Single-Phase Motor & Special Machine and **Energy Conversion Principles**

Multiple Choice Questions

- 1. Consider the following steps
 - 1. Reversion connections to the terminals of the capacitor.
 - 2. Changing the position of the capacitor from auxiliary winding circuit to main winding circuit.
 - 3. Reversing supply connection to the main winding.
 - 4. Reversing supply connection to the auxiliary circuit.

While installing a new ceiling fan, if the fan motor is found to be rotating in the wrong direction, then the direction of rotation of the motor can be corrected by

- (a) 1, 2 and 3
- (b) 1, 2 and 4
- (c) 1, 3 and 4
- (d) 2, 3 and 4

[IAS-1994]

2. Assertion (A): Solid state regulators are finding favour in speed control of domestic fans, over conventional resistance and inductance type regulators.

> Reason (R): Solid state regulators are compact, relatively less expensive, energy efficient, more reliable and afford noise-free operation.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is NOT the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

[IAS-1994]

- 3. In a line printer used to print the output of a computer, the paper is required to be advanced by a line spacing as soon as printing of the line is over. Which one of the following motors is best suited for this application?
 - (a) DC motor
- (b) Synchronous motor
- (c) Induction motor (d) Stepper motor

[IAS-1995]

- 4. Consider the following statements about singlephase reluctance motor:
 - 1. The starting torque is function of rotor position.
 - 2. The torque developed at subsynchronous speeds varies sinusoidally.
 - 3. Starting is asynchronous but running is synchronous.
 - 4. It pulls into synchronism on switching on dc excitation.

Of these statements

- (a) 1, 2 and 3 are correct
- (b) 1, 3 and 4 are correct
- (c) 2, 3 and 4 are correct
- (d) 1 and 4 are correct

[IAS-1996]

- 5. The capacitor-start single-phase induction motor develop much larger starting torque in comparison with the "split-phase" motor, because the use of capacitors in the auxiliary winding enables
 - (a) provision of larger number of turns in the auxiliary winding.
 - (b) a larger starting current to be drawn from the supply. .
 - (c) the torque-slip characteristic in general to get a shape to give a large starting torque.

(d) starting and a speed slightly below synchronous speed

[IAS-1998]

- Two ensure that a two-phase induction type servomotor does not run when the control phase voltage is zero, the ratio of
 - (a) stator leakage reactance to rotor phase resistance should be high.
 - (b) rotor leakage reactance to rotor phase resistance should be less than one.
 - (c) the sum of stator and rotor resistance to the sum of stator and rotor leakage reactance should be greater than one.
 - (d) torque to inertia should be very high.

[IAS-1999]

7. Assertion (A): The generated voltage in 3-phase supply contains harmonics.

Reason (R): The angular variation of the radial component of the magnetic flux in the air-gap is not a pure sinusoid.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is NOT the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

[IAS-1999]

8. The below figure shows an electro-mechanical energy conversion device. The instantaneous values of armature induced emf, bus bar voltage and armature current are respectively e, v and i. The instantaneous values of external torque, armature developed torque and angular velocity of the shaft are respectively T_e , T_a and ω_r . If the armature is connected to supply bus, the mode of operation will be

- (a) motoring
- (b) both motoring and generating
- (c) generating
- (d) braking

[IAS-1999]

- For a given load, the speed of shaded-pole single-phase induction motor fluctuates slightly because
 - (a) the speed of the magnetic field is not constant
 - (b) the magnitude of the magnetic field is not constant
 - (c) the motor operates at higher value of slips
 - (d) the motor is used with fluctuating load

[IAS-1999]

- When a single-phase capacitor start induction motor is running at a steady speed delivering a fixed torque, then
 - (a) peak of forward rotor mmf is equal to the peak of backward rotor mmf
 - (b) peak of forward startor mmf is equal to the peak of backward stator mmf
 - (c) net forward rotating flux is equal to the net backward rotating flux
 - (d) forward flux produced by rotor current is equal to backward flux produced by rotor current

[IAS-2001]

- 11. In the slew range of a stepper motor, it
 - (a) can start, stop and reverse as desired
 - (b) cannot start but can stop and reverse on command
 - (c) cannot start, stop and reverse on command
 - (d) cannot start and synchronise but can reverse on command

[IAS-2001]

12. Consider the following statements:

A ceiling fan fails to start because

- main winding is open-circuited.
- 2. auxiliary winding is open-circuited.
- capacitor is short-circuited.
- 4. supply terminals are reversed.
- 5. main and auxiliary winding connections are interchanged.

Which of the statements are correct?

- (a) 1, 2 and 5
- (b) 2, 3, 4 and 5
- (c) 1, 2 and 3
- (d) 1, 3 and 4

[IAS-2001]

- **13.** Consider the following statements for a single-phase hysteresis motor:
 - 1. Torque is constant from standstill up to synchronous speed N_s .
 - 2. Rotor is provided with narror slots embedded with bars.
 - 3. Torque at starting is some what more than that at synchronous speed N_s .
 - 4. As the name suggests, only hysteresis torque is produced from zero speed right up to $N_{\rm s}$.
 - 5. Rotor material possesses very wide hysteresis loop.

Which of the statements given above are correct?

- (a) 1, 2 and 3
- (b) 3 and 5
- (c) 1 and 4
- (d) 2, 3 and 4

[IAS-2001]

14. Match List-I with List-II and select the correct answer using the codes given below the lists:

List-

- A. Capacitor-run motor
- B. Capacitor-start and run motor
- C. Shaded-pole motor
- D. Resistor-split phase motor List-II

Codes:

A ·B C D

- (a) 2 1 4 3
- (b) 2 3 1 4
- (c) 3 4 2 1
- (d) 3 4 1 2

[IAS-2005]

- 15. A 230 V, 50 Hz, 4-pole, single-phase induction motor is rotating in the clockwise (forward) direction at a speed of 1425 rpm. If the rotor resistance at standstill is 7.8 Ω , then the effective rotor resistance in the backward branch of the equivalent circuit will be
 - (a) 2 Ω
- (b) 4 Ω(d) 156 Ω
- (c) 78 Ω

- [GATE-2008]
- **16.** For a single phase capacitor start induction motor, which of the following statements is valid?
 - (a) The capacitor is used for power factor improvement
 - (b) The direction of rotation can be changed by reversing the main winding terminals
 - (c) The direction of rotation cannot be changed
 - (d) The direction of rotation can be changed by interchanging the supply terminals

[GATE-2006]

17. Assertion (A): A single-phase induction motor is not self-starting as such.

Reason (R): A single-phase induction motor develops only pulsating magnetic field which provides zero torque at standstill.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is NOT the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

[ESE-2004]

- **18.** Which one of the following types of motors is most suitable for a computer printer drive?
 - (a) Reluctance motor
 - (b) Hysteresis motor
 - (c) Shaded pole motor
 - (d) Stepper motor

[ESE-2004]

- 19. For a reluctance type motor, if the stator magnetic field angular velocity is ω and the actual rotor angular velocity is ω_r , then which one of the following equations is satisfied if the average electromagnetic torque is not zero?
 - (a) $\omega = \omega_r/2$
- (b) $\omega = \omega_r$
- (c) $\omega = 2 \omega_r$
- (d) $\omega = 4 \omega_r$

[ESE-2004]

20. Which one of the following statements is correct?

When a single phase induction motor is excited with single phase a.c. voltage, the magnetic field set up is equivalent to

- (a) two fields, rotating in opposite directions with different speeds
- (b) two fields, rotating at synchronous speed in opposite directions
- (c) two fields, rotating at synchronous speed
- (d) two fields rotating in the same direction but at different speeds

[ESE-2004]

- 21. A capacitor-start single-phase induction motor is used for
 - (a) Easy to start loads
 - (b) Medium start loads
 - (c) Hard to start loads
 - (d) Any type of start loads

[ESE-2005]

22. In hand-tool applications, which one of the following single-phase motors is used?

- (a) Shaded pole motor
- (b) Capacitor start motor
- (c) Capacitor run motor
- (d) Universal motor

[ESE-2005]

23. An elementary cylindrical machine has one fullpitch coil in the stator, but the rotor may have (i) two poles or (ii) four poles of permanent magnets.

The time-varying voltage that could be induced in the stator coil for one rotation of the rotor, while the rotor is revolving at a constant speed are shown in the figures A, B, C and D below.

2-pole		4-pole
(a)	Α	D
(b)	Α	В
(c)	С	D
(d)	В	С

[ESE-2006]

- 24. Match List-I with List-II and select the correct answer using the codes given below the lists:

 List-I
 - A. General purpose split phase FHP motor
 - B. General purpose capacitors start FHP motor
 - C. Permanent split capacitors start FHP motor
 - D. Shaded pole FHP motor List-II
 - 1. Refrigerators
 - 2. Hair dryers
 - 3. Unit heaters
 - 4. Fans, blowers

Codes:

- A B C D
- (a) 1 2 4 3
- (b) 1 2 3 4
- (c) 4 1 2 3
- (d) 4 1 3 2

[ESE-2007]

- 25. An 8-pole single phase induction motor is running at 690 rpm. What is its slip with respect to forward and backward fields, respectively?
 - (a) 0.08, 2.0
- (b) 0.08, 1.92
- (c) 1.92, 0.08
- (d) 2.0, 0.08

[ESE-2007]

- **26.** Why is centifugal switch used in a single-phase induction motor?
 - (a) To protect the motor from overloading
 - (b) To improve the starting performance of the motor
 - (c) To cut off the starting winding at an appropriate instant
 - (d) To cut in the capacitor during running conditions

[ESE-2008]

- **27.** Consider the following statements:
 - A synchronous motor has no starting torque but when started it always runs at a fixed speed.
 - A single-phase reluctance motor is not selfstarting even if paths for eddy currents are provided in the rotor.
 - A single-phase hysteresis motor is selfstarting.

Which of these statement(s) is/are correct?

- (a) 1, 2 and 3
- (b) 1 only
- (c) 1 and 2 only
- (d) 2 and 3 only

[ESE-2013]

- **28.** The direction of rotation of a single-phase capacitor run induction motor is reversed by
 - (a) interchanging the terminals of the AC supply.
 - (b) interchanging the terminals of the capacitor.
 - (c) interchanging the terminals of the auxiliary winding.
 - (d) interchanging the terminals of both the windings.

[GATE-2016]

Numerical Data Type Questions

29. A single-stack, eight-phase (stator) multipole, stepper motor has six rotor teeth. The phases are excited one at a time. ____ will be the step size.

Try Yourself

T1. A 220 V, 50 Hz, 4-pole, single-phase induction motor has the following circuit model.

The rotational losses of the motor are estimated to be 75 W. At a motor speed of 940 rpm,

_____ A is the magnitude of line current.

[Ans: 5.22]

