixture after the reaction?		equal to [EAMCET 1985] (a) 1.5 RT (b) RT
102.			(a) 1.5 RT (b) RT (c) 0.5 RT (d) 2.5 RT
	$ NH3 + HCl \rightarrow NH4Cl 4 litre $	7.	Internal energy and pressure of a gas per unit volume are related as [CBSE PMT]
	(a) 0.5 litre (b) 1 litre	•	
	(c) 2.5 litre (d) 0.1 litre		(a) $P = \frac{2}{3}E$ (b) $P = \frac{3}{2}E$
103.	The pressure and temperature of $4dm^3$ of carbon dioxide gas are		1
	doubled. Then the volume of carbon dioxide gas would be[KCET 2004]		(c) $P = \frac{1}{2}E$ (d) $P = 2E$
	(a) $2 dm^3$ (b) $3 dm^3$	_	2
	(c) $4 dm^3$ (d) $8 dm^3$	8.	The translational kinetic energy of an ideal gas depends only on its
104			(a) Pressure (b) Force
104.	If the absolute temperature of an ideal gas become double and pressure become half, the volume of gas would be	9.	(c) Temperature (d) Molar mass Helium atom is two times heavier than a hydrogen molecule at 298
	[Kerala CET 2005]	٦.	K, the average kinetic energy of helium is [IIT 1982]
	(a) Remain unchange (b) Will be double		(a) Two times that of a hydrogen molecule
	(c) Will be four time (d) will be half		(b) Same as that of a hydrogen molecule
	(e) Will be one fourth		(c) Four times that of a hydrogen molecule
105.	At what temperature, the sample of neon gas would be heated to		(d) Half that of a hydrogen molecule
	double of its pressure, if the initial volume of gas is/are reduced to	10.	Which of the following is valid at absolute zero
	15% at 75° C [Kerala CET 2005]		[Pb. CET 1985]
	(a) 319° C (b) 592° C		(a) Kinetic energy of the gas becomes zero but the molecular motion does not become zero
			(b) Kinetic energy of the gas becomes zero and molecular motion
	(c) $128^{\circ} C$ (d) $60^{\circ} C$		also becomes zero
	(e) $90^{\circ} C$		(c) Kinetic energy of the gas decreases but does not become zero
106.	Equation of Boyle's law is [DPMT 2005]		(d) None of the above
	dP = dV $dP = dV$	11.	The average K.E. of an ideal gas in calories per mole is
	(a) $\frac{dP}{p} = -\frac{dV}{V}$ (b) $\frac{dP}{P} = +\frac{dV}{V}$		approximately equal to [EAMCET 1989]
	•		(a) Three times the absolute temperature
	(c) $\frac{d^2P}{P} = -\frac{dV}{dT}$ (d) $\frac{d^2P}{P} = +\frac{d^2V}{dT}$		(b) Absolute temperature
	P dT O		(c) Two times the absolute temperature
		10	(d) 1.5 times the absolute temperature According to kinetic theory of gases for a diatomic molecule
	Kinetic molecular theory of gases and	12.	According to kinetic theory of gases, for a diatomic molecule [MNR 1991]
	<i>y</i> 3		[וערבו זוגוועון]

Postulate of kinetic theory is

[EAMCET 1980]

(c) 5 times to He gas

96.

(d) 2 times to He gas

Hydrogen diffuses six times faster than gas $\,A$. The molar mass of

Molecular collisions

(a) The pressure exerted by the gas is proportional to the mean velocity of the molecules The pressure exerted by the gas is proportional to the root mean square velocity of the molecules The root mean square velocity is inversely proportional to the temperature The mean translational kinetic energy of the molecules is proportional to the absolute temperature At STP, 0.50 $mol\ H_2$ gas and 1.0 $mol\ He$ gas

[CBSE PMT 1993, 2000]

- (a) Have equal average kinetic energies
- (b) Have equal molecular speeds
- (c) Occupy equal volumes

13.

- Have equal effusion rates
- Which of the following expressions correctly represents the 14. relationship between the average molar kinetic energy, K.E., of CO and N_2 molecules at the same temperature

[CBSE PMT 2000]

- $\overline{KE}_{CO} = \overline{KE}_{N_2}$
- (b) $\overline{KE}_{CO} > \overline{KE}_{N_2}$
- (c) $\overline{KE}_{CO} < \overline{KE}_{N_2}$
- (d) Cannot be predicted unless the volumes of the gases are given Indicate the correct statement for a 1-L sample of $N_2(g)$ and 15. $CO_2(g)$ at 298 K and 1 atm pressure
 - (a) The average translational $\mbox{\it KE}$ per molecule is the same in N_2 and CO_2
 - (b) The rms speed remains constant for both N_2 and CO_2
 - (c) The density of N_2 is less than that of CO_2
 - (d) The total translational KE of both N_2 and CO_2 is the same

16. With increase of pressure, the mean free path

[Pb. CET 1985]

- (a) Decreases
- (b) Increases
- (c) Does not change
- (d) Becomes zero
- Which one of the following statements is NOT true about the effect 17. of an increase in temperature on the distribution of molecular speeds in a gas AIEEE 2005
 - (a) The most probable speed increases
 - (b) The fraction of the molecules with the most probable speed
 - The distribution becomes broader
 - (d) The area under the distribution curve remains the same as under the lower temperature
- If P, V, M, T and R are pressure, volume, molar mass, temperature 18. and gas constant respectively, then for an ideal gas, the density is [CBSE PMT 1989, 91] given by

- An ideal gas will have maximum density when [CPMT 2000] 19.
 - (a) P = 0.5 atm, T = 600 K
 - P = 2 atm, T = 150 K
 - P = 1 atm, T = 300 K
 - P = 1.0 atm, T = 500 K
- If the inversion temperature of a gas is $-80^{o}C$, then it will 20. produce cooling under Joule-Thomson effect at

- (a) 298 K
- (b) 273 K
- (c) 193 K
- (d) 173 K
- Ratio of C_p and C_v of a gas 'X is 1.4. The number of atoms of the gas 'X present in 11.2 litres of it at N.T.P. is

- (a) 6.02×10^{23}
- (b) 1.2×10^{24}
- (c) 3.01×10^{23}
- (d) 2.01×10^{23}
- The density of air is 0.00130 g/ml. The vapour density of air will be[DCE 2000] 22.
 - (a) 0.00065
- (b) 0.65
- (c) 14.4816
- (d) 14.56
- At 100° C and 1 atm, if the density of liquid water is 1.0 g cm⁻³ 23. and that of water vapour is 0.0006 $g\ m^{-3}$, then the volume occupied by water molecules in 1 litre of steam at that temperature
 - (a) $6 cm^3$
- (b) $60 \text{ } cm^3$
- (c) $0.6 \ cm^3$
- (d) $0.06 \text{ } cm^3$
- The ratio γ for inert gases is
- (b) 1.66
- (a) 1.33 (c) 2.13
- (d) 1.99
- The density of neon will be highest at
- [CBSE PMT 1990]

[AFMC 1990]

- (a) S.T.P.
- (b) $0^{\circ} C$, 2 atm
- (c) $273^{\circ} C, 1 atm$
- (d) $273^{\circ} C$, 2 atm
- 26. Absolute zero is defined as the temperature

[CBSE PMT 1990]

- (a) At which all molecular motion ceases
- (b) At which liquid helium boils
- (c) At which ether boils
- (d) All of the above
- Consider the following statements:
 - Joule-Thomson experiment is isoenthalpic as well as adiabatic.
 - A negative value of μ_{JT} (Joule Thomson coefficient corresponds to warming of a gas on expansion.
 - The temperature at which neither cooling nor heating effect is observed is known as inversion temperature.

Which of the above statements are correct

- (a) 1 and 2
- (b) 1 and 3
- (c) 2 and 3
- (d) 1, 2 and 3
- Vibrational energy is
- (a) Partially potential and partially kinetic
 - Only potential (b)
 - Only kinetic (c)
 - (d) None of the above
- At the same temperature and pressure, which of the following gases 29. will have the highest kinetic energy per mole

[MNR 1991]

[Pb. CET 1985]

- (a) Hydrogen
- (b) Oxygen
- (c) Methane
- (d) All the same
- 30. Dimensions of pressure are the same as that of

[CBSE PMT 1995]

- (a) Energy
- (b) Force
- (c) Energy per unit volume
- (d) Force per unit volume
- The density of a gas An is three times that of a gas B. if the 31. molecular mass of A is M, the molecular mass of B is

[CPMT 1987]

- (a) 3 M
- (b) $\sqrt{3} M$
- (c) M/3
- (d) $M / \sqrt{3}$

Molecular speeds

1.	The ratio of root mean square velocity to average velocity of gas molecules at a particular temperature is [IIT 1981]		(a) $\sqrt{\frac{3P}{d}}$ (b) $\sqrt{\frac{3PV}{M}}$
	(a) 1.086 : 1 (b) 1 : 1.086		2 PT
	(c) 2:1.086 (d) 1.086:2		(c) $\sqrt{\frac{3RT}{M}}$ (d) All the above
2.	Which is not true in case of an ideal gas [CBSE PMT 1991]		•
	(a) It cannot be converted into a liquid	12.	Root mean square velocity of a gas molecule is proportional to [CBSE PMT 1990]
	(b) There is no interaction between the molecules		(a) $m^{1/2}$ (b) m^0
	(c) All molecules of the gas move with same speed		_1/2
	(d) At a given temperature, PV is proportional to the amount of	10	(c) $m^{-1/2}$ (d) m At constant volume, for a fixed number of moles of a gas, the
	the gas	13.	pressure of the gas increases with increase in temperature due to [IIT 1992]
3.	The ratio among most probable velocity, mean velocity and root mean square velocity is given by [CBSE PMT 1993]		(a) Increase in the average molecular speed (b) Increased rate of collision amongst molecules (c) Increase in molecular attraction
	(a) $1:2:3$ (b) $1:\sqrt{2}:\sqrt{3}$		(d) Decrease in mean free path
	(c) $\sqrt{2}:\sqrt{3}:\sqrt{8/\pi}$ (d) $\sqrt{2}:\sqrt{8/\pi}:\sqrt{3}$	14.	Molecular velocities of the two gases at the same temperature are
			u_1 and u_2 . Their masses are m_1 and m_2 respectively. Which of
4.	Which of the following has maximum root mean square velocity at the same temperature [Manipal PMT 2002]		the following expressions is correct [BHU 1994]
	(a) SO_2 (b) CO_2		m_1 m_2
	(c) O_2 (d) H_2		(a) $\frac{m_1}{u_1^2} = \frac{m_2}{u_2^2}$ (b) $m_1 u_1 = m_2 u_2$
5.	The temperature at which $\it RMS$ velocity of $\it SO_2$ molecules is half		(c) $\frac{m_1}{u_1} = \frac{m_2}{u_2}$ (d) $m_1 u_1^2 = m_2 u_2^2$
	that of <i>He</i> molecules at 300 <i>K</i> is [NTSE 1991]		u_1 u_2 u_2
	(a) 150 K (b) 600 K	15.	The temperature of the gas is raised from $27^{o}C$ to $927^{o}C$, the
	(c) 900 K (d) 1200 K	13.	root mean square velocity is [CBSE PMT 1994]
6.	At $27^{\circ} C$, the ratio of <i>rms</i> velocities of ozone to oxygen is		(a) $\sqrt{927/27}$ times the earlier value
	[EAMCET 1992]		(b) Same as before
	(a) $\sqrt{3/5}$ (b) $\sqrt{4/3}$		(c) Halved (d) Doubled
	1) [2/2]	16.	The ratio between the root mean square velocity of <i>H</i> at 50 <i>K</i> and
	(c) $\sqrt{2/3}$ (d) 0.25		that of O_2 at 800 K is [IIT 1996]
7.	The average kinetic energy of an ideal gas per molecule in SI units at		(a) 4 (b) 2
	$25^{\circ} C$ will be [CBSE PMT 1996]		(c) 1 (d) 1/4
	(a) $6.17 \times 10^{-21} kJ$ (b) $6.17 \times 10^{-21} J$	17.	The root mean square velocity of an ideal gas at constant pressure varies density (d) as [IIT 2000]
	(c) $6.17 \times 10^{-20} J$ (d) $7.16 \times 10^{-20} J$		(a) d^2 (b) d
8.	At what temperature the RMS velocity of SO_2 be same as that of		(c) \sqrt{d} (d) $1/\sqrt{d}$
٠.		18.	Consider a mixture of SO_2 and O_2 kept at room temperature.
	O_2 at 303 K [KCET 2001]		Compared to the oxygen molecule, the SO_2 molecule will hit the
	(a) 273 K (b) 606 K		wall with
	(c) 303 K (d) 403 K		(a) Smaller average speed (b) Greater average speed
9.	Among the following gases which one has the lowest root mean		(c) Greater kinetic energy (d) Greater mass
	square velocity at $25^{\circ}C$ [EAMCET 1983]	19.	The rms speed of N_2 molecules in a gas is u . If the temperature is
	(a) SO_2 (b) N_2		doubled and the nitrogen molecules dissociate into nitrogen atoms,
			the rms speed becomes
	(c) O_2 (d) Cl_2		(a) $u/2$ (b) $2u$
10.	The root mean square velocity of an ideal gas in a closed container		(c) 4 <i>u</i> (d) 14 <i>u</i>
	of fixed volume is increased from $5 \times 10^4 \ cm \ s^{-1}$ to	20.	Choose the correct arrangement, where the symbols have their usual meanings
	10×10^4 cm s ⁻¹ . Which of the following statement correctly		(a) $\overline{u} > u_p > u_{rms}$ (b) $u_{rms} > \overline{u} > u_p$
	explains how the change is accomplished		(c) $u_p > \overline{u} > u_{rms}$ (d) $u_p > u_{rms} > \overline{u}$
	[Pb. CET 1986]	21.	The ratio of most probable velocity to that of average velocity is [JEE Orissa 200
	(a) By heating the gas, the temperature is doubled		(a) $\pi/2$ (b) $2/\pi$
	(b) By heating the gas, the pressure is quadrupled (<i>i.e.</i> made four		(c) $\sqrt{\pi}/2$ (d) $2/\sqrt{\pi}$
	times) (c) By heating the gas, the temperature is guadrupled	22.	The r.m.s. velocity of a certain gas is v at $300K$. The
	(c) By heating the gas, the temperature is quadrupled(d) By heating the gas, the pressure is doubled	<i>24</i> .	temperature, at which the r.m.s. velocity becomes double [Pb. CET 2002]
11.	The <i>rms</i> velocity at NTP of the species can be calculated from the		(a) $1200K$ (b) $900K$
	expression [EAMCET 1990]		(c) 600 <i>K</i> (d) 150 <i>K</i>
		23.	The r.m.s. velocity of a gas depends upon [DCE 2002]
		_0.	(a) Temperature only

(b)	Molecular mass only
(c)	Temperature and m

olecular mass of gas

(d) None of these

What is the pressure of 2 mole of NH_3 at $27^{\circ}C$ when its 24. volume is 5 litre in vander Waal's equation (a = 4.17, b = 0.03711)[JEE Orissa_2004]

(a) 10.33 atm

(b) 9.33 atm

(c) 9.74 atm

(d) 9.2 atm

25. The root mean square velocity of one mole of a monoatomic having molar mass M is $U_{\it rms}$. The relation between the average kinetic energy (E) of the U_{ms} is

(a)
$$U_{ms} = \sqrt{\frac{3E}{2M}}$$
 (b) $U_{ms} = \sqrt{\frac{2E}{3M}}$

(b)
$$U_{ms} = \sqrt{\frac{2E}{3M}}$$

(c)
$$U_{mss} = \sqrt{\frac{2E}{M}}$$

(d)
$$U_{ms} = \sqrt{\frac{E}{3M}}$$

26. Ratio of average to most probable velocity is

[Orissa JEE 2005]

(a) 1.128

(d) 1.112

If the $v_{\it mis}$ is $30 {\it R}^{1/2}$ at $27^o \it C$ then calculate the molar mass of 27. gas in kilogram. [DPMT 2005]

(a) 1

(c) 4

Real gases and Vander waal's equation

The Vander Waal's equation explains the behaviour of

[DPMT 1981]

(a) Ideal gases

(b) Real gases

(d) Non-real gases

(c) Vapour Gases deviate from the ideal gas behaviour because their molecules [NCERT 1981] 2.

(a) Possess negligible volume

(b) Have forces of attraction between them

(c) Are polyatomic

(d) Are not attracted to one another

The compressibility factor of a gas is defined as Z = PV/RT. The compressibility factor of ideal gas is

[Pb. CET 1986]

(b) Infinity

(c) 1

(d) -1

In Vander Waal's equation of state for a non-ideal gas, the term that accounts for intermolecular forces is

[CBSE PMT 1990; IIT 1988]

(b) $(RT)^{-1}$

(c) $\left(P + \frac{a}{V^2}\right)$

Vander Waal's equation of state is obeyed by real gases. For n moles of a real gas, the expression will be

[IIT 1992; Pb. CET 1986; DPMT 1986]

(a)
$$\left(\frac{P}{n} + \frac{na}{V^2}\right) \left(\frac{V}{n-b}\right) = RT$$

(b)
$$\left(P + \frac{a}{V^2}\right)(V - b) = nRT$$

(c)
$$\left(P + \frac{na}{V^2}\right)(nV - b) = nRT$$

(d)
$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

6. Any gas shows maximum deviation from ideal gas at

[CPMT 1991]

16.

(a) $0^{\circ} C$ and 1 atmospheric pressure

 $100^{o}C$ and 2 atmospheric pressure

 -100^{o} C and 5 atmospheric pressure

 $500^{\circ}C$ and 1 atmospheric pressure

The temperature at which the second virial coefficient of real gas is zero is called [AFMC 1993]

(a) Critical temperature

(b) Eutetic point

(c) Boiling point

(d) Boyle's temperature

When is deviation more in the behaviour of a gas from the ideal gas equation PV = nRT

[DPMT 1981; NCERT 1982; CBSE PMT 1993]

(a) At high temperature and low pressure

(b) At low temperature and high pressure

(c) At high temperature and high pressure

(d) At low temperature and low high pressure

Vander Waal's constants 'a' and 'b' are related with..... respectively[RPMT 1994]

Attractive force and bond energy of molecules

Volume and repulsive force of molecules

Shape and repulsive forces of molecules

Attractive force and volume of the molecules

10. Gas deviates from ideal gas nature because molecules

[CPMT 1996]

(a) Are colourless

(b) Attract each other

Contain covalent bond

Show Brownian movement

The Vander Waal's equation reduces itself to the ideal gas equation [Kerala MEE 2001; CBSE PMT 2002] at

(a) High pressure and low temperature

Low pressure and low temperature

Low pressure and high temperature

(d) High pressure and high temperature

The compressibility factor for an ideal gas is [IIT 1997]

(a) 1.5

(b) 1.0

(c) 2.0

(d) ∞

13. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules

(a) Are above the inversion temperature

Exert no attractive force on each other

Do work equal to loss in kinetic energy

(d) Collide without loss of energy

A gas is said to behave like an ideal gas when the relation PV/T = constant. When do you expect a real gas to behave like an ideal gas

[11T 1999; CBSE PMT 1990; CPMT 1991]

(a) When the temperature is low

(b) When both the temperature and pressure are low

When both the temperature and pressure are high

When the temperature is high and pressure is low

A real gas most closely approaches the behaviour of an ideal gas at [KCET 1992] 15.

(a) 15 *atm* and 200 *K*

(b) 1 atm and 273 K

(c) 0.5 atm and 500 K

(d) 15 atm and 500 K

The temperature at which real gases obey the ideal gas laws over a wide range of pressure is called

[AFMC 1993; IIT 1981, 94]

(a) Critical temperature

Boyle temperature

Inversion temperature

- (d) Reduced temperature
- At low pressure, the Vander Waal's equation is reduced to 17.

(a)
$$Z = \frac{pV_m}{RT} = 1 - \frac{ap}{RT}$$

(b)
$$Z = \frac{pV_m}{RT} = 1 + \frac{b}{RT}$$

(c)
$$pV_m = RT$$

$$(a) \quad Z = \frac{pV_m}{RT} = 1 - \frac{ap}{RT} \qquad \qquad (b) \quad Z = \frac{pV_m}{RT} = 1 + \frac{b}{RT} \ p$$

$$(c) \quad pV_m = RT \qquad \qquad (d) \quad Z = \frac{pV_m}{RT} = 1 - \frac{a}{RT}$$

18. At high temperature and low pressure, the Vander Waal's equation

(a)
$$\left(p + \frac{a}{V_m^2}\right)(V_m) = RT$$

- (b) $pV_m = RT$
- (c) $p(V_m b) = RT$

(d)
$$\left(p + \frac{a}{V_m^2}\right)(V_m - b) = RT$$

- When helium is allowed to expand into vacuum, heating effect is 19. observed. Its reason is that [CPMT 1987]
 - (a) Helium is an ideal gas
 - (b) Helium is an inert gas
 - (c) The inversion temperature of helium is very low
 - (d) The boiling point of helium is the lowest among the elements
- 20. In van der Waal's equation of state of the gas law, the constant 'b' [AIEEE 2004] is a measure of
 - (a) Volume occupied by the molecules
 - Intermolecular attraction
 - Intermolecular repulsions
 - Intermolecular collisions per unit volume
- In which molecule the vander Waal's force is likely to be the most 21. important in determining the m.pt. and b.pt.

[DPMT 2000]

- H_2S
- (c) HCl
- (d) *CO*
- Pressure exerted by 1 mole of methane in a 0.25 litre container at 22. using vander Waal's equation $1 = 2.253 \, atml^2 \, mol^{-2}, b = 0.0428 \, litmol^{-1})$ is

[Orissa JEE 2005]

- (a) 82.82 atm
- (b) 152.51 atm
- (c) 190.52 atm
- (d) 70.52 atm

Critical state and Liquefaction of gases

- Which set of conditions represents easiest way to liquefy a gas[NCERT 1983] 1.
 - (a) Low temperature and high pressure
 - (b) High temperature and low pressure
 - (c) Low temperature and low pressure
 - (d) High temperature and high pressure
- Adiabatic demagnetisation is a technique used for 2.

[BHU 1984]

- (a) Adiabatic expansion of a gas
- (b) Production of low temperature
- (c) Production of high temperature
- An ideal gas can't be liquefied because 3.

[CBSE PMT 1992]

(a) Its critical temperature is always above $0^o C$

- (b) Its molecules are relatively smaller in size
- It solidifies before becoming a liquid
- Forces operative between its molecules are negligible
- However great the pressure, a gas cannot be liquefied above its
 - Boyle temperature
 - (b) Inversion temperature
 - Critical temperature (c)
 - (d) Room temperature
- An ideal gas obeying kinetic theory of gases can be liquefied if [CBSE PMT 1995]
 - Its temperature is more than critical temperature T_c
 - Its pressure is more than critical pressure P_c
 - Its pressure is more than P_c at a temperature less than T_c
 - (d) It cannot be liquefied at any value of P and T

6. The Vander Waal's parameters for gases W, X, Y and Z are

Gas	a (atm L [,] mol·)	b (L mol)
W	4.0	0.027
X	8.0	0.030
Υ	6.0	0.032
Z	12.0	0.027

Which one of these gases has the highest critical temperature

(c) Y

- The Vander Waal's constant 'a' for the gases O_2, N_2, NH_3 and 7.

 CH_4 are 1.3, 1.390, 4.170 and 2.253 $L^2 atmmol^{-2}$ respectively. The gas which can be most easily liquefied is

[IIT 1989]

[AFMC 2005]

- (a) O_2
- (c) NH_3
- 8. A gas can be liquefied
- - (a) Above its critical temperature
 - At its critical temperature (c) Below its critical temperature
 - (d) At any temperature
- Which of the following is correct for critical temperature
 - It is the highest temperature at which liquid and vapour can
 - Beyond the critical temperature, there is no distinction between the two phases and a gas cannot be liquefied by compression
 - At critical temperature (T_c) the surface tension of the system
 - At critical temperature the gas and the liquid phases have different critical densities

A gas has a density of 2.68 g/L at stp. Identify the gas

(a) NO_2

10.

- (b) Kr
- (c) COS
- (d) SO_2

Weight of 112 ml of oxygen at NTP on liquefaction would be[DPMT 1984]

- (a) 0.32 g
- (b) 0.64 g
- (c) 0.16 g
- (d) 0.96 g

Objective Questions

- As the temperature is raised from $20^{\circ} C$ to $40^{\circ} C$ the average kinetic energy of neon atoms changes by a factor of which of the following [AIEEE 2004]
 - (a) 313/293
- $\sqrt{(313/293)}$

	(c) 1/2	(d) 2		11.	If C_1, C_2, C_3 represent the speeds of n_1, n_2, n_3 molecules,
2.	A gas is found to have a formula	a $\left[CO ight]_{\scriptscriptstyle \chi}$. If its vapou	r density is 70,		then the root mean square speed is [IIT 1993]
	the value of x is		[DCE 2004]		(2, 2, 2, 3, 1/2)
	(a) 2.5	(b) 3.0			(a) $\left(\frac{n_1C_1^2 + n_2C_2^2 + n_3C_3^2 + \dots}{n_1 + n_2 + n_3 + \dots}\right)^{1/2}$
	(c) 5.0	(d) 6.0			
3.	Which of the given sets of temporal to exhibit the greatest deviation				(b) $\frac{(n_1C_1^2 + n_2C_2^2 + n_3C_3^2 +)^{1/2}}{n_1 + n_2 + n_2 +}$
	(a) $100^{o}C$ and 4 atm	(b) $100^{\circ} C$ and	2 atm		1 2 3
	(c) $-100^{o} C$ and 4 atm	(d) $0^{\circ} C$ and 2 a	tm		(c) $\frac{(n_1C_1^2)^{1/2}}{n_1} + \frac{(n_2C_2^2)^{1/2}}{n_2} + \frac{(n_3C_3^2)^{1/2}}{n_3} + \dots$
4.	The molecular weight of O_2 and	nd SO_2 are 32 and \circ	64 respectively.		n_1 n_2 n_3
	If one <i>litre</i> of O_2 at $15^{o}C$	and 750 mm pressu	re contains 'N		$(n_1C_1 + n_2C_2 + n_3C_3 +)^2$
	molecules, the number of molecu	ules in two <i>litres</i> of S	SO_2 under the		(d) $\left \frac{(n_1C_1 + n_2C_2 + n_3C_3 +)^2}{(n_1 + n_2 + n_3 +)} \right ^{1/2}$
	same conditions of temperature	and pressure will be [CBSE 1990; MNR 199	1]	
	(a) N/2	(b) <i>N</i>		12.	50 <i>ml</i> of hydrogen diffuses out through a small hole from a vessel in 20 <i>minutes</i> . The time needed for 40 <i>ml</i> of oxygen to diffuse out is [CB:
	(c) 2 <i>N</i>	(d) 4 <i>N</i>			(a) 12 <i>min</i> (b) 64 <i>min</i>
5.	What is the relationship between	n the average velocity	(v), root mean		(c) 8 <i>min</i> (d) 32 <i>min</i>
	square velocity (u) and most pro	bable velocity (a)		13.	At what temperature will the average speed of $\ensuremath{\mathit{CH}}_4$ molecules have
			[AFMC 1994]		the same value as O_2 has at 300 K
	(a) $\alpha: v: u::1:1.128:1.22$	4			[CBSE PMT 1989]
	(b) $\alpha : v : u :: 1.128 : 1 : 1.22$	24			(a) 1200 K (b) 150 K (c) 600 K (d) 300 K
	(c) $\alpha: v: u::1.128:1.224:$:1			
	(d) $\alpha: v: u::1.124:1.228:$:1		14.	A sample of O_2 gas is collected over water at $23^{o}C$ at a barometric pressure of 751 mm Hg (vapour pressure of water at
6.	Consider the following statement	nts : For diatomic g	gases, the ratio		
	C_p / C_v is equal to				$23^{o}C$ is 21 mm Hg). The partial pressure of O_2 gas in the sample collected is [CBSE PMT 1993]
	(1) 1.40 (lower temperature)				(a) 21 <i>mm Hg</i> (b) 751 <i>mm Hg</i>
	(2) 1.66 (moderate temperature)				(c) 0.96 atm (d) 1.02 atm
	(3) 1.29 (higher temperature)			15.	In an experiment during the analysis of a carbon compound, 145 l
	which of the above statements as	re correct			of H_2 was collected at 760 mm Hg pressure and 27° C
	(a) 1, 2 and 3	(b) 1 and 2			
	(c) 2 and 3	(d) 1 and 3			temperature. The mass of H_2 is nearly
7.	The compressibility factor for an	ideal gas is	[MP PET 2004]		[MNR 1987]
	(a) 1.5	(b) 1.0			(a) 10 g (b) 12 g
	(c) 2.0	(d) ∞			(c) 24 g (d) 6 g
8.	The compressibility factor of a	gas is less than 1 at	STP. Its molar	16.	The volume of 1 g each of methane (CH_4) , ethane (C_2H_6) ,
	volume V_m will be		[MP PET 2004]		propane (C_3H_8) and butane (C_4H_{10}) was measured at 350 K
	(a) $V_m > 22.42$	(b) $V_m < 22.42$			and 1 atm. What is the volume of butane [NCERT 1981]
	(c) $V_m = 22.42$	(d) None			(a) 495 cm^3 (b) 600 cm^3

If some moles of O_2 diffuse in 18 sec and same moles of other gas diffuse in 45 sec then what is the molecular weight of the unknown 17.

[CPMT 1988]

(a) $\frac{45^2}{18^2} \times 32$

9.

(b) $\frac{18^2}{45^2} \times 32$

(c) $\frac{18^2}{45^2 \times 32}$

(d) $\frac{45^2}{18^2 \times 32}$

The ratio of rates of diffusion of SO_2, O_2 and CH_4 is 10.

[BHU 1992]

(a) $1:\sqrt{2}:2$

(b) 1:2:4

(c) $2:\sqrt{2}:1$

(d) $1:2:\sqrt{2}$

SE PMT 19

(c) 900 cm³

(d) 1700 cm³

The ratio of the rate of diffusion of helium and methane under identical condition of pressure and temperature will be

(a) 4

(b) 2

(c) 1

(d) 0.5

At what temperature in the celsius scale, V (volume) of a certain 18. mass of gas at $27^{\circ}C$ will be doubled keeping the pressure constant [Orissa 1993]

(a) $54^{\circ}C$

(b) $327^{\circ} C$

(c) 427° C

(d) 527° C

Pressure of a mixture of 4 $\it g$ of $\it O_2$ and 2 $\it g$ of $\it H_2$ confined in a 19. bulb of 1 *litre* at $0^o C$ is [AIIMS 2000]

(a) 25.215 atm

(b) 31.205 atm

(c) 45.215 atm

(d) 15.210 atm

20 If pressure becomes double at the same absolute temperature on 2 LCO_2 , then the volume of CO_2 becomes

[AIIMS 1992]

(a) 2 L

(b) 4 L

(c) 25 L

(d) 1 L

- Volume of the air that will be expelled from a vessel of 300 cm³ 21. when it is heated from $27^{\circ}C$ to $37^{\circ}C$ at the same pressure will
 - (a) 310 cm^3

(b) 290 cm³

(c) 10 cm^3

(d) $37 cm^3$

300 *ml* of a gas at $27^{\circ}C$ is cooled to $-3^{\circ}C$ at constant 22. pressure, the final volume is

[NCERT 1981, MP PMT 1992]

(a) 540 ml

(b) 135 ml

(c) 270 ml

(d) 350 ml

For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below:

- If both assertion and reason are true and the reason is the correct (a) explanation of the assertion.
- *(b)* If both assertion and reason are true but reason is not the correct explanation of the assertion.
- If assertion is true but reason is false.
- If the assertion and reason both are false.
- If assertion is false but reason is true.
- Plot of P Vs. 1/V (volume) is a straight line. Assertion

Reason Pressure is directly proportional to volume.

Assertion Jet aeroplane flying at high altitude need

pressurization of the cabin.

Reason Oxygen is not present at higher altitude.

1 mol of H_2 and O_2 each occupy 22.4 L of 3. Assertion

volume at $0^{\circ} C$ and 1 bar pressure.

Molar volume for all gases at the same Reason

temperautre and pressure has the same volume.

Assertion Pressure exerted by a mixture of reacting gases is

equal to the sum of their partial pressures. Reacting gases react to form a new gas having Reason

pressure equal to the sum of both.

Assertion Greater the value of Vander Waal's constant 'a'

greater is the liquefaction of gas.

'a' indirectly measures the magnitude of Reason attractive forces between the molecules.

Carbondioxide has greater value of root mean

6. Assertion square velocity $\mu_{\it mns}$ than carbon monoxide.

> Reason μ_{ms} is directly proportional to molar mass.

7. 4.58 mm and $0.0098^{\circ}C$ is known to be triple Assertion

point of water.

At this pressure and temperature all the three Reason states i.e., water, ice and vapour exist

simultaneously.

8. Assertion 1/4° of the gas is expelled if air present in an

open vessel is heated from $27^{\circ} C$ to $127^{\circ} C$.

Rate of diffusion of a gas is inversely Reason

proportional to the square root of its molecular

Reason

Assertion

Compressibility factor for hydrogen varies with 9. Assertion pressure with positive slope at all pressures.

Even at low pressures, repulsive forces dominate

hydrogen gas.

[AIIMS 2005] vander Waal's equation is applicable only to non-

ideal gases.

Ideal gases obey the equation PV = nRT. Reason

Pressure exerted by gas in a container with Assertion

increasing temperature of the gas.

With the rise in temperature, the average speed Reason

of gas molecules increases.

[AIIMS 1995]

12. Assertion Gases do not settle to the bottom of container.

> Gases have high kinetic energy. Reason

> > [AIIMS 1997]

[AllMS 2001]

A mixture of He and O_2 is used for Assertion 13.

respiration for deep sea divers.

He is soluble in blood. [AIIMS 1998] Reason

Wet air is heavier than dry air. 14. Assertion

> The density of dry air is more than density of Reason [AIIMS 1999]

Assertion All molecules in a gas have some speed.

Gas contains molecules of different size and Reason

16. Assertion Effusion rate of oxygen is smaller than nitrogen.

Reason Molecular size of nitrogen is smaller than oxygen.[AIIMS 200

Characteristics and Measurable properties of gases

1	С	2	С	3	b	4	а	5	С
6	d	7	а	8	b	9	С	10	а
11	а	12	b	13	а	14	d	15	С
16	е								

Ideal gas equation and Related gas laws

1	С	2	d	3	а	4	а	5	а
6	bc	7	а	8	а	9	С	10	d
11	а	12	а	13	а	14	а	15	С
16	С	17	b	18	С	19	а	20	b
21	С	22	С	23	d	24	а	25	С
26	С	27	b	28	С	29	С	30	С

31	а	32	а	33	b	34	b	35	b
36	С	37	d	38	С	39	С	40	а
41	b	42	С	43	С	44	d	45	a
46	а	47	b	48	d	49	b	50	С
51	d	52	а	53	а	54	С	55	а
56	а	57	b	58	а	59	b	60	a
61	b	62	d	63	С	64	b	65	d
66	b	67	d	68	а	69	а	70	b
71	С	72	а	73	d	74	С	75	а
76	С	77	d	78	b	79	b	80	b
81	d	82	d	83	С	84	С	85	а
86	d	87	а	88	а	89	С	90	С
91	а	92	С	93	а	94	b	95	а
96	а	97	d	98	b	99	е	100	а
101	С	102	С	103	С	104	С	105	а
106	а								

21 b

22

Kinetic molecular theory of gases and Molecular collisions

1	d	2	С	3	d	4	d	5	b
6	а	7	а	8	С	9	b	10	b
11	а	12	d	13	а	14	а	15	acd
16	а	17	b	18	d	19	b	20	d
21	а	22	d	23	С	24	b	25	b
26	а	27	d	28	а	29	d	30	С
31	С								

Molecular speeds

1	а	2	С	3	d	4	d	5	d
6	С	7	b	8	b	9	d	10	b
11	d	12	С	13	а	14	d	15	d
16	С	17	d	18	d	19	b	20	b
21	С	22	а	23	С	24	b	25	С
26	а	27	d						

Real gases and Vander waal's equation

1	b	2	b	3	С	4	С	5	d
6	С	7	d	8	b	9	d	10	b
11	С	12	b	13	b	14	d	15	С
16	b	17	а	18	b	19	С	20	а

Critical state and Liquefaction of gases

1	а	2	b	3	d	4	С	5	d
6	d	7	С	8	С	9	abc	10	С
11	С								

Critical Thinking Questions

1	а	2	С	3	С	4	С	5	а
6	d	7	b	8	b	9	а	10	a
11	а	12	b	13	b	14	С	15	b
16	а	17	b	18	b	19	а	20	d
21	С	22	С						

Assertion & Reason

1	С	2	С	3	а	4	d	5	а
6	d	7	а	8	b	9	а	10	b
11	а	12	а	13	С	14	е	15	d
16	С								

Answers and Solutions

Characteristics and Measurable properties of gases

- (c) Gases do not have definite shape and volume. Their volume is equal to the volume of the container.
- 2. (c) All the three phases of water can coexist at $0^{o}\,C$ & 4.7 mm pressure.
- **3.** (b) It is characteristic of gases *i.e.* Thermal energy >> molecular attraction
- 4. (a) In gases, molecular attraction is very less and intermolecular spaces are large hence kinetic energy of gases is highest.
- **5.** (c) Gases and liquids, both can flow and posses viscosity.
- **7.** (a) Newton is unit of force.
- **8.** (b) $\frac{C^o}{5} = \frac{F^o 32}{9}$
- 9. (c) $1L = 10^{-3}m^3 = 10^3 cm^3 = 1dm^3 = 10^3 ml$.
- 10. (a) $1 \text{ } atm = 10^6 \text{ dynes cm}$
- 12. (b) Barometer is used to measure atmospheric pressure of mixture of gases. Staglometer is used to measure surface tension. Only manometer is used to measure pressure of pure gas in a vessel.
- 13. (a) $0^{\circ} C$ is equivalent to $273^{\circ} K$ *i.e.* conditions are same so volume will be V ml.
- **14.** (d) The mass of gas can be determined by weighing the container, filled with gas and again weighing this container after removing the gas. The difference between the two weights gives the mass of the gas.
- 15. (c) Nobel gases has no intermolecular forces due to inertness.
- **16.** (e) Total volume of two flasks = 1+ 3 = 4

 If P_1 the pressure of gas N_2 in the mixture of N_2 and O_2 then

$$P$$
 = 100 kPa , P_1 = ? , V = 1 \it{litre} ,
$$V_1 = 4 \it{litre}$$
 applying Boyle's law $PV = P_1V_1$
$$100 \times 1 = P_1 \times 4 \; ; \; P_1 = 25$$
 If P_2 is the pressure of O_2 gas in the mixture of O_2 and N_2 then, $320 \times 3 = P_2 \times 4 \; ; \; P_2 = 240$

Ideal gas equation and Related gas laws

Hence, Total pressure $P = P_1 + P_2 = 25 + 240$

- 1. (c) Boyle's law is $V \propto \frac{1}{P}$ at constant T
- 2. (d) According to Boyle's law $V \propto \frac{1}{P}$ $V = \frac{\text{Constant}}{P}; \quad VP = \text{Constant}.$

= 265 kPa

- **3.** (a) At sea level, because of compression by air above the proximal layer of air, pressure increases hence volume decreases *i.e.* density increases. It is Boyle's law.
- **4.** (a) At constant $T, P_1V_1 = P_2V_2$ $1 \times 20 = P_2 \times 50 \; ; \; P_2 = \frac{20}{50} \times 1$
- **5.** (a) *P.V* = constant at constant temperature. As temperature changes, the value of constant also changes.
- **6.** (b,c)According to Boyle's Law *PV* = constant, at constant temperature either *P* increases or *V* increases both (*b*) & (*c*) may be correct.
- 7. (a) $\frac{d_1}{d_2} = \frac{1}{2}$, $\frac{T_1}{T_2} = \frac{2}{1}$ $\therefore \frac{P_1}{P_2} = \frac{V_2}{V_1} \times \frac{T_1}{T_2} = \frac{T_1.d_1}{T_2.d_2}$ $\frac{P_1}{P_2} = \frac{2}{1} \cdot \frac{1}{2} = \frac{1}{1}$
- **8.** (a) Absolute temperature is temperature measured in o Kelvin, expressed by T
- 11. (a) $T_1 = 273^o C = 273 + 273^o K = 546^o K$ $T_2 = 0^o C = 273 + 0^o C = 273^o K$ $P_1 = 1 \; ; \; P_2 = ?$ According to Gay-Lussac's law

$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \quad \therefore \quad P_2 = \frac{P_1 T_2}{T_1} = \frac{1 \times 273^o \ K}{546^o \ K} \quad \text{atm}; \quad \frac{1}{2} \quad \text{atm}.$$

For every $1^o\,C$ increase in temperature, the volume of a given mass of an ideal gas increases by a definite fraction $\frac{1}{273.15}$ of V_o . Here V_o is volume at $0^o\,C$ temperature.

13. (a)
$$\frac{V_1}{V_2} = \frac{T_1}{T_2} :: V_2 = \frac{T_2}{T_1} V_1 = \frac{546^{\circ} K}{273^{\circ} K} \times 0.2L = 0.4L.$$

contraction = $V_1 - V_2 = 400 - 360 = 40 cm^3$

14. (a)
$$V_2 = \frac{T_2}{T_1} \cdot V_1 = \frac{270^{\circ} K}{300^{\circ} K} \cdot 400 cm^3 = 360 cm^3$$

15. (c) At constant volumes $P \propto T$ $P = \text{constant } T; \qquad PV = nRT : P = \frac{nR}{V}T$

slope =
$$m = \frac{nR}{V}$$
 : $V_2 < V_1$

 $\frac{m_1}{m_2} = \frac{V_2}{V_1} \mathrel{\dot{.}.} m_1 < m_2 \; \text{ is curve for V}_{.} \; \text{has a greater slope than for V}$

16. (c)
$$\frac{P_1}{T_1} + \frac{P_1}{T_1} = \frac{P}{T_1} + \frac{P}{T_2}$$

$$\frac{2P_1}{T_1} = P\left(\frac{T_1 + T_2}{T_1 T_2}\right); \quad \therefore P = \frac{2P_1(T_1 T_2)}{T_1(T_1 + T_2)} = \frac{2P_1 T_2}{T_1 + T_2}$$

18. (c) At constant
$$V$$
 of a definite mass
$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \therefore \frac{P_1}{P_2} = \frac{300}{600} = \frac{1}{2} \quad \textit{i.e.} \text{ pressure increases}$$

and on increasing temperature energy of molecules increases so the rate of collisions also increases and number of moles remains constant because there is neither addition nor removal of gas in the occurring.

19. (a) Avogadro number =
$$6.0224 \times 10^{-1}$$

20. (b) Compressibility =
$$\frac{PV}{nRT}$$
 < 1 at STP (as given)
$$nRT > PV \\ N \times 0.0821 \times 273 > 1V_m$$

$$R = 0.821 \\ T = 273 \cdot K$$

$$22.41 \ litres > V_m$$

$$P = I$$

21. (c) The value of universal gas constant can be expressed in different units and its value would depend only on the units of the measurement.

22. (c)
$$PV = nRT$$

 $R = \frac{PV}{nT} = \text{ litre . } atm. \ K \text{ mole}$

23. (d) $(atm. \ K \ mol)$ is not a unit of R

23. (d) (a.m. K mor) is not a unit of
$$R$$

24. (a) 8.31 J.K mor
1 cal = 4.2 J.

$$\therefore \frac{8.31}{4.2} cal.K^{-1}mol^{-1} = 1.987 cal K mol$$

30. (c)
$$PV = nRT : \frac{n}{V} = \frac{P}{RT}$$

31. (a)
$$P = \frac{nRT}{V} = \frac{2 \times 0.0821 \times 546}{44.8 \, l} = 2 \text{ atm.}$$

32. (a)
$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2} \therefore n_2 = \frac{P_2 V_2 T_1}{P_1 V_1 T_2} n_1$$
at STP n_1 = one mole.
$$P_1 = 1 \text{ atm.}$$

$$V_1 = 22.4 \text{ lt}$$

$$T_1 = 273 \text{ K}$$

$$n_2 = \frac{1}{1} \times \frac{22.4}{22.4} \times \frac{273}{303} \times 1 = 0.9 \text{ moles}$$

33. (b)
$$V = \frac{nRT}{P} = \frac{0.5 \times 0.082 \times 273^{\circ} K}{1} = 11.2 lit$$

34. (b)
$$V_2 = \frac{P_1 V_1 T_2}{P_2 T_1} \Rightarrow P_1 = P$$
 ; $T_1 = 273^{\circ} K$
$$P_2 = \frac{3}{2} P$$
 ; $T_2 = T_1 + \frac{T_1}{3} = \frac{4}{3} \times 273^{\circ} K$
$$V_2 = \frac{2P}{3P} \times \frac{4}{3} \times \frac{273}{273} \times 100cc = \frac{800}{9} cc = 88.888cc$$
 = 88.9 cc

35. (b)
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T} :: \frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$$

36. (c)
$$d_a = 2d_b$$
; $2M_a = M_b$
$$PV = nRT = \frac{m}{M}RT$$
; $P = \frac{m}{V} \cdot \frac{RT}{M} = \frac{dRT}{M}$
$$\frac{P_a}{P_b} = \frac{d_a}{d_b} \frac{M_b}{M_a} = \frac{2d_b}{d_b} \times \frac{2M_a}{M_a} = 4$$

37. (d)
$$n \text{ of } O_2 = \frac{16}{32} = \frac{1}{2}$$

 $n \text{ of } H_2 = \frac{3}{2}$

Total no. of moles =
$$\frac{3}{2} + \frac{1}{2} = 2$$

$$V = \frac{nRT}{P} = \frac{2 \times .082 \times 273}{1} = 44.8 lit = 44800 ml$$

38. (c)
$$n = \frac{PV}{RT} = \frac{m}{M}$$

 $m = \frac{MPV}{RT} = \frac{34 \times 2 \times 100}{0.082 \times 293} = 282.4 \, gm$

39. (c)
$$V_2 = \frac{P_1 V_1}{T_1} \frac{T_1}{P_2} = \frac{760}{600} \times \frac{546}{273} \times 273 = 691.6 ml.$$

40. (a)
$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2} \therefore T_2 = \frac{P_2}{P_1} \frac{V_2}{V_1} T_1 \frac{m_1}{m_2}$$
$$= \frac{0.75}{1} \times \frac{1}{1} \times \frac{2}{1} \times 300^{\circ} K = 450^{\circ} K$$

41. (b)
$$V_2 = \frac{P_1}{P_2} \frac{T_2}{T_1} . V_1 = \frac{1}{0.5} \times \frac{250}{300} \times 12000 lit = 20000 lit$$

42. (c) At constant pressure

$$V \propto nT \propto \frac{m}{M} T$$

$$\frac{V_1}{V_2} = \frac{m_1 T_1}{m_2 T_2} \therefore \frac{T_1}{T_2} = \frac{V_1}{m_1} \times \frac{m_2}{V_2} = \frac{d_2}{d_1} \Rightarrow \frac{300^{\circ} K}{T_2} = \frac{0.75 d}{d}$$

$$T_2 = \frac{300}{0.75} = 400^{\circ} K$$

43. (c)
$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \therefore T_2 = \frac{P_2 V_2}{P_1 V_1} \times T_1 = \frac{740}{740} \times \frac{80}{100} \times 300$$

= $240^{\circ} K = -33^{\circ} C$

47. (b) Because H_2 & Cl_2 gases may react with each other to produce HCl gas hence Dalton's law is not applicable.

48. (d) Because HCl & NH_3 gases may react to produce NH_4Cl gas. Dalton's Law is applicable for non reacting gas mixtures.

49. (b) NH_3 and HCl & HBr is a reacting gas mixture to produce NH_4Cl & NH_4Br so Dalton's law is not applicable.

50. (c) No. of moles of lighter gas
$$=\frac{m}{4}$$

No. of moles of heavier gas $=\frac{m}{40}$

Total no. of moles $=\frac{m}{4}+\frac{m}{40}=\frac{11m}{40}$

Mole fraction of lighter gas
$$=\frac{\frac{m}{4}}{\frac{11m}{40}} = \frac{10}{11}$$

Partial pressure due to lighter gas = $P_o \times \frac{10}{11}$

$$=1.1 \times \frac{10}{11} = 1$$
atm.

52. (a) *m. wt.* of $NH_3 = 17$; *m.wt.* of $N_2 = 28$ *m.wt.* of $CO_2 = 44$; *m.wt.* of $O_2 = 32$

beacuse NH_3 is lightest gas out of these gases

$$\left[r \propto \frac{1}{\sqrt{\text{MolecularWeight}}}\right]$$

55. (a)
$$\frac{r_g}{r_{He}} = \sqrt{\frac{M_{He}}{M_g}} \therefore M_g = M_{He} \cdot \frac{r^2_{He}}{r^2_g} = \frac{4}{(1.4)^2} = \frac{4}{1.96} = 2$$

$$\left[Note : 1.4 = \sqrt{2} \right]$$

56. (a)
$$r_g = \frac{1}{5} . r_{H_2}$$

$$\frac{M_g}{M_{H_2}} = \left[\frac{r_{H_2}}{r_g} \right]^2 = (5)^2 = 25 ; M_g = 2 \times 25 = 50$$

57. (b)
$$r_g = \frac{1}{6} r_{H_2}$$
; $M_g = M_{H_2} \cdot \left[\frac{r_{H_2}}{r_g} \right]^2 = 2 \times 6^2 = 2 \times 36 = 72$

58. (a)
$$M_1 = 64$$
; $r_2 = 2r_1$
$$M_2 = M_1 \left[\frac{r_1}{r_2} \right]^2 = 64 \times \frac{1}{4} = 16$$

59. (b)
$$r_O = r_H \sqrt{\frac{d_H}{d_O}} = 1\sqrt{\frac{0.09}{1.44}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$$

60. (a)
$$r_a = 5r_b$$
; $\frac{d_a}{d_b} = \left\lceil \frac{r_b}{r_a} \right\rceil^2 = \left(\frac{1}{5} \right)^2 = \frac{1}{25}$

61. (b)
$$\frac{d_1}{d_2} = \frac{1}{16}$$
; $\frac{r_1}{r_2} = \sqrt{\frac{d_2}{d_1}} = \sqrt{16} = \frac{4}{1}$

62. (d)
$$\frac{D_A}{D_B} = \sqrt{\frac{\rho_B}{\rho_A}} = \left[\frac{\rho_B}{\rho_A}\right]^{\frac{1}{2}}; \therefore D_A = D_B \left(\frac{\rho_B}{\rho_A}\right)^{\frac{1}{2}}$$

63. (c) Gases may be separated by this process because of different rates of diffusion due to difference in their densities.

64. (b) NH_4Cl ring will first formed near the HCl bottle because rate of diffusion of NH_3 is more than that of HCl because $M_{NH_3}: M_{HCl} = 17:36.5)$. SO NH_3 will reach first to the HCl bottle & will react there with HCl to form NH_4Cl ring

65. (d) Because both NO and C_2H_6 have same molecular weights $\left\lfloor M_{NO} = M_{C_2H_6} = 30 \right\rfloor \ \ \text{and} \ \ \text{rate} \ \ \text{of diffusion} \ \ \ \infty \ \ \text{molecular}$ weight.

67. (d)
$$\frac{M_A}{M_B} = \left(\frac{r_B}{r_A}\right)^2 :: r_A = 2r_B :: \frac{r_B}{r_A} = \frac{1}{2} = \frac{1}{(2)^2} = \frac{1}{4} = .25$$

68. (a)
$$r_H = \frac{2gm}{10 \text{ min}}$$
 if $r_O = \frac{xgm}{10 \text{ min}}$ $r_O = r_H \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \frac{2}{10} \sqrt{\frac{2}{32}}$

$$\frac{x}{10} = \frac{2}{10 \times 4} = \frac{1}{2} gm. = .5 gm$$

69. (a) $r_{CH_4} = 2r_g$

$$M_g = M_{CH_4} \left(\frac{r_{CH_4}}{r_g} \right)^2 = 16 \times 2^2 = 64$$

70. (b) $r \propto \frac{1}{\sqrt{M}}$ $\therefore r = \frac{Volume\ effused}{time\ taken} = \frac{V}{t}$

 $\frac{V}{t} \propto \frac{1}{\sqrt{M}}$: for same volumes (V constant)

$$\begin{split} t &\propto \sqrt{M} : \frac{t_1}{t_2} = \sqrt{\frac{M_1}{M_2}} \\ t_{He} &= t_{H_2} \sqrt{\frac{M_{He}}{M_{H_2}}} = 5\sqrt{\frac{4}{2}} = 5\sqrt{2}s. \\ t_{O_2} &= t = 5\sqrt{\frac{32}{2}} = 20s \\ t_{CO} &= 5\sqrt{\frac{28}{2}} = 5\sqrt{14}s \; ; \; t_{CO_2} = 5\sqrt{\frac{44}{2}} = 5\sqrt{22}s \end{split}$$

71. (c) $\frac{r_{N_2}}{r_{SO_2}} = \frac{V_{ms} N_2}{V_{ms} SO_2} = \sqrt{\frac{T_{N_2}}{T_{SO_2}} \cdot \frac{M_{SO_2}}{M_{N_2}}} = \sqrt{\frac{T_{N_2}}{323} \times \frac{64}{28}}$ $1.625 = \sqrt{\frac{T_{N_2}}{323} \cdot \frac{16}{7}}$ $T_{N_2} = \frac{(1.625)^2 \times 323 \times 7}{16} = 373^o K$

72. (a) $C + H_2O \rightarrow CO_{(g)} + H_{2(g)}$ $12gm \rightarrow 1mol + 1mol$ 12 gm C produces 2mole of gases $(1mole\ CO \& 1\ mole\ of\ H)$ $\therefore 48 \ gm\ C$ may produce $\frac{48}{12} \times 2 = 4 \times 2 = 8mole$ $= 22.4 \times 8\ L$ gases $= 179.2\ L$ gas.

73. (d) Molecular weight = $\frac{mRT}{PV} = \frac{4.4 \times .082 \times 273}{1 \times 2.24} = 4.4 \times .082 \times 10^{-2}$ So the gas should be CO_2

74. (c) PV = nRT $P = \frac{n}{V}RT \quad \because \frac{n}{V} = C \implies P = CRT$ $T = \frac{P}{CR} = \frac{1}{1 \times .821} = 12^{\circ} K$

75. (a) 6.02×10^{22} molecules of each N_2, O_2 and H_2 $= \frac{6.02 \times 10^{22}}{6.02 \times 10^{23}}$ moles of each Weight of mixture = weight of 0.1 mole N_2 + weight of 0.1 mole of O_2 $= (28 \times 0.1) + (2 \times 0.1) + (32 \times 0.1) = 6.2 gm$

76. (c) *M.wt* of $CO_2 = 12+16+16 = 44$ Volume of 44 gm of CO_2 at NTP = 22.4 *litre*1 gm of CO_2 at NTP = $\frac{22.4}{44}$

4.4 gm of
$$CO_2$$
 at N.T.P

$$\Rightarrow \frac{22.4}{44} \times 4.4 \text{ litre} = 2.24 \text{ litre}$$

78. (b) No. of moles of
$$CO_2$$
 present in 200 ml solution

= molarity × Volume (in
$$lt$$
) = $0.1 \times \frac{200}{1000} = .02$

Volume of 0.02 mole of $CO_2 = 22.4 \times .02lt$. = 0.448lit

79. (b) Molecular weight =
$$V.d. \times 2 = 11.2 \times 2 = 22.4$$

Volume of 22.4 gm Substance of NTP = 22.4 $litre$
1 gm substance at NTP = $\frac{22.4}{22.4} litre$
11.2 gm substance of NTP = 11.2 $litre$

80. (b)
$$\frac{M.wt.of O_2}{M.wt.of SO_2} \Rightarrow \frac{M_1}{M_2} \Rightarrow \frac{32}{64} = \frac{1}{2}$$

The weight of oxygen will be $\frac{1}{2}$ that of SO_2

- (b) For HI has the least volume because of greater molecular 81. weight $V \propto \frac{1}{M}$
- 83. (c) Since no. of molecules is halved so pressure should also be
- H_2 will be filled first because of lower molecular weight 84.
- (a) Mixture of SO_2 and Cl_2 are reacted chemically and forms 85. SO_2Cl_2 . That is why mixture of these gases is not applicable for Dalton's law.
- According to Boyle's law 86. $P_1V_1 = P_2V_2 \implies P_1 \times 60 = 720 \times 100$ $P_1 = \frac{720 \times 100}{60} = 1200mm$

87. (a) Rate of diffusion
$$\propto \frac{1}{\sqrt{\text{Molecular Mass}}}$$

that is why H_2 gas diffuse first

(a) Solution level will rise, due to absorption of ${\it CO}_2$ by sodium 88.

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

89. (c)
$$CaCo_3 \xrightarrow{} \hat{\rightarrow} CaO + CO_2 \uparrow$$
 $(40+12+16\times3)=100~gm \xrightarrow{} CaO + CO_2 \uparrow$

: At S.T.P. 100g CaCO₃ produce= 22.4 litre of CO₂

$$\therefore$$
 At S.T.P. $1g$ $CaCO_3$ produce = $\frac{22.4}{100}$ = .224 litre of CO_2

90. (c) The density of gas
$$=\frac{Moleculawt.OfMetal}{Volume} = \frac{45}{22.4}$$

 $=2gmlitr\bar{e}^{1}$

- (a) $M_1 = 32g$ for O_2 , $M_2 = 2g$ for H_2 91. $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}; \qquad \frac{r_1}{r_2} = \sqrt{\frac{2}{32}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$
- (c) In 22.4l of H_2 maximum number of molecules 92. $=6.023\times10^{23}$

In
$$1l$$
 of H_2 maximum number of molecules
$$= \frac{6.023 \times 10^{23}}{22.4}$$

15l of H_2 maximum number of molecules $=\frac{6.023\times10^{23}}{22.4}\times15 = 4.03\times10^{23} \text{ molecules.}$

- $22.4l O_2$ at S.T.P. = 32gm of O_2 93. $1l \ O_2$ at S.T.P. $=\frac{32}{22.4}=1.43 gm$ of O_2
- We know that molecular mass of hydrogen $M_1 = 2$ and that 95 of helium $M_2 = 4$, we also know that Graham's law of

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{4}{2}} = \sqrt{2} = 1.4$$
; $r_1 = 1.4m$

- (a) $\frac{r_A}{r_H} = \sqrt{\frac{M_H}{M_A}} = \frac{r}{6r} = \sqrt{\frac{2}{M_A}}$ $M_A = 6 \times 6 \times 2 = 72g$
- (d) Given that: 97. $V_1 = 100ml, P_1 = 720mm, V_2 = 84ml, P_2 = ?$ By using $P_1V_1 = P_2V_2$ [According to the Boyle's law]

$$P_2 = \frac{P_1 V_1}{V_2} = \frac{720 \times 100}{84} = 857.142$$

Hence, $P_2 = 857.14mm$

(b) According to gas law 98. PV = nRT, $n = \frac{PV}{RT}$

$$\frac{n_A}{n_B} = \frac{\frac{P_1 V_1}{RT_1}}{\frac{P_2 V_2}{RT}}; \frac{n_A}{n_B} = \frac{P_1 V_1}{T_1} \times \frac{T_2}{P_2 V_2}$$

$$\frac{n_A}{n_B} = \frac{2P \times 2V}{2T} \times \frac{T}{PV} \; ; \; \; \frac{n_A}{n_B} = \frac{2}{1} \label{eq:nB}$$

99. (e) No. of molecules = $2 \times V.d$ $2 \times 38.3 = 76.3$

wt. of
$$NO_2 = x$$

So that *wt.* of $N_2O_4 = 100 - x$

Hence,
$$\frac{x}{46} + \frac{100 - x}{92} = \frac{100}{76.6} = \frac{2x + 100 - x}{92} = \frac{100}{76.6}$$

x = 20.10, no. of mole. of $NO_2 = \frac{20.10}{46} = 0.437$

- 100. (a) Given that $P_1 = 76cm$ of Hg (Initial pressure at N.T.P.) $P_2 = ?$, $V_1 = 5 litre$, $V_2 = 30 + 5 = 35 litres$ According to Boyle's law $P_1V_1 = P_2V_2$; $76 \times 5 = P_2 \times 35$ $P_2 = \frac{76 \times 5}{35} \Rightarrow P_2 = 10.8cm \text{ of } Hg$
- (c) Given initial volume $(V_1) = 300cc$, initial temperature 101. $(T_1) = 27^{\circ} C = 300 K$, initial pressure $(P_1) = 620 mm$, final

 $T_2 = 47^{\circ} C = 320 K$ and final temperature $(P_2) = 640mm$. We know from the general gas equation

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \frac{620 \times 300}{300} = \frac{640 \times V_2}{320} \implies V_2 = 310cc$$

102. (c)
$$NH_3 + HCl \rightarrow NH_4Cl$$

 $4litre\ 1.5litre$

HCl is a limiting compound. That's why 1.5litre of HCl reacts with 1.5 litre of NH_3 and forms NH_4Cl . Thus (4 -1.5) $2.5 litre NH_3$ remains after the reaction.

103. (c)
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
; $\frac{P_1 \times 4}{T_1} = \frac{2P_1 \times V_2}{2T_1}$

$$8 = 2 \times V_2$$
 so $V_2 = 4 dm^3$

104. (c)
$$P_1 = P, V_1 = V, T_1 = T$$

 $P_2 \frac{P}{2}, V_2 = ?, T_2 = T$

According to gas equation

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \ \, \text{or} \ \, \frac{PV}{T} = \frac{P V_2}{2T}$$

$$V_2 = 4V$$

105. (a)
$$P_1 = P, V_1 = V, T_1 = 273 + 75 = 348K$$

$$P_2 = 2P, V_2 = \frac{85}{100}, T_2 = ?$$

$$\frac{P \times V}{398} = \frac{2P \times 85V}{T_2 \times 100} \Rightarrow T_2 = \frac{348 \times 2 \times 85}{100}$$

$$\frac{1}{398} = \frac{21 \times 300}{T_2 \times 100} \Rightarrow T_2 = \frac{310 \times 200}{100}$$

$$T_2 = 591.6K = 318.6^{\circ} C$$

106. (a) Boyle's law
$$-PV$$
 = constant On differentiating the equation,
$$d(PV) = d(C) \implies PdV + VdP = 0$$

$$\Rightarrow VdP = -PdV \Rightarrow \frac{dP}{P} = -\frac{dV}{V}.$$

Kinetic molecular theory of gases and Molecular collisions

4. (d) Kinetic energy =
$$\frac{3}{2}RT$$

5. (b)
$$KE = \frac{3}{2}RT$$
 it means that KE depends upon T (absolute temperature) only.

7. (a)
$$KE = \frac{3}{2}RT = \frac{3}{2}PV$$

 $\therefore P = \frac{2}{3}\frac{E}{V}$ for unit volume $(V = 1) \Rightarrow P = \frac{2}{3}E$

8. (c) Tr.
$$K.E. = \frac{3RT}{2}$$
 it means that the Translational Kinetic energy of Ideal gas depends upon temperature only.

9. (b)
$$\frac{E_{He}}{E_{H_2}} = \sqrt{\frac{T_{He}}{T_{H_2}}}$$
 so energies will be same for

 $He \& H_2$ at same temperature.

11. (a)
$$K.E. = \frac{3}{2}.RT = \frac{3}{2}.2.T$$
 $\therefore R \approx 2calK^{-1}mol^{-1}$
 $K.E. = 3T$

(d) All molecules of an ideal gas show random motion. They collide 12. with each other and walls of container during which they lose or gain energy so they may not have same kinetic energy

(a) For same temperature kinetic energies of $\,H_2\,\&\,He\,$ molecules 13. will be same because kinetic energy depends only on temperature.

For same temp, kinetic energies would be equal for all 14. molecules, what ever their molecular weights will be, it doesn't

(a,c,d)Kinetic energies per molecule will be same because it is 15. proportional to absolute temperature only.

$$\frac{d_{N_2}}{d_{CO_2}} = \frac{M_{N_2}}{M_{CO_2}} = \frac{28}{44} \text{ i.e. } dN_2 < dCO_2$$

Total translational kinetic energy will also be same because at same temperature & pressure number of molecules present in same volume would be same (according to Avogadro's Law)

On increasing pressure, the volume decreases and density 16. increases. So molecules get closer to each other hence mean free path also decreases.

Most probable velocity increase and fraction of molecule 17. possessing most probable velocity decrease.

18. (d)
$$PV = nRT = \frac{m}{M}RT$$

$$\therefore \frac{m}{V} = \frac{PM}{RT} = \text{density}$$

19. (b)
$$d \propto \frac{P}{T}$$
 the value of $\frac{P}{T}$ is maximum for (b)

(d) If inversion temperature is $80^{\circ} C = 193^{\circ} K$ then the 20. temperature, at which it will produce cooling under Joule Thomson's effect, would be below inversion temperature except 173° K all other values given as

21. (a) Since
$$\frac{C_P}{C_V} = 1.4$$
, the gas should be diatomic.

If volume is 11.2 *lt* then, no. of moles = $\frac{1}{2}$

$$\therefore$$
 no. of molecules = $\frac{1}{2} \times \text{Avagadro's No.}$

no. of atoms = $2 \times$ no. of molecules

$$2 \times \frac{1}{2} \times \text{Avagadro's No.}$$

$$=6.0223\times10^{23}$$

22. (d) Density =
$$\frac{M}{V}$$

$$d = \frac{v.d \times 2}{V} \qquad (M = V.d \times 2)$$

$$V.d = \frac{d \times V}{2}$$

$$V.d = \frac{0.00130 \times 22400}{2} = 14.56 gm^{-1}$$

23. (c) Volume of steam =
$$1h = 10^3 cm^3$$

 $\therefore m = d.V$
 \therefore mass of $10^3 cm^3$ steam = density × Volume
= $\frac{0.0006gm}{cm^3} \times 10^3 cm^3 = 0.6gm$

Actual volume occupied by $\,H_2O\,$ molecules is equal to volume of water of same mass

 \therefore Actual volume of H_2O molecules in 6gm steam

= mass of steam/density of water

= $0.6 \, gm / 1 \, gm/cm \Rightarrow 0.6 \, cm^3$

24. (b)
$$r = \frac{C_P}{C_V} = \frac{5}{3} = 1.66$$
 (For Monoatomic as He, Ne, Ar)

25. (b) The density of neon will be highest at $0^{o}C$ 2 atm according to $d \propto \frac{P}{T}$

29. (d) *K.E.* per mole =
$$\frac{3}{2}RT$$

so all will have same K.E. at same temperature.

30. (c) :
$$W = P.dV = E$$

∴ Energy per unit volume = P

31. (c)
$$d \propto M \Rightarrow \frac{d_1}{d_2} = \frac{M_1}{M_2}; \frac{3d}{d} = \frac{M}{M_2}; M_2 = \frac{M}{3}$$

Molecular speeds

1. (a)
$$V_{mis} = \sqrt{\frac{3RT}{M}}, V_{av} = \sqrt{\frac{8RT}{\pi M}}; \frac{V_{mis}}{V_{av}} = \sqrt{\frac{3\pi}{8}}$$

$$= \sqrt{\frac{66}{56}} \Rightarrow \frac{1.086}{1}$$

3. (d) most probable velocity: mean velocity: V_{-} $= \sqrt{\frac{2RT}{M}} : \sqrt{\frac{8RT}{\pi M}} : \sqrt{\frac{3RT}{M}} = \sqrt{2} : \sqrt{\frac{8}{\pi}} : \sqrt{3}$

4. (d)
$$V_{ms} = \sqrt{\frac{3RT}{M}} : V_{ms} \propto \frac{1}{\sqrt{M}}$$
 at same T

because $\,H_2\,$ has least molecular weight so its r.m.s. velocity should be maximum.

5. (d)
$$\frac{U_{SO_2}}{U_{He}} = \frac{1}{2} = \sqrt{\frac{M_{He}}{M_{SO_2}}} \frac{T_{SO_2}}{T_{He}} = \sqrt{\frac{4}{64} \cdot \frac{T_{SO_2}}{300}}$$

= $\frac{4}{64} \cdot \frac{T_{SO_2}}{300} = \frac{1}{4}$; $T_{SO_2} = 1200^{\circ} K$

6. (c)
$$\frac{U_{O_3}}{U_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{O_2}}} = \sqrt{\frac{32}{48}} = \sqrt{\frac{2}{3}}$$

7. (b) Average kinetic energy per molecule $= \frac{3}{2} KT = \frac{3}{2} \times 1.38 \times 10^{-23} \times 300 J = 6.17 \times 10^{-21} J$

8. (b)
$$\frac{U_{SO_2}}{U_{O_2}} = \sqrt{\frac{M_{O_2} T_{SO_2}}{M_{SO_2} T_{O_2}}} = \sqrt{\frac{32 \times T_{SO_2}}{64 \times 303}} = 1$$
$$1 = \frac{32 \times T_{SO_2}}{64 \times 303} \Rightarrow T_{SO_2} = 606$$

(d) Among these Cl₂ has the highest molecular weight so it will
posses lowest root mean square velocity.

10. (b)
$$\frac{U_1}{U_2} = \sqrt{\frac{T_1}{T_2}}$$
 $\therefore \frac{T_1}{T_2} = \left(\frac{5 \times 10^4}{10 \times 10^4}\right)^2 = \frac{1}{4}$

12. (c)
$$V_{ms} = \sqrt{\frac{3KT}{Moleculaweight}}$$
 i.e. $V_{ms} \propto \frac{1}{\sqrt{m}} \propto (m)^{-\frac{1}{2}}$

13. (a) When average speed of molecule is increased due to increase in temperature then the change in momentum during collision between wall of container and molecules of gas also increases.

14. (d)
$$\frac{U_1}{U_2} = \sqrt{\frac{m_2}{m_1} \cdot \frac{T_1}{T_2}} \quad \because T_1 = T_2$$

$$\frac{U_1^2}{U_2^2} = \frac{m_2}{m_1} \qquad \therefore m_1 U_1^2 = m_2 U_2^2$$

15. (d)
$$U_2 = U_1 \sqrt{\frac{T_2}{T_1}} = U_1 \sqrt{\frac{1200}{300}} = U_1 \times 2$$

r.m.s. velocity will be doubled

16. (c)
$$\frac{U_{H_2}}{U_{O_2}} = \sqrt{\frac{T_{H_2}}{M_{H_2}} \cdot \frac{M_{O_2}}{T_{H_2}}} = \sqrt{\frac{50}{2} \cdot \frac{32}{800}} = 1$$

17. (d)
$$U = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3PV}{M}} = \sqrt{\frac{3P}{d}} \therefore U \propto \frac{1}{\sqrt{d}}$$

19. (b)
$$\frac{U_1}{U_2} = \sqrt{\frac{n_1 T_1}{n_2 T_2}} = \sqrt{\frac{n \times T}{2n \times 2T}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

$$U_2 = 2U_1 = 2U$$

21. (c)
$$\frac{V_{mp}}{V_{av}} = \frac{\sqrt{\frac{2RT}{M}}}{\sqrt{\frac{8RT}{\pi M}}} = \frac{\sqrt{\pi}}{2}$$

22. (a)
$$V_{ms} = \sqrt{\frac{3RT}{M}} \Rightarrow V_{ms} = \sqrt{T}$$

Given $V_1 = V$, $T_1 = 300K$, $V_2 = 2V$, $T_2 = ?$

$$\frac{V_1}{V_2} = \sqrt{\frac{T_1}{T_2}} ; \left(\frac{V}{2V}\right)^2 = \frac{300}{T_2} \Rightarrow T_2 = 300 \times 4 = 1200K$$

24. (b)
$$\left(P - \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

 $\left(P - \frac{(2)^2 \times 4.17}{(5)^2}\right)(5 - 2 \times .03711) = 2 \times .0821 \times 300$
 $P = \frac{2 \times .0821 \times 300}{5 - 2 \times .03711} - \frac{4.7 \times 2^2}{5^2} \Rightarrow 10 - 0.66 = 9.33atm$

26. (a) Average speed: most probable speed $\sqrt{\frac{8RT}{\pi M}}: \sqrt{\frac{2RT}{M}} \Rightarrow \sqrt{\frac{8}{\pi}}: \sqrt{2} \Rightarrow 1.128: 1.$

27. (d)
$$v_{ms} = \sqrt{\frac{3RT}{M}}$$

$$\sqrt{30^2 R} = \sqrt{\frac{3RT}{M}} \implies 30 \times 30R = \frac{3R \times 300}{M}$$

$$\implies M = \frac{3 \times 300}{30 \times 30} 1 \text{ gm} = 0.001 \text{ kg}.$$

Real gases and Vander waal's equation

(b) Because molecules of real gases have intermolecular forces of attraction so the effective impact on the wall of container is

3. (c)
$$Z = \frac{PV}{RT}$$
 : for ideal gas $PV = RT$ so $Z = RT$

12. (b)
$$Z = \frac{PV}{RT}$$
; for ideal gas $PV = RT$; so $Z = 1$

13. Ideal gas has no attractive force between the particles

PV = nRT is a ideal gas equation it is allowed when the 14. temperature is high and pressure is low.

At Boyle temperature real gas is changed into ideal gas 16.

When pressure is low 17.

when pressure is low
$$\left[P + \frac{a}{V^2}\right](V - b) = RT$$
or $PV = RT + Pb - \frac{a}{V} + \frac{ab}{V^2}$ or $\frac{PV}{RT} = 1 - \frac{a}{VRT}$

$$Z = -\frac{a}{VRT} \left(\because \frac{PV}{RT} = Z\right)$$

(b) At high temperature and low pressure, Vander Waal's equation 18. is reduced to ideal gas equation. PV = nRT

PV = RT (For 1 mole of gas)

Vander waal's constant for volume correction b is the measure 20. of the effective volume occupied by the gas molecule.

22. (a)
$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

 $\left(P + \frac{2.253}{0.25 \times 0.25}\right)(0.25 - 0.0428) = 0.0821 \times 300$
or $(P + 36.048)(0.2072) = 24.63$

$\Rightarrow P + 36.048 = 118.87 \Rightarrow P = 82.82 \text{ atm.}$

Critical state and Liquefaction of gases

A diabatic demagnetisation is a technique of liquefaction of gases in which temperature is reduced.

An ideal gas can't be liquefied because molecules of ideal gas 3. have not force of attraction between them.

At above critical temperature, substances are existing in gaseous state, since gas cannot be liquefied above it.

Absence of inter molecular attraction ideal gas cannot be liquefied at any volume of P and T.

For Z gas of given gases, critical temperature is highest 6. $T_c = \frac{8a}{27Rb} \implies T_c = \frac{8 \times 12}{27 \times .0821 \times .027} = 1603.98K$

(c) Value of constant a is greater than other for $N\!H_3$ that's why 7. NH_3 can be most easily liquefied.

The temperature below which the gas can be liquefied by the 8. application of pressure alone is called critical temperature.

10. (c)
$$d = \frac{M}{V} \implies M = d \times V$$

 $M = 2.68 \times 22.4$ at N.T.P. $(\because V = 22.41)$
 $M = 60.03 \ gm$
 m . wt of $COS = 12 + 16 + 32 = 60$

(c) 22400 ml is the volume of O_2 at N.T.P =32gm of O_2 11.

1ml is the volume of O_2 at NTP = $\frac{32}{22400}$

112 *ml* is the volume of O_2 at NTP = $\frac{32}{22400} \times 112$

$=0.16gm \text{ of } O_2$

Critical Thinking Questions

Average kinetic energy ∝ (T Kelvin) (Factor) $\frac{K.E_2}{K.E_1} = \frac{T_2}{T_1} = \frac{40 + 273}{20 + 273} = \frac{313}{293}$

(c) $M. wt. = V.d. \times 2$ = $70 \times 2 = 140 \implies x = \frac{m.wt.}{wt.of[CO]} = \frac{140}{[12+16]}$

Gas deviate from ideal gas behaviour to real gas (according to 3. Vander Waal's at low temperature and high pressure)

4 At same temperature and pressure, equal volumes have equal number of molecules. If 1/it. of oxygen consists N molecules then at same temperature and pressure 1 $\it lit$ of $\it SO_2$ will consists N molecules. So 2 lit. of SO_2 will contain 2N

(a) $V_{av}:V_{ms}:V_{ms}=V:U:\alpha$ 5. $\sqrt{\frac{8RT}{\pi M}}:\sqrt{\frac{3RT}{M}}:\sqrt{\frac{2RT}{M}}$ $\alpha: V: U = \sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3} = 1:1.128:1.224$

(d) $\frac{C_p}{C}$ ratio for diatomic gases is 1.40 at lower temperature & 6. 1.29 at higher temperature so the answer is d.

(b) PV = nRT (For ideal gas) 7. $Z = \frac{PV}{nRT} = 1$ (For ideal gas)

(b) If Z < 1 then molar volume is less than 22.4 $\it L$ 8.

(a) $r_{O_2} = \frac{x}{1.9} mole / sec \implies r_g = \frac{x}{4.5} mol / sec$ 9. $M_g = M_{O_2} \left(\frac{r_{O_2}}{r}\right)^2 = 32 \left(\frac{x}{18} \times \frac{45}{x}\right)^2 = 32 \times \frac{45^2}{18^2}$

(a) $r_{SO_2}: r_{O_2}: r_{CH_4} = \frac{1}{\sqrt{M_{SO_2}}}: \frac{1}{\sqrt{O_2}}: \frac{1}{\sqrt{CH_4}}$ $=\frac{1}{\sqrt{64:32:16}}=\frac{1}{\sqrt{4:2:1}}$ $\frac{1}{2}:\frac{1}{\sqrt{2}}:\frac{1}{1};\frac{2}{2}:\frac{2}{\sqrt{2}}:\frac{2}{1};1:\sqrt{2}:2$

(a) Root mean square speed = $\left[\frac{n_1 c_1^2 + n_2 c_2^2 + n_3 c_3^2 + \dots}{n_1 + n_2 + n_3 + \dots} \right]^{1/2}.$

(b) If 40 ml O_2 will diffuse in t min. then. $r_{O_2} = \frac{40}{40}$ $r_H = \frac{50}{20} \implies r_O = r_H 2 \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \frac{50}{20} \sqrt{\frac{2}{32}} = \frac{50}{20} \cdot \frac{1}{4}$

 $\frac{40}{t} = \frac{50}{80}$: $t = \frac{40 \times 80}{50} = 60$ min.

(b) $\frac{V_{av}CH_4}{V_{ab}O_2} = \sqrt{\frac{T_{CH_4}}{T_{O_2}}} \cdot \frac{M_{O_2}}{M_{CH_4}} = 1$ 13. $\frac{T_{CH_4}}{300} \cdot \frac{32}{16} = 1$; $T_{CH_4} = 150^{\circ} K$

(c) Pressure of O_2 (dry) = 751-21 = 730 mm Hg 14.

$$=\frac{730}{760}=0.96atm$$

15. (b)
$$PV = nRT$$
, $n = \frac{PV}{RT} = \frac{1 \times 145}{0.082 \times 3} = 5.8 \approx 6 \, mole$.

16. (a)
$$V = \frac{nRT}{P} = \frac{m}{M} \cdot \frac{RT}{P} = \frac{1}{58} \times \frac{0.82 \times 350}{1} = 0.495 lit$$

17. (b)
$$\frac{r_{He}}{r_{CH_A}} = \sqrt{\frac{M_{CH_A}}{M_{He}}} = \sqrt{\frac{16}{4}} = 2$$

18. (b)
$$\frac{V_1}{V_2} = \frac{T_1}{T_2} :: T_2 = \frac{T_1 V_2}{V_1} = 300^{\circ} K, \frac{2V}{V} = 600^{\circ} K$$

$$T_2 = 600^{\circ} K = (600 - 273)^{\circ} C = 327^{\circ} C$$

19. (a) no. of moles of
$$O_2 = \frac{4}{32} = 0.125$$

no. of moles of
$$H_2 = \frac{2}{2} = 1$$

total no. of moles =
$$1 + 0.125 = 1.125$$

$$P = \frac{nRT}{V} = \frac{1.125 \times 0.082 \times 273}{1} = 25.184 atm.$$

20. (d)
$$\frac{P_1}{P_2} = \frac{1}{2}$$
, $\because \frac{V_1}{V_2} = \frac{P_2}{P_1} = \frac{2}{1}$

$$\frac{2L}{V_1} = \frac{2}{1}$$
; $V_2 = 1L$

21. (c)
$$\frac{V_2}{V_1} = \frac{T_2}{T_1}$$

 $\therefore V_2 = \frac{T_2}{T_1} V_1 = \frac{310^o K}{300^o K} \times 300 cm^3 = 310 cm^3$

22. (c)
$$V_2 = \frac{T_2}{T_1} \cdot V_1 = \frac{270^{\circ} K}{300^{\circ} K} \times 300 ml = 270 ml$$

Assertion & Reason

- 1. (c) Pressure is inversly proportional to volume (Boyle's law). $p\alpha\,\frac{1}{V} \ (\textit{n, T}\, \text{constant}).$
- 2. (c) The air pressure decreases with increase in altitude. So the partial pressure of Oxygen is not sufficient for breathing at higher altitude and thus pressurization is needed.
- (a) At a given temperature and pressure the volume of a gas is directly proportional to the amount of gas Van (P and T constant).
- 4. (d) According to Dalton's law of partial pressure, the pressure exerted by a mixture of non interacting gases is equal to the sum of their partial pressures (pressure exerted by individual gases in mixture) P_{Total} = P₁ + P₂ + P₃ ... (T and V constant). Both the gases if non-interacting would spread uniformly to occupy the whole volume of the vessel.
- **5.** (a) Considering the attractive force pressure in ideal gas equation (PV = nRT) is correct by introducing a factor of $\frac{an^2}{V^2}$ where a is a vander waal's constant.
- **6.** (d) $\mu_{mis} = \sqrt{\frac{3RT}{M}}$ is inversly related to molecular mass. Therefore, $\mu_{mis}(CO) > \mu_{mis}(CO_2)$.

8. (b)
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 (Initial fraction $\frac{V_1}{V_2} = 1$ when temperature is $27^{\circ} C$. At $127^{\circ} C$ the new fraction is $\frac{V_1}{V_2} = \frac{300}{400} = \frac{3}{4}$:: air expelled $\Rightarrow 1 - \frac{3}{4} = \frac{1}{4}$

- 9. (a) In case of *H*, compressibility factor increases with the pressure. At 273 *K*, *Z* > 1 which shows that it is difficult to compress the gas as compared to ideal gas. In this case repulsive forces dominate.
- **10.** (b) In real gases, the intermolecular forces of attraction and the volume occupied by the gas molecules cannot be neglected.
- II. (a) When the temperature increase, the average speed of gas molecules increases and by this increase the pressure of gas is also increases.
- 12. (a) It is correct that gases do not settle to the bottom of container and the reason for this is that due to higher kinetic energy of gaseous molecules they diffuse.
- 13. (c) The assertion, that a mixture of helium and oxygen is used for deep sea divers, is correct. The He is not soluble in blood. Therefore, this mixture is used.
- **14.** (e) Dry air is heavier than wet air because the density of dry air is more than water.
- 15. (d) All molecule of a gas have different speed. Therefore, they move by its own speed.

Gaseous State

FT Self Evaluation Test -6

- 1. Same mass of CH_4 and H_2 is taken in container. The partial pressure caused by H_2 is [IIT 1989; CPMT 1996]
 - (a) 8/9
- (b) 1/9
- (c) 1/2
- (d) 1
- 2. The following graph illustrates

[JIPMER 2000]

- (a) Dalton's law
- (b) Charle's law
- (c) Boyle's law
- (d) Gay-Lussac's law
- 3. If the pressure and absolute temperature of 2 $\it litres$ of $\it CO_2$ are doubled, the volume of $\it CO_2$ would become

[CBSE PMT 1991]

- (a) 2 litres
- (b) 4 litres
- (c) 5 litres
- (d) 7 litres
- **4.** What is kinetic energy of 1g of O_2 at $47^{\circ}C$

[Orissa JEE 2004]

- (a) $1.24 \times 10^2 J$
- (b) $2.24 \times 10^2 J$
- (c) $1.24 \times 10^3 J$
- (d) $3.24 \times 10^2 J$
- **5.** The root mean square speeds at STP for the gases H_2, N_2, O_2 and HBr are in the order

[Pb. CET 1994; CBSE PMT 1991]

- (a) $H_2 < N_2 < O_2 < HBr$
- (b) $HBr < O_2 < N_2 < H_2$
- (c) $H_2 < N_2 = O_2 < HBr$
- (d) $HBr < O_2 < H_2 < N_2$
- **6.** By what ratio the average velocity of the molecule in gas change when the temperature is raised from 50 to $200^{o}\,C$

[DCE 2003]

- (a) 1.21 / 1
- (b) 1.46 / 1
- (c) 1.14 / 1
- (d) 4/1

Which of the following volume (V) – temperature (T) plots represents the behaviour of one mole of an ideal gas at one atmospheric pressure [IIT Screening 2002]

- **8.** If the average velocity of $N_2^{T(K)}$ molecule is $0.3 \, m/s$ at $27^{T(K)}$, then the velocity will be $0.6 \, m/s$ at [Pb. CET 2001]
 - (a) 1200*K*
- (b) 600*K*
- (c) 400K
- (d) 1800K
- 9. Equal volumes of two gases which do not react together are enclosed in separate vessels. Their pressures at 100 mm and 400 mm respectively. If the two vessels are joined together, then what will be the pressure of the resulting mixture (temperature remaining constant) [CBSE PMT 1981]
 - (a) 125 mm
- (b) 500 mm
- (c) 1000 mm
- (d) 250 mm
- 10. A gas of volume 100 cc is kept in a vessel at pressure 10^4 Pa maintained at temperature 24^o C. If now the pressure is increased to 10^5 Pa, keeping the temperature constant, then the volume of the gas becomes [AFMC 1992]
 - (a) 10 cc
- (b) 100 cc
- (c) 1 *cc*
- (d) 1000 cc
- 11. If a gas is expanded at constant temperature

[IIT 1986]

- (a) The pressure increases
- $(b) \quad \text{The kinetic energy of the molecules remains the same} \\$
- (c) The kinetic energy of the molecules decreases
- $\left(d\right)$ The number of molecules of the gas increases
- **2.** The rate of diffusion of SO_2 and O_2 are in the ratio

[Assam JET 1991; EAMCET 1980]

- (a) $1:\sqrt{2}$
- (b) 1:32
- (c) 1:2
- (d) 1:4

1. (a)
$$N_{CH4}$$
 = number of moles of $CH_4 = \frac{m}{16}$

$$N_{H2}$$
 = number of moles of $H_2 = \frac{m}{2}$

fraction partial pressure of $\,H_{\,2}\,$ is

$$H_2 = \frac{n_{H_2}}{n_{H_2} + n_{CH_4}} = \frac{\frac{m}{2}}{\frac{m}{2} + \frac{m}{16}} = \frac{\frac{m}{2}}{\frac{9m}{16}} = \frac{8}{9}$$

2. (b) According to Charle's Law
$$V \propto T$$

$$V_t = V_o + V_o \alpha t$$

compare it with Y = C + mx

3. (a)
$$V2 = \frac{P_1 V_1}{T_1} \cdot \frac{T_2}{P_2} = \frac{P}{2P} \times 2lt \times \frac{2T}{T} = 2lt$$

4. (a) K.E.
$$= \frac{3}{2}nRT = \frac{3}{2} \times \frac{1}{32} \times 8.314 \times 320J$$
.
= $1.24 \times 10^2 J$

5. (b)
$$V_{ms} \propto \frac{1}{\sqrt{m}}$$

$$U_{H_2}:U_{N_2}:U_{O_2}:U_{\mathit{HBr}}\ =\frac{1}{\sqrt{2}}:\frac{1}{\sqrt{20}}:\frac{1}{\sqrt{32}}:\frac{1}{\sqrt{81}}\ \ \mathrm{is}$$

$$U_{H\!B_r} < U_{O_2} < U_{N_2} < U_{H_2}$$

6. (c)
$$T_1 = 150 + 273 = 423K$$
; $T_2 = 50 + 273 = 323K$

Hence,
$$\frac{(V_{av})_1}{(V_{av})_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{423}{323}} = \frac{1.14}{1}$$

7. (c)
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$
 : $V_2 = V_1$. $\frac{T_2}{T_1} = \frac{22.4 \times 373}{273} = 30.6L$

8. (a)
$$V_{ms} = \sqrt{\frac{3RT}{M}}$$
; $V_{ms} = \sqrt{T}$

Given,
$$V_1 = V$$
, $T_1 = 300K$

$$V_2 = 2V$$
 , $T_2 = ?$

$$= \frac{V_1}{V_2} = \sqrt{\frac{T_1}{T_2}} = \left(\frac{V}{2V}\right)^2 = \frac{300}{T_2}$$

$$T_2 = 300 \times 4 = 1200 K$$

9. (d) When two vessels are joined together, the volume will be doubled hence effective pressure will be halved

$$P = \frac{P_1 + P_2}{2} = \frac{100 + 400}{2} = 250mm$$

10. (a)
$$P_1V_1 = P_2V_2$$
 at constant T

$$10^4.100 = 10^5 \times V_2$$

$$V_2 = 10cc$$

 (b) Kinetic energy will also remain constant if Temperature is constant.

12. (a)
$$\frac{r_{SO_2}}{r_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{SO_2}}} = \sqrt{\frac{32}{64}} = \frac{1}{\sqrt{2}}$$