RELATIONS

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1.	If R is a relation from a finite set A having m	1				
	elements to a limite set B having in elements, then					
	(1) 2^{mn} (2) 2^{mn} 1 (2) 2^{mn} (4) m^{n}					
0	(1) \mathcal{L} (2) \mathcal{L} -1 (3) 211111 (4) 111 In the set $\Lambda = \{1, 2, 2, 4, 5\}$ a relation P is defined					
2.	In the set $A = \{1, 2, 3, 4, 5\}$, a feation K is defined by $\mathbf{P} = \{(x, y) \mid x, y \in A \text{ and } x \in y\}$. Then \mathbf{P} is					
	$(1) \text{ Paflevive} \qquad (2) \text{ Summatrie}$					
	(1) Kellexive (2) Symmetric	-1				
2	(3) manshive (4) None of mese	T				
З.	y = 0 feat numbers x and y, we write					
	$x \neq y \Leftrightarrow x - y \neq \sqrt{2}$ is an irrational number. Then					
	(1) Deflection (2) Server strict					
	(1) Kellexive (2) Symmetric					
٨	(3) Transitive (4) none of these (4) $r = (1, 2, 5, 7, 0)$ Which					
4.	Let $X = \{1, 2, 3, 4\}$ and $Y = \{1, 3, 5, 7, 9\}$. Which	-				
	of the following is relations from X to Y-	T				
	(1) $R_1 = \{(x, y) \mid y = 2 + x, x \in X, y \in Y\}$					
	(2) $R_2 = \{(1, 1), (2, 1), (3, 3), (4, 3), (5, 5)\}$					
	$ (3) R_3 = \{ (1, 1), (1, 3), (3, 5), (3, 7), (5, 7) \} $					
-	$(4) R_4 = \{(1, 3), (2, 5), (2, 4), (7, 9)\}$					
5.	Let L denote the set of all straight lines in a plane.	1				
	Let a relation R be defined by $\alpha \ R \ \beta \Leftrightarrow \alpha \perp \beta$,					
	$\alpha, \beta \in L$. Then R is-					
	(1) Reflexive (2) Symmetric					
	(3) Transitive (4) none of these					
6.	Let R be a relation defined in the set of real numbers					
	by a R b \Leftrightarrow 1 + ab > 0. Then R is-					
	(1) Equivalence relation (2) Transitive	1				
_	(3) Symmetric (4) Anti-symmetric					
7.	Which one of the following relations on R is					
	equivalence relation-					
	(1) $x R_1 y \Leftrightarrow x = y $ (2) $x R_2 y \Leftrightarrow x \ge y$					
_	$(3) \times R_{3}y \Leftrightarrow x \mid y \qquad (4) \times R_{4}y \Leftrightarrow x < y$					
8.	Two points P and Q in a plane are related if					
	OP = OQ, where O is a fixed point. This relation	1				
	is-					
	(1) Reflexive but symmetric					
	(2) Symmetric but not transitive					
	(3) An equivalence relation					
	(4) none of these	1				
9.	The relation R defined in A = $\{1, 2, 3\}$ by a R b if					
	$ a^2 - b^2 \le 5$. Which of the following is false-					
	$(1)R = \{(1, 1), (2, 2), (3, 3), (2, 1), (1, 2), (2, 3), (3, 2)\}$					
	(2) $R^{-1} = R$					
	(3) Domain of $R = \{1, 2, 3\}$					
	(4) Range of $R = \{5\}$					

- $\mathbf{0}$. Let a relation R is the set N of natural numbers be defined as $(x, y) \in R$ if and only if $x^2 - 4xy + 3y^2 = 0$ for all $x, y \in N$. The relation R is-(1) Reflexive (2) Symmetric (3) Transitive (4) An equivalence relation **1.** Let $A = \{2, 3, 4, 5\}$ and let $R = \{(2, 2), (3, 3), (3,$ (4, 4), (5, 5), (2, 3), (3, 2), (3, 5), (5, 3) be a relation in A. Then R is-(1) Reflexive and transitive (2) Reflexive and symmetric (3) Reflexive and antisymmetric (4) none of these **2**. If $A = \{2, 3\}$ and $B = \{1, 2\}$, then A B is equal to- $(1) \{(2, 1), (2, 2), (3, 1), (3, 2)\}$ $(2) \{(1, 2), (1, 3), (2, 2), (2, 3)\}$ $(3) \{(2, 1), (3, 2)\}$ $(4) \{(1, 2), (2, 3)\}$ **3**. Let R be a relation over the set N N and it is defined by (a, b) R (c, d) \Rightarrow a + d = b + c. Then R is-(1) Reflexive only (2) Symmetric only (3) Transitive only (4) An equivalence relation 4. Let N denote the set of all natural numbers and R be the relation on N N defined by (a, b) R (c, d) if ad (b + c) = bc(a + d), then R is-
 - (1) Symmetric only
 - (2) Reflexive only
 - (3) Transitive only
 - (4) An equivalence relation
- 15. If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. Then range of R is-
 - (1) $\{1, 4, 6, 9\}$ (2) $\{4, 6, 9\}$ (3) $\{1\}$ (4) none of these
- **16.** Let L be the set of all straight lines in the Euclidean plane. Two lines ℓ_1 and ℓ_2 are said to be related by the relation R if ℓ_1 is parallel to ℓ_2 . Then the relation R is-
 - (1) Reflexive (2) Symmetric
 - (3) Transitive (4) Equivalence

17.	A and B are two sets having 3 and 4 elements	24.	Let P =
	respectively and having 2 elements in common.		(1) reflex
	The number of relations which can be defined from		(3) transi
	A to B is-	25.	Let X be
	(1) 2^5 (2) $2^{10} - 1$		defined b
	(3) $2^{12} - 1$ (4) none of these		(1) reflex
18.	For n, m \in N, n m means that n is a factor of m,		(3) anti-s
	the relation is-	26.	In order
	(1) reflexive and symmetric		set A is a
	(2) transitive and symmetric		(1) is ref
	(3) reflexive, transitive and symmetric		(2) is sur
	(4) reflexive, transitive and not symmetric		(3) is trai
19.	Let $R = \{(x, y) : x, y \in A, x + y = 5\}$ where		(4) posse
	A = {1, 2, 3, 4, 5} then	27	If R ha
	(1) R is not reflexive, symmetric and not transitive	27.	$R = \{1, 3\}$
	(2) R is an equivalence relation		D = [1, 0]
	(3) R is reflexive, symmetric but not transitive		(1) $(1, 3)$
	(4) R is not reflexive, not symmetric but transitive		(2) $\{(3, 1)$
20.	Let R be a relation on a set A such that R = R^{-1}		(3) {(3, 3)
	then R is-		(4) {(3, 3
	(1) reflexive	28.	If K is an
	(2) symmetric		1S-
	(3) transitive		(1) reflex
	(4) none of these		(2) symm
21.	Let $x, y \in I$ and suppose that a relation R on I is		(3) an ec
	defined by x R y if and only if $x \leq y$ then		(4) none
	(1) R is partial order ralation	29.	Let R an
	(2) R is an equivalence relation		A. Then
	(3) R is reflexive and symmetric		(1) R \cup
	(4) R is symmetric and transitive		(2) R ∩ S
22.	Let R be a relation from a set A to a set B, then-		(3) R – S
	(1) $R = A \cup B$ (2) $R = A \cap B$		(4) none
	$ (3) R \subseteq A B \qquad (4) R \subseteq B A $	30.	Let A =
23.	Given the relation R = = $\{(1, 2), (2, 3)\}$ on the set		equivalen
	A = $\{1, 2, 3\}$, the minimum number of ordered		(1) $R_1 = \{$
	pairs which when added to R make it an equivalence		(2) $R_2 = \{$
	relation is-		(3) $R_3 = \{$
	(1) 5 (2) 6 (3) 7 (4) 8		(4) none

1	
24.	Let P = {(x, y) $x^2 + y^2 = 1$, x, y $\in R$ } Then P is-
	(1) reflexive (2) symmetric
	(3) transitive (4) anti-symmetric
25.	Let X be a family of sets and R be a relation on X
	defined by 'A is disjoint from B'. Then R is-
	(1) reflexive (2) symmetric
	(3) anti-symmetric (4) transitive
26.	In order that a relation R defined in a non-empty
	set A is an equivalence relation, it is sufficient that R
	(1) is reflexive
	(2) is symmetric
	(3) is transitive
	(4) possesses all the above three properties
27.	If R be a relation '<' from A = $\{1, 2, 3, 4\}$ to
	B = $\{1,3,5\}$ i.e. (a, b) \in R iff a < b, then ROR $^{-1}$ is-
	$(1) \{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$
	$(2) \ \{(3, \ 1), \ (5, \ 1), \ (3, \ 2), \ (5, \ 2), \ (5, \ 3), \ (5, \ 4)\}$
	(3) {(3, 3), (3, 5), (5, 3), (5, 5)}
	$(4) \ \{(3, \ 3), \ (3, \ 4), \ (4, \ 5)\}$
28.	If R is an equivalence relation in a set A, then $R^{\text{-}1}$
	is-
	(1) reflexive but not symmetric
	(2) symmetric but not transitive
	(3) an equivalence relation
	(4) none of these
29.	Let R and S be two equivalence relations in a set
	A. Then-
	(1) R \cup S is an equivalence relation in A
	(2) R \cap S is an equivalence relation in A
	(3) R – S is an equivalence relation in A
	(4) none of these
30.	Let A = $\{p, q, r\}$. Which of the following is an
	equivalence relation in A ?
	(1) $R_1 = \{(p, q), (q, r), (p, r), (p, p)\}$
	(2) $R_2 = \{(r, q) (r, p), (r, r), (q, q)\}$
	(3) $R_3 = \{(p, p), (q, q), (r, r), (p, q)\}$

(4) none of these

ANSWER KEY															
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	1	1	2	3	1	3	4	1	2	1	4	4	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	4	1	2	1	3	3	2	2	4	3	3	2	4

EXTRA PRACTICE QUESTIONS ON RELATIONS

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a 1. releation on the set $A = \{1, 2, 3, 4\}$. The relation R is-[AIEEE - 2004] (1) transitive (2) not symmetric (3) reflexive (4) a function 2. Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6,$ (3, 9), (3, 12), (3, 6)} be relation on the set $A = \{3, 6, 9, 12\}$. The relation is- [AIEEE - 2005] (1) rflexive and transitive only (2) reflexive only (3) an equilvalence relation (4) reflexive and symmetric only 3. Let W denote the words in the English dictionary. Define the relation R by : $R = \{(x, y) \in W | w \}$ words x and y have at least one letter in common}. Then R is-[AIEEE - 2006] (1) reflexive, symmetric and not transitive (2) reflexive, symmetric and transitive (3) reflexive, not symmetric and transtive (4) not reflexive, symmetric and transitive 4. Consider the following relations :- $R = \{(x, y) | x, y \text{ are real numbers and } x = wy \text{ for } \}$ some rational number w}; $S = \{(\frac{m}{n}, \frac{p}{q}) \mid m, n, p \text{ and } q \text{ are integers such that} \}$ n, $q \neq 0$ and qm = pn. Then : [AIEEE - 2010] (1) R is an equivalence relation but S is not an equivalence relation (2) Neither R nor S is an equivalence relation (3) S is an equivalence relation but R is not an equivalence relation (4) R and S both are equivalence relations

5.	Let R be the set of real numbers.									
	Statement-1:									
	$A = \{(x, y) \in R R : y - x \text{ is an integer}\}$ is an									
	equivalence relation on R. [AIEEE - 2011]									
	Statement-2:									
	$B = \{(x, y) \in R \mid x = \alpha y \text{ for some rational number}\}$									
	α is an equivalence relation on R.									
	(1) Statement-1 is true, Statement-2 is false.									
	(2) Statement-1 is false, Statement-2 is true									
	(3) Statement-1 is true, Statement-2 is true;									
	Statement-2 is a correct explanation for									
	Statement-1									
	(4) Statement-1 is true, Statement-2 is true;									
	Statement-2 is not a correct explanation for									
	Statement-1.									
6.	Consider the following relation R on the set of real									
	square matirces of order 3.									
	$R=\{(A, B) A=P^{-1}BP \text{ for some invertible matrix } P\}.$									
	Statement - 1:									
	R is an equivalence relation.									
	Statement - 2:									
	For any two invertible 3 3 martices M and N,									
	$(MN)^{-1} = N^{-1}M^{-1}$ [AIEEE - 2011]									
	(1) Statement-1 is false, statement-2 is true.									
	(2) Statement-1 is true, statement-2 is									
	true; Statement-2 is correct									
	explanation for statement-1.									
	(3) Statement-1 is true, statement-2 is									
	true; Statement-2 is not a correct									
	explanation for statement-1.									
	(4) Statement-1 is true, statement-2 is false.									

ANSWER KEY 2 3 Que. 4 5 1 6 3 Ans. 2 1 1 1 1