DPP - Daily Practice Problems

Chapter-wise Sheets

Date :

Start Time :

End Time :

MATHEMATICS (CM06)

SYLLABUS : Binomial Theorem

Max. Marks : 74

GENERAL INSTRUCTIONS

- The Daily Practice Problem Sheet contains 20 Questions divided into 5 sections.
- **Section I** has **6** MCQs with ONLY 1 Correct Option, **3** marks for each correct answer and **-1** for each incorrect answer. **Section II** has **4** MCQs with ONE or MORE THAN ONE Correct options.

For each question, marks will be awarded in one of the following categories:

Full marks: +4 If only the bubble(s) corresponding to all the correct option(s) is (are) darkened.

Partial marks: **+1** For darkening a bubble corresponding to each correct option provided NO INCORRECT option is darkened. Zero marks: If none of the bubbles is darkened.

Negative marks: -2 In all other cases.

Section III has 4 Single Digit Integer Answer Type Questions, 3 marks for each Correct Answer and 0 mark in all other cases.

Section IV has Comprehension Type Questions having **4** MCQs with ONLY ONE corect option, **3** marks for each Correct Answer and **0** mark in all other cases.

Section V has 2 Matching Type Questions, 2 marks for the correct matching of each row and 0 mark in all other cases.
You have to evaluate your Response Grids yourself with the help of Solutions.

Section I - Straight Objective Type

This section contains 6 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct.

1. If $(1 + x - 2x^2)^6 = 1 + a_1x + a_2x^2 + a_3x^3 + \dots$ and $k = a_2 + a_4 + a_6 + \dots + a_{12}$ then which one of the following is true about k? (a) k is a perfect square

- (b) k is a prime number
- (c) k is a perfect cube
- (d) k is more than 64
- (u) K is more mail 04

2. Consider a function $f(x) = \left(1 - \frac{1}{x}\right)$. Then term independent

Time : 60 min.

- of x in the expansion of $(f(x))^n \cdot (f(-\frac{1}{x}))^n$ is
- (a) 0, if n is odd
- (b) $(-1)^{\frac{n-1}{2}} \cdot {}^{n}C_{\frac{n-1}{2}}$, if *n* is odd
- (c) $(-1)^{n/2} \cdot {}^{n}C_{\frac{n}{2}-1}$, if *n* is even
- (d) None of the above

Response Grid1. (a) (b) (c) (d)2. (a) (b) (c) (d)

Space for Rough Work .

DPP/ CM06

- м-22
- If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then 3. $\sum_{0 \le i \le j} \sum_{j \le n} (C_i + C_j)^2$ is equal to (a) $(n-1)^{2n}C_n + 2^{2n}$ (b) $n^{2n}C_n + 2^{2n}$ (c) $(n+1)^{2n}C_n + 2^{2n}$ (d) None of these 4. The number of integral solutions of the equation x+y+z+w=20, if $x \ge 1$, $y \ge 2$, $z \ge 3$, $w \ge 4$, is (a) 286 (b) 78 (c) 715 (d) 1001 If *I* is integral part of $(2 + \sqrt{3})^n$ and *f* is its fractional part. 5. Then (I+f)(1-f) is (a) I+1(b) 1 (d) 2^n (c) *n* If coefficient of x^n in $(1 + x)^{101} (1 - x + x^2)^{100}$ is non-zero, 6. then *n* cannot be of the form
 - (a) 3r+1 (b) 3r(c) 3r+2 (d) 4r+1

Section II - Multiple Correct Answer Type

This section contains 4 multiple correct answer(s) type questions. Each question has 4 choices (a), (b), (c) and (d), out of which **ONE OR MORE** is/are correct.

7. Suppose $x_1, x_2, ..., x_n$ (n > 2) are real numbers such that $\mathbf{x}_i = -\mathbf{x}_{n-i+1}$ for $1 \le i \le n$. Consider the sum $\mathbf{S}_n = \sum \sum \sum \mathbf{x}_i \mathbf{x}_i \mathbf{x}_k$

 $(1 \le i, j, k \le n)(i, j, k \text{ distinct})$ then which of the following is true?

(a)	$S_{10} = 121$	(b)	$S_{10} = S_{20}$
(u)	210 121	(0)	510 520

(c) $S_{14} = 0$ (d) $S_{30} > S_{31}$

- 8. Which all statements are correct?
 - (a) The number of integral terms in the expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is k then k > 30
 - (b) The number of integral terms in the expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is k then k < 40
 - (c) Number of distinct terms in the expansion of $(x+y-z)^{16}$ is k then k > 140
 - (d) Number of distinct terms in the expansion of $(x+y-z)^{16}$ is k then k < 150

9. If
$$f(n) = \sum_{r=1}^{n} [r(n^{n-1}C_{r-1} - r^{n}C_{r-1}) + (2r+1)^{n}C_{r}],$$

then

(a)
$$f(10) = 120$$
 (b) $f(20) = 440$

(c)
$$\sum_{n=1}^{10} f(n) = 495$$
 (d) $\sum_{n=1}^{10} f(n) = 374$

- 10. The integer just greater than $(\sqrt{3}+1)^{2m}$ is
 - (a) divisible by 2^{m+1} (b) divisible by 3^{m+1}
 - (c) divisible by 2^m (d) divisible by 3^m

Section III - Integer Type

This section contains 4 questions. The answer to each of the questions is a single digit integer ranging from 0 to 9.

11. If
$$\sum_{r=0}^{n} \left(\frac{r+2}{r+1} \right) C_r = \frac{2^8 - 1}{6}$$
, then *n* is equal to

				6. abcd 7. abcd 11.0023456789	

Space for Rough Work

DPP/CM06

- and that $a_1^2 = 2a_2$, then the value of *n* is
- 13. If the expansion of $(1 + x + x^2)^n$ be written as $a_0 + a^1x + a_2x^2 + \dots + a_{2n}x^{2n}$, then the value of $\frac{a_0 + a_1 + a_3 + a_4 + a_6 + a_7 + \dots}{a_2 + a_5 + a_8 + \dots}$ if *n* is a multiple of 3.
- 14. If $(1 + ax)^n = 1 + 8x + 24x^2 + \dots$; then $9\left(\frac{n-a}{a+n}\right)$ is equal to

(n being a positive Integer)

Section IV - Comprehension Type

Based upon the given paragraphs, 4 multiple choice questions have to be answered. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct.

PARAGRAPH-1

If ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,..., ${}^{n}C_{n}$ denote the binomial coefficients in the expansion of $(1 + x)^n$ and a + b = 1, then

15. Find the value of $\sum_{r=0}^{n} r^{n} C_{r} a^{r} b^{n-r}$ is (a) na^2 (b) *nab* (c) *na* (d) None of these

12. Given $(1-2x+5x^2-10x^3)(1+x)^n = 1 + a_1x + a_2x^2 + \dots$ **16.** If ${}^nC_0, {}^nC_1, {}^nC_2, \dots, {}^nC_n$ denote the binomial coefficients

in the expansion of
$$(1 + x)^n$$
 and $p + q = 1$, then $\sum_{r=0}^n r^2 {}^n C_r p^r q^{n-r}$

- is
- (a) *np* (b) *npq* (c) $n^2 p^2 + npq$ (d) None of these

PARAGRAPH-2

The binomial expansion is defined as

$$(x+y)^n = \sum_{r=0}^n C_r \ x^{n-r} \ y^r$$
, where $C_r = {}^n C_r$.

- 17. The value of $\sum_{0 \le i < j \le n} \sum_{n < i < n} i \cdot {}^{n}C_{j}$ is equal to
 - (a) $n(n+1)2^{n-3}$ (c) $n(n-1)2^{n-3}$ (b) $n^2 2^{n-3}$
 - (c) $n(n-1)2^{n-3}$ (d) None of these
- The value of $\sum_{0 \le i < j \le n} \sum_{j < n} j \cdot C_i$ is equal to 18.
 - (a) $n^2 2^{n-3}$ (b) $n(n+3)2^{n-3}$
 - (c) $(n+3)2^{n-3}$ (d) None of these

Response 12. 0 1 2 3 4 5 6 7 8 (GRID 14. 0 1 2 3 4 5 6 7 8 (18. @ b c d) 13.00023456789) 15.2600 16.2600 17.260	DC
---	--	----

Space for Rough Work _

Section V - Matrix-Match Type

This section contains 2 questions. It contains statements given in two columns, which have to be matched. Statements in column I are labelled as A, B, C and D whereas statements in column II are labelled as p, q, r and s. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p, A-r, B-p, B-s, C-r, C-s and D-q, then the correctly bubbled matrix will look like the following:

- ٦,						
19.	Match the statement of Colu	mn I with values of C	olumn II.			
	Column I		Column II			
(A)	If $(r + 1)$ th term is the first ne of $(1 + x)^{7/2}$, then the value of			(p)	Divisible by 7	
(B)	The coefficient of y in the ex	pansion of $(y^2 + 1/y)^4$	is	(q)	A perfect square	
(C)	If the second term in the expansion	ansion $\left(a^{\frac{1}{13}} + \frac{a}{\sqrt{a^{-1}}}\right)$	is $14a^{5/2}$,	(r)	Divisible by 10	
(D)	then the value of <i>n</i> is The sum of coefficient of x^2 , $(1 + 2x + 3x^2 + 4x^3 + up to \infty)$			(s)	A prime number	
20.	Match the following.					
	Column I			Colu	mn II	
(A)	Let n be an odd natural num		ien the	(p)	6	
(B)	number of zeroes at the end of Let $f(n)=10^n+3 \cdot 4^{n+2}+5$, n of the integer which divides	\in N. The greatest val	ue	(q)	0	
(C)	If $x + \frac{1}{x} = 1$ and $p = x^{1000} + \frac{1}{x}$	$\frac{1}{1000}$ and q be the dig	it at	(r)	2	
	unit place in the number 2^{4n+1} then $p + q =$					
(D)	For integer $n > 1$, the digit at $\sum_{r=0}^{100} r! + 2^{2n}$ is	t unit place in the nur	nber	(s)	9	
	Response 19. A - (p @(T\$); B - (p		- M	<u></u>	തന
		p@r©;B-@ p@r©;B-@		-		
	DAILY PR	ACTICE PROI		P CI	и06 - МАТН	EM
To	tal Questions	20	Total M	arks		

S (s)

DAILY PRACTICE PROBLEM DPP CM06 - MATHEMATICS				
Total Questions	20	Total Marks	74	
Attempted		Correct		
Incorrect		Net Score		
Cut-off Score 25		Qualifying Score	36	
Net Score = $\sum_{i=1}^{V} \left[(correct_i \times MM_i) - (In_i - NM_i) \right]$				
Space for Rough Work				

DPP/ CM06

EBD_7198