REDOX & EQUIVALENT CONCEPTS (STOCHIOMETRY-II)

1. OXIDATION & REDUCTION

Let us do a comparative study of oxidation and Reduction;

	Oxidation		Reduction
(1)	Addition of oxygen	(i)	Removal of oxygen
e.g.	$2Mg + O_2 \rightarrow 2MgO$	e.g.	$CuO + C \rightarrow Cu + CO$
(2)	Removal of Hydrogen	(ii)	Addition of Hydrogen
e.g.	$\rm H_2S + \rm Cl_2 \rightarrow 2\rm HCl + S$	e.g.	$\rm S+H_2\rightarrow H_2S$
(3)	Increase in positive charge	(iii)	Decrease in positive charge
e.g.	$\mathrm{Fe}^{2^+} \rightarrow \mathrm{Fe}^{3^+} + \mathrm{e}^-$	e.g.	$Fe^{3+} + e \rightarrow Fe^{2+}$
(4)	Increase in oxidation number	(iv)	Decrease in oxidation number
	(+2) (+4)		(+7) (+2)
	$\operatorname{SnCl}_2 \rightarrow \operatorname{SnCl}_4$		$MnO_4^- \rightarrow Mn^{2+}$
(5)	Removal of electron	(v)	Addition of electron
e.g.	$\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+} + 2\mathrm{e}^{-}$	e.g.	$\mathrm{Fe}^{3+} + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$

2. Oxidation Number :

- It is an imaginary or apparent charge gained by an element when it goes from its elemental free state to combined state in molecules.
- It is calculated on basis of a arbitrary set of rules.
- It is a relative charge in a particular bonded state.

2.1 Rules governing oxidation number :

The following rules are helpful in calculating oxidation number of the elements in their different compounds. It is remember that the basis of these rule is the electronegativity of the element.

• Fluorine atom :

Fluorine is most electronegativity atom (known). It always has oxidation no. equal to -1 in all its compounds.

• Oxygen atom :

In general and as well as in its oxides, oxygen atom has oxidation number equal to -2.

In case of :

- (i) peroxide (e.g. H_2O_2 , Na_2O_2) is -1
 - (ii) super oxide (e.g. KO_2) is $-\frac{1}{2}$
 - (iii) ozonide (KO₃) is $-\frac{1}{3}$
 - (iv) oxygen fluoride OF_2 is +2 & in O_2F_2 is +1

• Hydrogen atom :

In general, H atom has oxidation number equal to +1. But in metallic hydrides (e.g. NaH, KH) it is -1.

Halogen atom :

In general, all halogen atom (Cl, Br, I) has oxidation number equal to -1.

But if halogen atom is attached with an more electronegative atom than halogen atom then it will show positive oxidation numbers.

e.g. $KCIO_3^{+5}$ HIO_3^{+5} $HCIO_4^{+7}$ $KBrO_3^{+5}$

Metals :

(a) Alkali metal (Li, Na, K, Rb,) always have oxidation number +1.

(b) Alkaline earth metal (Be, Mg, Ca) always have oxidation number +2.

Note : Metal may have positive or zero oxidation number.

(c) Aluminium always have +3 oxidation number

• Oxidation number of an element in free state or in allotropic forms is always zero.

e.g. $\overset{0}{O}_{2},\overset{0}{S}_{8},\overset{0}{P}_{4},\overset{0}{O}_{3}$

- Sum of the charges of elements in a molecule is zero.
- Sum of the charges of all elements in an ions is equal to the charge on the ion.
- If the group no. of an element in periodic table is n then its oxidation number may vary from n to n − 8 (but it is mainly applicable in p-block elements)
- e.g. N-atom belongs to v group in the periodic table therefore as per rule its oxidation number may vary from

 $-3 \text{ to } +5 (NH_3, NO, N_2O_3, NO_2, N_2O_5)$

Ex.1 Calculate oxidation number of underlined element $Na_2S_2O_3$:

Sol. Let oxidation number of S-atom is x. Now work accordingly with the rules given before.

 $(+1) \times 2 + (x) \times 2 + (-2) \times 3 = 0$ x = + 2

$Ex.2 \ Na_2S_4O_6:$

Sol. Let oxidation number of S-atom is x

$$(+1) \times 2 + (x) \times 2 + (-2) \times 6 = 0$$

x = +2.5

• It's important to note here that $Na_2S_2O_3$ have two S-atom and there are four S-atom in $Na_2S_4O_6$ but sulphur atom in both the compound have +2 or +2.5 oxidation number, it is the average charge (O. No.) Which reside on each sulphur atom therefore we should work to calculate the individual oxidation number of each sulphur atom in these compound.

Ex.3 Calculate the O.S. of all the atoms in the following species :

(i) ClO^{-} , (ii) NO_{2}^{-} , (iii) NO_{3}^{-} (iv) CCl_{4} (v) $K_{2}CrO_{4}$ and (vi) $KMnO_{4}$

- Sol. (i) In ClO⁻, the net charge on the species is -1 and therefore the sum of the oxidation states of Cl and O must be equal to -1. Oxygen will have an O.S. of -2 and if the O.S. of Cl is assumed to be 'x' then x 2 should be equal to -1. x is +1
 - (ii) $NO_2^-: (2 \times -2) + x = -1$ (where 'x' is O.S. of N) $\therefore x = +3$
 - (iii) $NO_3^-: x + (3 \times -2) = -1$ (where 'x' is O.S. of N) x = +5
 - (iv) In CCl₄, Cl has an O.S. of -1 $x + 4 \times -1 = 0$ $\therefore x = +4$
 - (v) $K_2 CrO_4$: K has O.S. of +1 and O has O.S. of -2 and let Cr has O.S. 'x' then, $2 \times +1 + x + 4 \times -2 = 0$ $\therefore x = +6$
 - (vi) $\text{KMnO}_4 : +1 + x + (4 \times -2) = 0$ $\therefore x = +7$

(where x is O.S. of Mn).

(where 'x' is O.S. of C)

2.2 MISCELLANEOUS EXAMPLES

In order to determine the exact or individual oxidation number we need to take help from the structures of the molecules. Some special cases are discussed as follows :

• The structure of CrO_5 is Cr

From the structure it is evident that in CrO_5 there are two peroxide linkages and one double

bond.

The contribution of each peroxide linkage is -2. Let the O.N. of Cr is x.

$$\therefore$$
 x + (-2)2 + (-2) = 0 or x = 6

$$\therefore$$
 O.N. of Cr = +6Ans.

From the structure it is evident that in CrO_8^{-3} there are four peroxide linkages.

The contribution of each peroxide linkage is -2. Let the O.N. of Cr is x.

$$\therefore$$
 x + (-2)4 = -3 or x = +5

 \therefore O.N. of Cr = +5**Ans.**

• The structure of
$$H_2SO_5$$
 is $H_{-0}O_{-5}$

From the structure, it is evident that in H_2SO_5 . there are one peroxide linkage, two sulphur - oxygen double bond and one OH group. Let the O.N. of S = x.

 $\therefore +1-2 + x + (-2) 2 + (-2) + 1 = 0$ or x + 2 - 8 = 0or x - 6 = 0or x = 6∴ O.N. of S in H₂SO₅ is +6 Ans

2.3 PARADOX OF FRACTIONAL OXIDATION NUMBER

Fractional oxidation state is the average oxidation state of the element under examination and the structural parameters reveal that the element for whom fractional oxidation state is realised is actually present in different oxidation states. Structure of the species C_3O_2 , Br_3O_8 and $S_4O_6^{2-}$ reveal the following bonding situations.

• The element marked with asterisk in each species is exhibiting the different oxidation state (oxidation number) from rest of the atoms of the same element in each of the species. This reveals that in C_3O_2 , two carbon atoms are present in +2 oxidation state each whereas the third one is present in zero oxidation state and the average is 4/3. However the realistic picture is +2 for two terminal carbons and zero for the middle carbon.

 $O = \overset{+2}{C} = \overset{0}{C^*} = \overset{+2}{C} = O$ Structure of C₃O₂ (Carbon suboxide)

• Likewise in Br_3O_8 , each of the two terminal bromine atoms are present in +6 oxidation state and the middle bromine is present in +4 oxidation state. Once again the average, that is different from reality is 16/3.

$$O = Br = Br = Br = O$$

Structure of Br₃O₈ (tribromooctaoxide)

• In the same fashion, in the species $S_4 O_6^{2-}$, is 2.5, whereas the reality being +5,0,0 and +5 oxidation number respectively for each sulphur.

Structure of $S_4 O_6^{2-}$ (tetrathionate ion)

3.1 OXIDISING AND REDUCING AGENT

3.1 Oxidising agent or Oxidant :

Oxidising agents are those compound which can oxidise others and reduced itself during the chemical reaction. Those reagents whose O.N. decrease or which gain electrons in a redox reaction are termed as oxidants

e.g. $KMnO_4$, $K_2Cr_2O_7$, HNO_3 , conc. H_2SO_4 etc, are powerful oxidising agents.

3.1 Reducing agent or Reductant :

Redusing agents are those compound which can reduce others and oxidise itself during the chemical reaction. Those reagents whose O.N. increase or which loses electrons in a redox reaction are termed as reductants.

e.g. KI, Na₂S₂O₃ are powerful reducing agents.

Note : There are some compounds also which can work both oxidising agent and reducing agent.

e.g. H_2O_2 , NO_2^-

3.3 HOW TO IDENTIFY WHETHER A PARTICULAR SUBSTANCE IS AN OXIDISING OR REDUCING AGENT

(i)
$$N_{2} + H_{2} \longrightarrow NH_{3}$$
(R)
(ii)
$$(R)$$
(iii)
$$Zn + HCl \longrightarrow ZnCl_{2} + H_{2}$$
(O)

$$(iii) Mg + O_{2} \longrightarrow MgO$$

$$(iv) Zn + NaOH \longrightarrow Na_{2}ZnO_{2} + H_{2}$$

$$(R)$$

$$(v) H_{2}SO_{4} + Mg \longrightarrow MgSO_{4} + SO_{2} + H_{2}O$$

$$(vi) H_{2}SO_{4} + NaOH \longrightarrow Na_{2}SO_{4} + H_{2}O$$

$$(vii) H_{2}SO_{4} + NaOH \longrightarrow Na_{2}SO_{4} + H_{2}O$$

$$(viii) Cl_{2} + NaOH \longrightarrow NaCl + NaClO_{3} + H_{2}O$$

$$(O)$$

$$(viii) FeCl_{3} + SnCl_{2} \longrightarrow FeCl_{2} + SnCl_{4}$$

$$(O)$$

$$(ix) AgNO_{3} + NaCl \longrightarrow AgCl + NaNO_{3}$$

$$No oxidation and no reduction.$$

4 **REDOX REACTION**

A reaction in which oxidation and reduction simultaneously take place. In all redox reactions the total increase in oxidation number must equal the total decrease in oxidation number.

e.g. $10 \operatorname{Fe}^{+2} \operatorname{SO}_4 + 2 \operatorname{KMnO}_4 + 8 \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow 5 \operatorname{Fe}_2(\operatorname{SO}_4)_3 + 2 \operatorname{Mn}^{+2} \operatorname{SO}_4 + \operatorname{K}_2 \operatorname{SO}_4 + 8 \operatorname{H}_2 \operatorname{O}_4$

5. TYPE OF REACTION

5.1 Combination Reactions :

When two or more element combine to form compound then such reaction are redox reaction.

For example

$$A + B \longrightarrow C$$

(a)
$$3 M_{g}^{0}(s) + N_{2}^{0}(g) \xrightarrow{\Lambda} M_{g_{3}}^{+2} N_{2}^{-3}(s)$$

(b)
$$\overset{0}{\operatorname{C}}(s) + \overset{0}{\operatorname{O}}_{2}(g) \xrightarrow{\Lambda} \overset{+4}{\longrightarrow} \overset{-2}{\operatorname{CO}}_{2}(g)$$

(c)
$$\overset{-4+1}{CH_4}(g) + 2\overset{0}{O_2}(g) \xrightarrow{\Lambda} CO_2(g) + 2\overset{+1-2}{H_2O}(\ell)$$

(d)
$$\overset{0}{\text{Li}}(s) + \overset{0}{\text{N}_{2}}(g) \xrightarrow{\Delta} \overset{+1}{\text{Li}_{3}} \overset{-3}{\text{N}}(s)$$

In reaction (c), there is no change in the oxidation number of hydrogen.

(b) $\overset{+2}{\operatorname{Ca}}\overset{-1}{\operatorname{H}_2} \xrightarrow{\Delta} \overset{0}{\operatorname{Ca}}(s) + \overset{0}{\operatorname{H}_2}(g)$

(d) $\overset{+1}{H_2O}(\ell) \xrightarrow{\Delta} 2\overset{0}{H_2}(g) + \overset{0}{O_2}(g)$

5.2 Decomposition Reactions :

Decomposition reactions are opposite of combination. Decomposition reactions are those in which when a molecule breaks down to form two or more components, at least one of them must be in the elemental state. For example :

(a)
$$2 \overset{+1}{\mathrm{K}} \overset{+5}{\mathrm{Cl}} \overset{-2}{\mathrm{O}_3}(s) \xrightarrow{\Delta} 2 \overset{+1}{\mathrm{M}} \overset{-1}{\mathrm{Cl}}(s) + 3 \overset{0}{\mathrm{O}_2}(g)$$

(c)
$$2 \overset{+1}{NaH}(s) \overset{-1}{\longrightarrow} 2 \overset{0}{Na}(s) + \overset{0}{H}_{2}(g)$$

Exception:

$$\overset{+2}{\text{Ca}}\overset{+4-2}{\text{CO}_{3}}(s) \xrightarrow{\Lambda} \overset{+2-2}{\text{CaO}}(s) + \overset{+4-2}{\text{CO}_{2}}(g)$$

A reaction in which an atom or iron in a compund is replaced by an atom or ion of another element is called a displacement reaction. It may be denoted as :

 $X + YZ \longrightarrow XZ + Y$

5.4 Disproportionations reactions :

A redox reaction in which a same element present in a particular compound in a definite oxidation state is oxidized as well as reduced simultaneously is a disproportionation reactions.

Disproportionation reactions are a special type of redox reactions. One of the reactants in a disproportionation reaction always contains **an element that can exist in at least three oxidation states.** The element in the form of reacting substance is in the intermediate oxidation state and both higher and lower oxidation states of that element are formed in the reaction.

$$2H_{2}^{+1}O_{2}^{-1}(aq) \longrightarrow H_{2}O(\ell) + O_{2}(g)$$

$$\overset{0}{S_{8}}(s) + 12OH^{-}(aq) \longrightarrow 4\overset{-2}{S^{2-}}(aq) + 2\overset{+2}{S_{2}}O_{3}^{2-}(aq) + 6H_{2}O(\ell)$$

$$\overset{0}{Cl_{2}}(g) + 2OH^{-}(aq) \longrightarrow \overset{+1}{ClO^{-}}(aq) + \overset{-1}{Cl^{-}}(aq) + H_{2}O(\ell)$$

• Consider following reactions :

(a)
$$2KClO_3 = 2KCl + 3O_2$$

 $KClO_3$ plays a role of oxidant and reductant both. Because same element is not oxidised and reduced. Here, Cl present in $KClO_3$ is reduced and O present in $KClO_3$ is oxidized. So **its not a disproportion reaction** although it looks like one.

(b) $NH_4NO_2 \rightarrow N_2 + 2H_2O$

Nitrogen in this compound has -3 and +3 oxidation number so it is not a definite value, so its not a disproportion reaction. Its a example of **comproportionation reaction** which is a class of redox reaction in which a element from two different oxidation state gets converted into a single oxidation state.

(c) $4KClO_3 \longrightarrow 3KClO_4 + KCl$

Its a case of disproportionation reaction in which Cl is the atom disproportionating.

• List of some important disproportionation reaction :

- 1. $H_2O_2 \longrightarrow H_2O + O_2$
- 2. $X_2 + OH^-(dil.) \longrightarrow X^- + XO^-$
- 3. $X_2 + OH^-$ (conc.) $\longrightarrow X^- + XO_3^-$

\mathbf{F}_2 does not (can not) undergo disproportionation as it is the most electronegative element.

 F_2 + NaOH (dil) \longrightarrow F^- + OF_2

 F_2 + NaOH concentration (dil) \longrightarrow F^- + O_2

• Reverse of disproportionation is called Comproportionation. In some of the disproportionation reactions by changing the medium (from acidic to basic or reverse) the reaction goes in backward direction and can be taken as an example of Comproportionation.

 $I^- + IO_3^- + H^+ \longrightarrow I_2 + H_2O$ (acidic)

6. BALANCING OF REDOX REACTION

All balanced equations must satisfy two criteria

1. Atom balance (mass balance) :

That is there should be the same number of atoms of each kind in reactant and products side.

2. Charge balance :

That is the sum of actual charges on both side of the equation must be equal

There are two methods for balancing the redox equations

- (a) Oxidation number change method
- (b) Ion electron method or half cell method

(a) Oxidation number change method :

This method was given by Jonson. In a balanced redox reaction, total increase in oxidation number must be equal to total decreases in oxidation number. This equivalence provides the basis for balancing redox reactions.

The general procedure involves the following steps :

- (i) Select the atom in oxidising agent whose oxidation number decreases and indicate the gain of electrons.
- (ii) Select the atom in reducing agent whose oxidation number increases and write the loss of electrons.
- (iii) Now cross multiply i.e. multiply oxidising agent by the number of loss of electrons and reducing agent by number of gain of electrons.
- (iv) Balance the number of atoms on both sides whose oxidation numbers change in the reaction.
- (v) In order to balance oxygen atoms, add H_2O molecules to the side deficient in oxygen. Then balance the number of H atoms by adding H⁺ ions in the hydrogen.

- *Ex.5* Write the skeleton equation for each of the following processes and balance them by ion electron method :
 - (i) Permagnet ion oxidizes oxalate ions in acidic medium to carbon dioxide and gets reduced itself to Mn^{2+} ions.
 - (ii) Chlorine reacts with base to form chlorate ion, chloride ion and water in acidic medium.
- **Sol.** (i) The skeleton equation for the process :

 $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$

• Step (1) : Indicating oxidation number :

 $\stackrel{^{+7}}{\text{MnO}_{4}^{-}} + \stackrel{^{+3}}{\text{C}_{2}^{}} O_{4}^{2-} \longrightarrow \text{Mn}^{2^{+}} + \stackrel{^{+4}}{\text{C}_{2}^{}} + \stackrel{^{+1}}{\text{H}_{2}^{}} \stackrel{^{-2}}{O}$

• Step (2) : Writing oxidation and reduction half reaction :

 $\overset{^{+3}}{C_2}O_4^{^{2-}} \longrightarrow 2\overset{^{+4}}{CO_2}$ (Oxidation half) $\overset{^{+7}}{MnO_4^{^{-}}} \longrightarrow Mn^{^{2+}}$ (Reduction half)

• Step (3) : Adding electrons to make the difference in O.N.

$$\overset{+3}{C_2}O_4^{2-} \longrightarrow 2\overset{+4}{C}O_2 + 2e^{-}$$

 $MnO_4^- + 5e^- \longrightarrow Mn^{2+}$

• Step (4) : Balancing 'O' atom by adding H₂O molecules

 $C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^{-}$

 $MnO_4^- + 5e^- \longrightarrow Mn^{2+} + 4H_2O$

• Step (5) : Balancing H atom by adding H^+ ions

 $C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$

 $MnO_{4}^{-}+5e^{-}+8H^{+}\longrightarrow Mn^{2+}+4H_{2}O$

• **Step (6)** : Multiply the oxidation half reaction by 2 and reduction half reaction by 5 to equalize the electrons lost and gained and add the two half reactions.

 $[C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-] \times 5$ $[MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O] \times 2$

 $2MnO_4^{-} + 5C_2O_4^{2-} + 16H^+ \longrightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$

(ii) The skeleton equation for the given process :

 $Cl_2 + OH^- \longrightarrow Cl^- + ClO_3^- + H_2O$

Thus, chlorine is the only element which undergoes the change in oxidation number. It decreases its oxidation number from 0 to 1 and also increases its oxidation number from 0 to 5.

• Step (2) : Write the oxidation and reduction half reactions

 $\overset{\circ}{\text{Cl}}_{2} \longrightarrow 2 \overset{+5}{\text{ClO}}_{3}^{-}$ (Oxidation half) $\overset{\circ}{\text{Cl}}_{2} \longrightarrow 2\text{Cl}^{-}$ (Reduction half)

- Step (3) : Add electrons to make up for the difference in O.N. $\overset{0}{\text{Cl}_2} \longrightarrow 2 \overset{+5}{\text{ClO}_3} + 10e^ \overset{0}{\text{Cl}_2} + 2e^- \longrightarrow 2\text{Cl}^-$
- Step (4) : Balance O atoms by adding H₂O molecules $Cl_2 + 6H_2O \longrightarrow 2(ClO_3)^- + 10e^ Cl_2 + 2e^- \longrightarrow Cl^-$
- Step (5): Since medium is basic, balance H atoms by adding H₂O molecules to the side falling short of H atoms and equal number of OH⁻ ions to the other side.

$$Cl_2 + 6H_2O + 12OH^- \longrightarrow 2ClO_3^- + 10e^- + 12H_2O$$

 $Cl_2 + 2e^- \longrightarrow 2Cl^-$

• Step (6) : Multiply the reduction half reaction by 5 and add two half reactions.

 $Cl_2 + 5H_2O + 2OH^- \longrightarrow 2ClO_3^- + 10e^- + 12H_2O$

$$[Cl_2 + 2e \longrightarrow 2Cl] \times 5$$

$$\text{Cl}_2 + 5\text{Cl}_2 + 12\text{OH}^- \longrightarrow 2\text{ClO}_3^- + 10\text{Cl}^- + 6\text{H}_2\text{O}$$

or,
$$6Cl_2 + 12OH^- \longrightarrow 2ClO_3^- + 10Cl^- + 6H_2O$$

or, $3Cl_2 + 6OH^- \longrightarrow ClO_3^- + 5Cl^- + 3H_2O$

Ex.6 Balance the following chemical reaction by oxidation number method and write their skeleton equation :

- (i) The nitrate ions in acidic medium oxidize magnesium to Mg²⁺ ions but itself gets reduced to nitrous oxide.
- **Sol.** (i) The skeleton equation for the given process is

$$Mg + NO_3^- \longrightarrow Mg^{2+} + N_2O + H_2O$$

• Step (1) : $\stackrel{0}{Mg} + (\stackrel{+5}{NO_3})^- \longrightarrow Mg^{2+} + \stackrel{+1}{N_2O}^{-2} + \stackrel{+1}{H_2O}^{-2}$

Multiply NO_3^- by 2 to equalize N atoms

• Step (2) : O.N. increases by 2 per Mg atom

$$\int_{0}^{0} Mg + 2NO_{3}^{-} \longrightarrow Mg^{2+} + N_{2}O + H_{2}O$$

$$\downarrow 4 \times 2 = 8$$
O.N. decreases by 4 per N atom

- Step (3) : Equalize increase/decrease in O.N. by multiplying Mg by 4 and $2NO_3^-$ by 1. $4Mg + 2NO_3^- \longrightarrow Mg^{2+} + N_2O + H_2O$
- Step (4) : Balance atoms other than O and H $4Mg + 2NO_3^- \longrightarrow 4Mg^{2+} + N_2O + H_2O$
- Step (5) : Balance O atoms $4Mg + 2NO_3^- \longrightarrow 4Mg^{2+} + N_2O + H_2O + 4H_2O$
- Step (6) : Balance H atoms as is done in acidic medium. $4Mg + 2NO_3^- + 10H^+ \longrightarrow 4Mg^{2+} + N_2O + 5H_2O$

(b) Ion electron method or half cell method :

By this method redox equation are balanced in two different medium

(a) Acidic medium (b) Basic medium

• Balancing in acidic medium

Students are advised to follow the following steps to balance the redox reactions by ion electron method in acidic medium.

Ex.7 Balance the following redox reaction.

$$FeSO_4 + KMnO_4 + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + MnSO_4 + H_2O_4$$

Sol: Step-I assign the oxidation No. to each elements present in the reaction.

$$\overset{_{+2}}{\text{Fe}} \overset{_{+6}-2}{\text{SO}_4} + \overset{_{+1}}{\text{KMnO}_4} \overset{_{-2}}{\text{H}_2} \overset{_{+1+6-2}}{\text{H}_2} \overset{_{+3}}{\text{O}_4} \overset{_{+6-2}}{\text{H}_2} \overset{_{+2}}{\text{H}_2} \overset{_{+6}-2}{\text{O}_4} + \overset{_{+2}}{\text{H}_2} \overset{_{-6}}{\text{O}_4} \overset{_{+1}}{\text{H}_2} \overset{_{+6}-2}{\text{H}_2} \overset{_{+1}}{\text{H}_2} \overset{_{+1}}{\text{H}_2$$

Step-II Now convert the reaction in ionic form by eliminating the elements or species which are not going either oxidation or reduction

 $Fe^{2+} + \stackrel{+7}{MnO_4^-} \longrightarrow Fe^{3+} + Mn^{2+}$

Step-III Now identify the oxidation / reduction occurring into the reaction.

undergoes reduction

$$Fe^{2+} + MnO_{4}^{-} \rightarrow Fe^{3+} + Mn^{2+}$$

undergoes oxidation

Step-IV Split the ionic reaction in two half one for oxidation and other for reduction

$$\operatorname{Fe}^{2^+} \xrightarrow{\operatorname{oxidation}} \operatorname{Fe}^{3^+} \mid \operatorname{MnO}_4^- \xrightarrow{\operatorname{Reduction}} \operatorname{Mn}^{2^+}$$

Step-V Balance the atom other than oxygen and hydrogen atom in both half reactions

 $Fe^{2+} \rightarrow Fe^{3+}$ $MnO_4^- \rightarrow Mn^{2+}$

Fe & Mn atom are balanced in both side.

Step-VI Now balance O & H atom by H_2O & H⁺ respectively by the following way for one excess oxygen atom add one H_2O on the other side and two H⁺ on the same side.

$$Fe^{2+} \longrightarrow Fe^{3+} \quad (no \text{ oxygen atom}) \qquad \qquad \dots \dots \dots (i)$$

$$8H^{+} + MnO_{4}^{-} \longrightarrow Mn^{2+} + 4H_{2}O \qquad \qquad \dots \dots \dots (ii)$$

Step VII Now see equation (i) & (ii) is balanced atomwise. Now balance both equations chargewise to balance the charge add electrons to the electrically positive side.

Step VIII The number of electrons gained and lost in each half-reaction are equalised by multiply suitable factor in both the half reaction and finally the half reactions are added to give the over all balanced reaction.

Here we multiply equation (i) by 5 and (ii) by one

(Here at this stage you will get balanced redox reaction in ionic form)

Step IX Now convert the ionic reaction in to molecular form by adding the elements or species which are removed instep (II).

Now by some manipulation you will get

$$5 \operatorname{FeSO}_{4} + \operatorname{KMnO}_{4} + 4\operatorname{H}_{2}\operatorname{SO}_{4} \rightarrow \frac{5}{2} \operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3} + \operatorname{MnSO}_{4} + 4\operatorname{H}_{2}\operatorname{O} \quad \text{or}$$

$$10 \operatorname{FeSO}_{4} + 2\operatorname{KMnO}_{4} + 8\operatorname{H}_{2}\operatorname{SO}_{4} \rightarrow 5\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3} + 2\operatorname{MnSO}_{4} + 8\operatorname{H}_{2}\operatorname{O} + \operatorname{K}_{2}\operatorname{SO}_{4}$$

7. Equivalent weight (E) :

Eq. wt (E) = $\frac{\text{Molecular weight}}{\text{valency factor (v.f)}} = \frac{\text{Mol. wt.}}{n - \text{factor}}$

no of Equivalents = $\frac{\text{mass of a sample}}{\text{eq. wt. of that species}}$

- Equivalent mass is a pure number when expressed in gram, it is called gram equivalent mass.
- The equivalent mass of substance may have different values under different conditions.

8. Valency factor calculation :

• For Acids :

valence factor = number of replaceable H^+ ions

Solved Examples :

Ex: HCl,
$$H_2SO_4$$
 H_3PO_4

H₃PO₃

{see there are only two replaceable H⁺ ions}

Sol :	valence $\rightarrow 1$	2	3	2
	factor	(assume 100%		
		dissociation)		
	Eq.wt. $\rightarrow \frac{M}{1}$	$\frac{M}{2}$	$\frac{M}{3}$	$\frac{M}{2}$

•	Self practice problems :						
1.	Find th	ne valence fa	ctor for followin	ng acids			
	(i)	CH ₃ COOH	I (ii) NaH ₂	$_{2}PO_{4}$ (iii) $H_{3}BO_{3}$			
	Answe	ers :					
1.	(i) 1	(ii) 2	(iii) 1				
8.2	For Ba	ase :					
		v.f.=numb	er of replicable C	OH [−] ions			
	Solved	l Examples	:				
Ex:		NaOH	КОН				
Sol :	v.f.→	1	1				
	E.→	M	M				
		1	1				
	Sen pr	ractice prob	iems :				
1.	Find th	e valence fac	tor for following	bases			
	(i)	Ca(OH) ₂	(ii) CsOH	I (iii) Al(OH) ₃			
	Answe	ers :					
1.	(i) 2	(ii) 1	(iii) 3				
	8.3	Acid - base	e reaction :				
		In case of a	cid base reaction,	, the valence factor is the actual number of H^+ or OH^- replaced in the			
		reaction. T	he acid or base r	may contain more number of replaceable H^+ or OH^- than actually			
		replaced in	reaction.				
		v.f. for bas	e is the number o	of H^+ ion form the acid replaced by per molecule of the base.			
Ex.9	2NaOl	$H + H_2 SO_4$	$\rightarrow Na_2SO_4 + 2H$	$I_2 O$			
	Base	Acid		-			
Sol :	valenc	y factor of b	ase = 1				

valency factor of acid = 2

Here two molecule of NaOH replaced $2H^+$ ion from the H_2SO_4 therefore per molecule of NaOH replaced only one H^+ ion of acid so v.f. = 1

• v.f. for acid is number of OH⁻ replaced for the base by per molecule of acid

$Ex.10 NaOH + H_3PO_4 \rightarrow NaH_2PO_4 + H_2O$

Base Acid

Sol: valence factor of acid = 1

here one of molecule of H_3PO_4 replaced one OH^- from NaOH therefore v.f. for H_3PO_4 is = 1

$$E = \frac{\text{mol.wt.of } H_3 PO_4}{1}$$

 $Ex.11 \ 2NaOH + H_3PO_4 \rightarrow Na_3HPO_4 + 2H_2O$

Base Acid

Sol: valence factor of acid = 2

here one of molecule of H_3PO_4 replaced two OH⁻ from NaOH therefore v.f. for H_3PO_4 is = 2

$$E = \frac{\text{mol.wt.of } H_3 PO_4}{2}$$

 $Ex.12 Al(OH)_3 + HCl \rightarrow Al(OH)_2Cl + H_2O$

Base Acid

Sol: valence factor of base = 1

here one of molecule of Al(OH), replaced one H^+ from HCl therefore v.f. for Al(OH), is = 1

$$E = \frac{\text{mol. wt. of Al(OH)}_3}{1}$$

8.4 For Salts :

v.f. = Total number of positive charge or negative charge present into the compound.

Solved	Examples :			
Ex.13	Na_2CO_3	$Fe_2(SO_4)_3(2Fe^{3+}+3SO_4^{2-})$	FeSO ₄ 7H ₂ O	
Sol: V.f.	2	$2 \times 3 = 6$	2	
E.	$\frac{M}{2}$	<u>M</u> 6	$\frac{M}{2}$	

8.5 Eq. wt. of oxidising / reducing agents in redox reaction :

The equivalent weight of an oxidising agent is that weight which accepts one mole electron in a chemical reaction.

(a) Equivalent wt. of an oxidant (get reduced)

Mol.wt. No. of electrons gained by one mole

Ex.14 In acidic medium

$$6e^{-} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 2Cr^{3+} + 7H_2O$$

Eq. wt. of
$$K_2 Cr_2 O_7 = \frac{\text{Mol. wt of } K_2 Cr_2 O_7}{6} = \frac{\text{Mol. wt}}{6}$$

- **Note :** [6 in denominator indicates that 6 electrons were gained by $Cr_2O_7^{2-}$ as it is clear from the given balanced equation]
 - (b) Similarly equivalent wt. of a reductant (gets oxidised)

 $= \frac{\text{Mol. wt.}}{\text{No. of electrons lost by one mole}}$

Ex.15 In acidic medium,

 $C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$

Here, Total electrons lost = 2

So, eq. wt. =
$$\frac{\text{Mol. wt.}}{2}$$

(c) In different condition a compound may have different equivalent weights. Because, it depends upon the number of electrons gained or lost by that compound in that reaction.

Ex.15(i)

....

$$MnO_4^{-} \longrightarrow Mn^{2+} (acidic medium)$$
(+7) (+2)

Here 5 electrons are taken so eq. wt. = $\frac{\text{Mol.wt.of KMnO}_4}{5} = \frac{158}{5} = 31.6$

(ii)
$$MnO_4^- \longrightarrow Mn^{+4}$$
 (neutral medium)
(+7) (+4)

Here, only 3 electrons are gained, so eq. wt. = $\frac{\text{Mol.wt.ot KMnO}_4}{3} = \frac{158}{3} = 52.7$

(iii)
$$MnO_4^- \longrightarrow MnO_4^{-2}$$
 (alkaline medium)
(+7) (+6)

Here, only one electron is gained, so eq. wt. = $\frac{\text{Mol.wt.of KMnO}_4}{1} = 158$

Note : It is important to note that $KMnO_4$ acts as an oxidant in every medium although with different strength which follows the order.

acidic medium > neutral medium > alkaline medium

Ex.16 $2S_2O_3^{--} \longrightarrow S_4O_6^{--} + 2e^-$ (Reducing agent)

equivalent weight of $S_2O_3^{--} = \frac{2M}{2} = M$

• Questions based on Equivalent weight :

1. Molecular weight of $KMnO_4$ in acidic medium and neutral medium will be respectively :

(A) $7 \times$ equivalent wt. and $2 \times$ equivalent wt. (B) $5 \times$ equivalent wt. and $3 \times$ equivalent wt.

(C) $4 \times$ equivalent wt. and $5 \times$ equivalent wt. (D) $2 \times$ equivalent wt. and $4 \times$ equivalent wt.

2. In acidic medium, equivalent weight of $K_2Cr_2O_7$ (Mol. wt. = M) is –

(A) M/3	(B) M/4	(C) M/6	(D) M/2
Answers :			
(1) B	(2) A	(3) C	

9. **NORMALITY**

Normality of solution is defined as the number of equivalent of solute present in one litre (1000 mL) solutions. Let a solution is prepared by dissolving W g of solute of eq. wt. E in V mL water.

- No. of equivalent of solute = $\frac{W}{E}$
- V mL of solution have $\frac{W}{F}$ equivalent of solute
- 1000 mL solution have $\frac{W \times 1000}{E \times VmL}$
- Normality (N) = $\frac{W \times 1000}{E \times VmI}$

Normality (N) = Molarity × Valence factor

Normality (N) = molarity \times Valence factor (n)

or $N \times V$ (in mL) = $M \times V$ (in mL) $\times n$

or milli equivalents = millimoles \times n

LAW OF EQUIVALENCE 10.

The law states that one equivalent of an element combine with one equivalent of the other, and in a chemical reaction equivalent and mill equivalent of reactants react in equal amount to give same no. of equivalent or milli equivalents of products separately.

According :

(i) $aA + bB \rightarrow mM + nN$

m.eq of A = m.eq of B = m.eq of M = m.eq of N

(ii) In a compound $M_{v}N_{v}$

m.eq of $M_x N_y =$ m.eq of M = m.eq of N

Ex.17 The number of moles of oxalate ions oxidized by one mole of MnO_4^- ion in acidic medium.

$$(A) \frac{5}{2}$$

(A)
$$\frac{5}{2}$$
 (B) $\frac{2}{5}$ (C) $\frac{3}{5}$ (D) $\frac{5}{3}$
Sol: Equivalents of $C_2O_4^{2-}$ = equivalents of MnO_4^{-}

x (mole) $\times 2 = 1 \times 5$ $x = \frac{5}{2}$

Ex.18 What volume of 6 M HCl and 2 M HCl should be mixed to get two litre of 3 M HCl ?

Sol. Let, the volume of 6 M HCl required to obtain 2 L of 3M HCl = x L

 \therefore Volume of 2 M HCl required = (2 - x) L

 $M_2V_2 =$ $M_1V_1 +$ M_3V_3 2M HCl 6M HCl 3M HCl $6 \times (\mathbf{x}) + 2 \times (2 - \mathbf{x}) = 3 \times 2$

 $\Rightarrow 6x + 4 - 6x = 6 \Rightarrow 4x = 2$

 $\therefore x = 0.5 L$

Hence, volume of 6 M HCl required = 0.5 L

Volume of 2M HCl required = 1.5 L

Ex.19 In a reaction vessel, 1.184 g of NaOH is required to be added for completing the reaction. How many millilitre of 0.15 M NaOH should be added for this requirement ?

Sol. Amount of NaOH present in 1000 mL of 0.15 M NaOH = $0.15 \times 40 = 6$ g

 \therefore 1 mL of this solution contain NaOH = $\frac{6}{1000} \times 10^{-3}$ g

:. 1.184 g of NaOH will be present in $=\frac{1}{6 \times 10^{-3}} \times 1.184 = 197.33$ mL

Ex.20 What weight of Na_2CO_3 *of* 85% *purity would be required to prepare* 45.6 *mL of* 0.235N H_2SO_4 Sol. Meq. of $Na_2CO_3 = Meq.$ of $H_2SO_4 = 45.6 \times 0.235$

 $\therefore \qquad \frac{W_{Na_2CO_3}}{E_{Na_2CO_3}} \times 1000 = 45.6 \times 0.235$

$$\Rightarrow \qquad \frac{W_{Na_2CO_3}}{106/2} \times 1000 = 45.6 \times 0.235$$

$$\therefore \qquad W_{Na_2CO_3} = 0.5679 \text{ g}$$

For 85 g of pure Na₂CO₃, weighed sample = 100 g

- \therefore For 0.5679 g of pure Na₂CO₃, weighed sample = $\frac{100}{85} \times 0.5679$
 - = 0.6681 g

10.1 Drawbacks of Equivalent concept :

(i) Since equivalent weight of a substance for example oxidising or reducing agent may be variable hence it is better to use mole concept.

e.g.
$$5e^- + 8H^+ + MnO_4^- \rightarrow Mn^{2+} + 2H_2O$$

$$\therefore \qquad \text{Eq. wt of } \text{MnO}_4^- = \frac{\text{MnO}_4^-(\text{mol.wt.})}{5}$$

e.g.
$$3e^- + 2H_2O + MnO_4^- \rightarrow MnO_2 + 4OH^-$$

$$\therefore \qquad \text{Eq. wt. of } \text{MnO}_4^- = \frac{\text{MnO}_4^-}{3}$$

Thus the no. of equivalents of MnO_4^- will be different in the above two cases but no. of moles will be same.

(ii) Normality of any solution depends on reaction while molarity does not.

For example.

Consider 0.1 mol KMnO₄ dissolved in water to make 1L solution. Molarity of this solution is 0.1 M. However, its normality is not fixed. It will depend upon the reaction in which KMnO₄ participates, e.g. If KMnO₄ forms Mn^{2+} , normality = 0.1 × 5 = 0.5 N. This same sample of KMnO₄, if employed in a reaction giving MnO₂ as product (Mn in +4 state) will have normality 0.1 × 3 = 0.3 N.

(iii) The concept of equivalents is handy, but it should be used with care. One must never equate equivalents in a sequence which involves same element in more than two oxidation states. Consider an example KIO_3 reacts with KI to liberate iodine and liberated iodine is titrated with standard hypo solution, The reaction are

(i)
$$IO_3^- + I^- \longrightarrow I_2$$

(ii)
$$I_2 + S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + I^{-}$$

meq of hypo = meq of I_2 = meq of IO_3^- + meq of $I^ \therefore$ IO₃⁻ react with $I^- \Rightarrow$ meq of IO_3^- = meq of I^-

meq of hypo = $2 \times \text{meq of IO}_{3}^{-}$ This is wrong. Note that I_2 formed by (i) have v.f. = 5/3 & reacted in equation (ii) have v.f. = 2. \therefore v.f. of I_2 in both the equation are different therefore we cannot equate m.eq is sequence. In this type of case students are advised to use mole concept.

Ex.21 How many milliliters of 0.02000 M KMnO₄ solution would be required to exactly titrate 25.00 mL of 0.2000 M Fe(NO₃), solution.

Sol: Method - 1: Mole concept method

Starting with 25.00 mL of $0.2000 MFe^{2+}$, we can write.

Millimoles of $Fe^{2+} = 25.00 \times 0.2000$

and in volume V (in milliliters of the MnO_4^-)

Millimoles of $MnO_4^- = V(0.02000)$

The balanced reaction is :

$$MnO_4^{-} + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

This requires that at the equivalent point,

$$\frac{V(0.02000)}{1} = \frac{(25.00)(0.2000)}{5} \qquad V = 50.00 \text{ mL}$$

Method - 2 : Equivalent Method :

Equivalents of $MnO_4^-=5 \times moles of MnO_4^-$ Normality $MnO_4^-=5 \times molarity of MnO_4^-$ For Fe²⁺, moles and equivalents are equal, At the equivalence point,

Equivalents of MnO_4^{-} = Equivalents of Fe²⁺

or $V_{MnO_4^-} \times \text{Normality of } MnO_4^-$

 $= V_{Fe^{2+}} \times \text{Normality of Fe}^{2+}$

For $0.02000 \text{ M MnO}_4^-$ solution

Normality of MnO $_{4}^{-}$ = (5) (0.02000) = 0.1 N and for 0.2000 M Fe²⁺ solution

Normality of Fe²⁺ = 0.2000 N V_{MnO₄} = (25.00 mL) $\left(\frac{0.2000}{0.1000}\right)$ = 50.00 mL

10.2 FOR ACID-BASE (NEUTRALIZATION REACTION) OR REDOX REACTION

 $N_1V_1 = N_2V_2$ is always true.

But $M_1V_1 = M_2V_2$ (may or may not be true)

But $M_1 \times n_1 \times V_1 = M_2 \times n_2 \times V_2$ (always true where n terms represent n-factor).

10.3 SOME OXIDIZING AGENTS/REDUCING AGENTS WITH EQ. WT.

Species	Changed to	Reaction	Electrons exchanged or change in O.N.	Eq. wt.
$MnO_4^-(O.A.)$	$Mn^{+2}_{\text{in acidic medium}}$	$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	5	$E = \frac{M}{5}$
$MnO_4^-(O.A.)$	MnO_2 in neutral medium	$MnO_4^- + 3e^- + 2H_2O \longrightarrow MnO_2 + 4OH$	- 3	$E = \frac{M}{3}$
$MnO_4^-(O.A.)$	MnO_4^{2-} in basic medium	$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$	1	$E = \frac{M}{1}$
$Cr_2O_7^{2-}(O.A.)$	${\rm Cr}^{3+}$ in acidic medium	$\operatorname{CrO}_7^{2-} + 14\operatorname{H}^+ + 6\operatorname{e}^- \longrightarrow 2\operatorname{Cr}^{3+} + 7\operatorname{H}_2\operatorname{C}$) 6	$E = \frac{M}{6}$
MnO ₂ (O.A.)	Mn^{2+} in acidic medium	$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	2	$E = \frac{M}{2}$
$\mathrm{Cl}_2(\mathrm{O.A.})$ in bleaching powder	Cl⁻	$Cl_2 + 2e^- \longrightarrow 2Cl^-$	2	$E = \frac{M}{2}$
CuSO ₄ (O.A.) in iodometric titration	Cu^+	$Cu^{2+} + e^{-} \longrightarrow Cu^{+}$	1	$E = \frac{M}{1}$
$S_2O_3^{2-}(R.A.)$	$S_4O_6^{2-}$	$2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e^-$	2	$E = \frac{2M}{2} = M$
		(for t	wo molecules)	
H ₂ O ₂ (O.A.)	H ₂ O	$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$	2	$E = \frac{M}{2}$
H ₂ O ₂ (R.A.)	O ₂	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^-$ (O.N. of	2	$E = \frac{M}{2}$
$\mathbf{r}^{2+}(\mathbf{p}, \mathbf{A})$	F ³⁺	oxygen in H_2O_2 is -1 per atom)	1	_ М
Fe ² (R.A.)	Fe	$Fe^- \longrightarrow Fe^- + e$	I	$E = \frac{1}{1}$

Ex.22 To find the n-factor in the following chemical changes.

- (*ii*) $KMnO_4 \longrightarrow Mn^{4+}$ (*iv*) $K_2Cr_2O_7 \longrightarrow Cr^{3+}$ $KMnO_4 \longrightarrow Mn^{2+}$ (i) $KMnO_4 \longrightarrow Mn^{6+}$
- (iii)
- (vi) $FeSO_4 \rightarrow Fe_2O_3$ $C_{2}O_{4}^{2-} \rightarrow CO_{2}$ (v)

$$(vii) \quad Fe_2O_3 \quad \rightarrow \quad FeSO_4$$

In this reaction, $KMnO_4$ which is an oxidizing agent, itself gets reduced to Mn^{2+} under acidic Sol. (i) conditions.

$$n = |1 \times (+7) - 1 \times (+2)| = 5$$

In this reaction, KMnO₄ gets reduced to Mn⁴⁺ under neutral or slightly (weakly) basic (ii) conditions.

$$n = |1 \times (+7) - 1 \times (+4)| = 3$$

- In this reaction, KMnO₄ gets reduced to Mn⁶⁺ under basic conditions. (iii) $n = |1 \times (+7) - 1 \times (+6)| = 1$
- In this reaction, K₂Cr₂O₇ which acts as an oxidizing agent reduced to Cr³⁺ under acidic (iv) conditions. (It does not react under basic conditions.) $n = |2 \times (+6) - 2 \times (+3)| = 6$
- In this reaction, $C_2O_4^{2-}$ (oxalate ion) gets oxidized to CO_2 when it is reacted with an (v) oxidizing agent.

$$n = |2 \times (+3) - 2 \times (+4)| = 2$$

In this reaction, ferrous ions get oxidized to ferric ions. (vi)

$$n = |1 \times (+2) - 1 \times (+3)| = 1$$

In this reaction, ferric ions are getting reduced to ferrous ions. (vi) $n = |2 \times (+3) - 2 \times (+2)| = 2$

Ex.23 Calculate the molar ratio in which the following two substances would react ? $Ba_{3}(PO_{4})$, and $AlCl_{3}$

Sol. n-factor of $Ba_3(PO_4)_2 = 3 \times (+2) = 6 = n_1$ While n-factor of AlCl₃ = $1 \times (+3) = 3 = n_2$

$$\frac{n_1}{n_2} = \frac{6}{3}$$
 If $\frac{n_1}{n_2} = \frac{x}{y}$

Molar ratio = $\frac{y}{x}$ (inverse of equivalent ratio)

:. Molar ratio in which $Ba_3(PO_4)_2$ and $AlCl_3$ will react = 3 : 6 = 1 : 2

10.4 APPLICATIONS OF THE LAW OF EQUIVALENCE

10.4.1 Simple Titration

In this, we can find the concentration of unknown solution by reacting it with solution of known concentration (standard solution).

For example, let there be a solution of substance A of unknown concentration. We are given solution of another substance B whose concentration is known (N_1) . We take a certain known volume of A in a flask (V_2) and then we add B to A slowly till all the A is consumed by B (this can be known with the help of indicators). Let us, assume that the volume of B consumed is V1. According to the law of equivalence, the number of g equivalents of B at the end point.

 \therefore N₁V₁ = N₂V₂, where N₂ is the conc. of A.

From this we can calculate the value of N_2 .

Ex.24 1.20 g sample of Na₂CO₃ and K₂CO₃ was dissolved in water to form 100 mL of a Solution. 20 mL of this solution required 40 mL of 0.1 N HCl for complete neutralization. Calculate the weight of Na₂CO₃ in the mixture. If another 20 mL of this solution is treated with excess of BaCl, what will be the weight of the precipitate ?

Sol. Let, weight of $Na_2CO_3 = x g$ Weight of $K_2CO_3 = y g$ $\therefore x + y = 1.20 g$(i) For neutralization reaction of 100 mL Meq. of $Na_2CO_3 + Meq.$ of $K_2CO_3 = Meq.$ of HCl $\Rightarrow \frac{x}{106} \times 2 \times 1000 + \frac{y}{138} \times 2 \times 1000 = \frac{40 \times 0.1 \times 100}{20}$ $\therefore 69 x + 53 y = 73.14$(ii) From Eqs. (i) and (ii), we get x = 0.5962 gy = 0.604 gSolution of Na₂CO₃ and K₂CO₃ gives ppt. of BaCO₃ with BaCl₂ (Meq. of Na₂CO₃ + Meq. of K_2CO_3) in 20 mL = Meq. of BaCO₃ \Rightarrow Meq. of HCl for 20 mL mixture = Meq. of BaCO₃ \Rightarrow Meq. of BaCO₃ = 40 × 0.1 = 4 $\frac{W_{BaCO_3}}{W_{BaCO_3}} \times 1000 = 40 \times 0.1 = 4$ \overline{M}_{BaCO_3} $\frac{W_{BaCO_3}}{197} \times 2 \times 1000 = 4$ $\therefore W_{BaCO_3} = 0.394 \text{ g}$

10.4.2 BACK TITRATION

Back titration is used to calculate % purity of a sample. Let us assume that we are given an impure solid substance C weighing w gs and we are asked to calculate the percentage of pure C in the sample. We will assume that the impurities are inert. We are provided with two solutions A and B, where the concentration of B is known (N_1) and that of A is not known. This type of titration will work only if the following condition is satisfied, i.e. the nature of compounds A, B and C should be such that A and B can react with each other. A and C can react with each other but the product of A and C should not react with B.

Now, we take a certain volume of A in a flask (the g equivalents of A taken should be \ge g equivalents of C in the sample and this can be done by taking A in excess). Now, we perform a simple titration using B. Let us assume that the volume of B used is V₁. In another beaker, we again take the solution of A in the same volume as taken earlier. Now, C is added to this and after the reaction is completed, the solution is being titrated with B. Let us assume that the volume of B used to the volume of B used up is V₂. Gram equivalents of B used in the first titration = N₁V₁.

- \therefore gm. equivalents of A initially = $N_1 V_1$
- gm. equivalents of B used in the second titration = N_1V_2
- \therefore gm. equivalents of A left in excess after reacting with C = N₁V₂
- gm. equivalents of A that reacted with $C = N_1 V_1 N_1 V_2$
- If the n-factor of C is x, then the moles of pure C = $\frac{N_1V_1 N_1V_2}{x}$
- $\therefore \text{ The weight of } C = \frac{N_1 V_1 N_1 V_2}{x} \times \text{ Molecular weight of } C$
- $\therefore \text{ Percentage of } C = \frac{N_1 V_1 N_1 V_2}{x} \times \frac{\text{Molecular wt. of } C}{w} \times 100$

GINE REDOX TITRATIONS (EXCLUDING IODOMETRIC / IODIMETRIC)

Estimation of	By titrating with	Reactions	Relation between O.A. and R.A.
Fe ²⁺	MnO_4^-	$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$	$5 \mathrm{Fe}^{2+} \equiv \mathrm{MnO}_4^-$
		$MnO_4^{-} + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	Eq. wt. $Fe^{2+} = M/1$
			Eq. wt. $MnO_4^- = M/5$
Fe ²⁺	Cr ₂ O ₇ ²⁻	$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$	$6\mathrm{Fe}^{2+} \equiv \mathrm{Cr}_2\mathrm{O}_7^{2-}$
		$\operatorname{Cr}_2\operatorname{O}_7^{2-}+14\operatorname{H}^++6\operatorname{e}^-\longrightarrow 2\operatorname{Cr}^{3+}+7\operatorname{H}_2\operatorname{O}$	Eq. wt. $Cr_2O_7^{2-} = M/6$
C ₂ O ₄ ²⁻	${\rm MnO}_4^-$	$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$	$5C_2O_4^{2-} \equiv 2MnO_4^{-}$
		$MnO_4^{-} + 8H^+ + 5e^- \longrightarrow Mn^{+2} + 4H_2O$	Eq. wt. $C_2 O_4^{2-} = M/2$
			Eq. wt. $MnO_4^- = M/5$
H ₂ O ₂	MnO_4^-	$H_2O_2 \longrightarrow 2H^+ + O_2 + 2e^-$	$5H_2O_2 \equiv 2MnO_4^-$
		$MnO_4^{-} + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	Eq. wt. $H_2O_2 = M/2$
			Eq. wt. $MnO_4^- = M/5$
As ₂ O ₃	MnO_4^-	$As_2O_3 + 5H_2O \rightarrow 2AsO_4^{3-} + 10H^+ + 4e^-$	Eq. wt. $As_2O_3 = M/4$
AsO ₃ ³⁻	BrO_3^-	$AsO_3^{3-} + H_2O \longrightarrow AsO_4^{3-} + 2H^+ + 2e^-$	Eq. wt. $AsO_3^{3-}=M/2$
		$\operatorname{BrO}_3^{-}+6\operatorname{H}^++6\operatorname{e}^-\longrightarrow\operatorname{Br}^-+3\operatorname{H}_2\operatorname{O}$	Eq. wt. $BrO_3^- = M/6$

10.4.3 Iodometric and Iodimetric Titration :

The reduction of free iodine to iodide ions and oxidation of iodide ions to free iodine occurs in these titrations.

 $I_2 + 2e^- \longrightarrow 2I^-$ (reduction)

 $2I^- \longrightarrow I_2 + 2e^-$ (oxidation)

These are divided into two types :

(i) Iodometic Titration :

In iodometric titrations, an oxidizing agent is allowed to react in neutral medium or in acidic medium with excess of potassium iodide to liberate free iodine.

KI + oxidizing agent \longrightarrow I₂

Free iodine is titrated against a standard reducing agent usually with sodium thiosulphate. Halogen, dichromates, cupric ion, peroxides etc., can be estimated by this method.

$$I_{2} + 2NaS_{2}O_{3} \longrightarrow 2NaI + Na_{2}S_{4}O_{6}$$

$$2CuSO_{4} + 4KI \longrightarrow Cu_{2}I_{2} + 2K_{2}SO_{4} + I_{2}$$

$$K_{4}Cr_{2}O_{7} + 6KI + 7H_{2}SO_{4} \longrightarrow Cr_{2}(SO_{4})_{3} + 4K_{2}SO_{4} + 7H_{2}O + 3I_{2}$$

(ii) Iodimetric Titration

These are the titrations in which free iodine is used as it is difficult to prepare the solution of iodine (volatile and less soluble in water), it is dissolved in KI solution :

 $KI + I_2 \longrightarrow KI_3$ (Potassium triiodide)

This solution is first standardized before using with the standard solution of substance such as sulphite, thiosulphate, arsenite etc, are estimated.

In iodimetric and iodometric titration, starch solution is used as an indicator. Starch solution gives blue or violet colour with free iodine. At the end point, the blue or violet colour disappears when iodine is completely changed to iodide.

Estimation of Reaction **Relation between O.A. and R.A** Ι, $I_2 + 2Na_2S_2O_3 \longrightarrow 2Nal + Na_2S_4O_6$ $I_2 = 2I = 2Na_2S_2O_3$ Eq. wt. of $Na_2S_2O_3 = M/1$ $I_2 + 2S_2O_2^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$ $2CuSO_4 + 4KI \longrightarrow 2Cu_2I_2 + 2K_2SO_4 + I_2$ $2CuSO_4 \equiv I_2 \equiv 2I \equiv 2Na_2S_2O_3$ CuSO₄ $Cu^{2+} + 4I^- \longrightarrow Cu_2I_2 + I_2$ Eq. wt. of $CuSO_4 = M/1$ (White ppt.) $CaOCl_2 + H_2O \longrightarrow Ca(OH)_2 + Cl_2$ CaOCl, $Cl_2 + 2KI \longrightarrow 2KCl + I_2$ $CaOCl_2 = Cl_2 = I_2 = 2I = 2Na_2S_2O_3$ $Cl_2 + 2I^- \longrightarrow 2Cl^- + I_2$ Eq. wt. of $CaOCl_2 = M/2$ $MnO_2+4HCl(conc) \xrightarrow{\Lambda} MnCl_2+Cl_2+2H_2O$ $Cl_2 + 2KI \longrightarrow 2KCl + I_2$ $MnO_2 = Cl_2 = I_2 = 2I = 2Na_2S_2O_3$ MnO₂ or $MnO_2 + 4H^+ + 2Cl^- \longrightarrow Mn^{2+} + 2H_2O + Cl_2$ Eq. wt. of $MnO_2 = M/2$ $Cl_2 + 2I^- \longrightarrow I_2 + 2Cl^ IO_3^- + 5I^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$ $IO_{3}^{-} = 3I_{2} = 6I = 6Na_{2}S_{2}O_{3}$ IO_2^- Eq. wt. of $IO_3^- = M/6$ $H_2O_2 + 2I^- + 2H^+ \longrightarrow I_2 + 2H_2O$ $H_2O_2 \equiv I_2 \equiv 2I \equiv 2Na_2S_2O_3$ Н,О, Eq. wt. of $H_2O_2 = M/2$ $Cl_2 + 2I^- \longrightarrow 2CI^- + I_2$ $Cl_2 \equiv I_2 \equiv 2I \equiv 2Na_2S_2O_3$ Cl, Eq. wt. of $Cl_2 = M/2$ $O_3 + 6I^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$ $\begin{array}{l} O_3 \equiv 3I_2 \equiv 6I \equiv 6Na_2S_2O_3\\ Eq. \mbox{ wt. of } O_3 \equiv M/6 \end{array}$ 0, $Cr_{2}O_{7}^{2-}+14H^{+}+6I^{-}\longrightarrow 3I_{2}+2Cr^{3+}+7H_{2}O$ $Cr_{2}O_{7}^{2-} \equiv 3I_{2} \equiv 6I$ $Cr_{2}O_{7}^{2}$ Eq. wt. of $Cr_2O_7^{2-}$ $2MnO_{4}^{-} = 5I_{2} = 10I$ MnO_{4}^{-} $2MnO_4^{-}+10I^{-}+16H^{+}\longrightarrow 2MnO_4^{-}+5I_2+8H_2O$ Eq. wt. of $MnO_4^- = M/5$ $BrO_3^{-}+6I^{-}+6H^{+}\longrightarrow Br^{-}+3I_2^{-}+3H_2O$ $BrO_3^- \equiv 3I_2 \equiv I_2$ BrO_{3}^{-} Eq. wt. of $BrO_3^- = M/6$ $H_3AsO_4 + 2I^- + 2H^+ \longrightarrow H_3AsO_3 + H_2O + I_2$ $H_3AsO_4 \equiv I_2 \equiv 2I$ As(V)Eq. wt. of $H_3AsO_4 = M/2$

□ SOME IODOMETRIC TITRATIONS (TITRATING SOLUTIONS IS Na₂S₂O₃.5H₂O)

SOME IODIMETRIC TITRATION (TITRATING SOLUTIONS IS I, IN KI)

Estimation of	Reaction	Relation between O.A. and R.A.
H_2S	$H_2S + I_2 \longrightarrow S + 2I^- + 2H^+$	$H_2S \equiv I_2 \equiv 2I$
(in acidic medium)		Eq. wt. of $H_2 S = M/2$
SO ₃ ²⁻	$\mathrm{SO}_3^{2-} + \mathrm{I}_2 + \mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{SO}_3^{2-} + 2\mathrm{I}^- + 2\mathrm{H}^+$	$SO_3^{2-} \equiv I_2 \equiv 2I$
(in acidic medium)		Eq. wt. of $SO_3^{2-} = M/2$
Sn^{2+}	$\operatorname{Sn}^{2+} + \operatorname{I}_2 \longrightarrow \operatorname{Sn}^{4+} + 2\operatorname{I}^-$	$\operatorname{Sn}^{2+} \equiv \operatorname{I}_2 \equiv 2\operatorname{I}$
(in acidic medium)		Eq. wt. of $Sn^{2+} = M/2$
As(III) (at $pH = 8$)	$H_2AsO_3^- + I_2 + H_2O \longrightarrow$	$H_2AsO_3^- \equiv I_2 \equiv 2I$
	$HAsO_{4}^{2-} + 2I^{-} + 2H^{+}$	Eq. wt. of $H_2AsO_3^- = M/2$
N ₂ H ₄	$N_2H_4 + 2I_2 \longrightarrow N_2 + 4H^+ + 4I^-$	$N_2H_4 \equiv 2I_2 \equiv 4I$
		Eq. wt. of $N_2 H_4 = M/4$

11. Hardness of water :

Hard water does not give lather with soap. Water free from soluble salts of calcium and magnesium is called **Soft water**. It gives lather with soap easily.

Hard water forms scum/precipitate with soap. Soap containing sodium stearate ($C_{17}H_{35}COONa$) reacts with hard water to precipitate out Ca/Mg stearate.

 $2C_{17}H_{35}COONa(aq) + M^{2+}(aq) \rightarrow (C_{17}H_{35}COO)_2M \downarrow + 2Na^+(aq); M \text{ is Ca/Mg}$

Hardness of water is of two types

- (a) Temporary Hardness
- (b) Permanent Hardness

Temporary Hardness :-

This is due to presence of bicarbonate of calcium and magnesium. Rain water dissolves a small quantities of CO_2 from the atmospher forming a very dilute solution of carbonic acid.

This water attacks Ca and Mg carbonate in any rock

 $CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$

Temporary hardness in water is easily removed by boiling, as the bicarbonates decomposes readily and the insoluble carbonates are precipitated.

$$Ca(HCO_3)_2 \xrightarrow{Boil} CaCO_3 + H_2O + CO_2$$
(Insoluble)
$$Mg(HCO_3)_2 \xrightarrow{Boil} MgCO_3 + H_2O + CO_2$$
(Insoluble)

Temporarily hardness can also be removed by clark's process which involves the addition of slaked lime Ca(OH)

$$Ca(HCO_3)_2 + Ca(OH)_2 \xrightarrow{Boil} 2CaCO_3 + 2H_2O$$

(Insoluble)

Permanent Hardness :- Permanent hardness is due to presence of sulphates and chlorides of both calcium and magnesium. This type of hardness cannot be removed by boiling or by $Ca(OH)_2$;. Substance used to remove the hardness of water are known as water softener. This various water softeners are -

(i) Washing soda :- It removes both the temporary and permanent hardness by converting soluble Ca and Mg compounds into insoluble Carbonates.

$$CaCl_{2} + Na_{2}CO_{3} \longrightarrow CaCO_{3} + 2NaCl$$

$$C aSO_{4} + Na_{2}CO_{3} \longrightarrow CaCO_{3} + Na_{2}SO_{4}$$

$$Ca(HCO_{3})_{2} + Na_{2}CO_{3} \longrightarrow CaCO_{3} + NaHCO_{3}$$
(Insoluble)(Insoluble)

(ii) **Permutit:** Permutit is technical name given to certain hydrated silicates of aluminium and sodium.or sodium alumunium orthosilicate or sodium zeolite.

Example : Na, Al, Si, O₈ xH,O.

$$\operatorname{Na}_{2}\operatorname{Al}_{2}\operatorname{Si}_{2}\operatorname{O}_{8}x\operatorname{H}_{2}0+\operatorname{Ca}^{+2}\longrightarrow \operatorname{Ca}\operatorname{Al}_{2}\operatorname{Si}_{2}\operatorname{O}_{8}x\operatorname{H}_{2}O+2\operatorname{Na}^{\oplus}$$

$$Na_2 Al_2 Si_2 O_8 xH_2O + Mg^{+2} \longrightarrow Mg Al_2 Si_2 O_8 xH_2O + 2Na^{\oplus}$$

These ions can be re-exchanged by treating it with brine (NaCl) solution.

 $\operatorname{Ca}\operatorname{Al}_2\operatorname{Si}_2\operatorname{O}_8\operatorname{xH}_2\operatorname{O}+2\operatorname{NaCl} \longrightarrow \operatorname{Na}_2\operatorname{Al}_2\operatorname{Si}_2\operatorname{O}_8\operatorname{xH}_2\operatorname{O}+\operatorname{CaCl}_2$

This method is useful for the removal of both temporary and permanent hardness of water.

(iii) **CALGON:** The complex salt of metaphosphoric acid, sodium hexametaphosphate $(Na_4(PO_3)_6)$ is called Calgon. It is represented as $Na_2[Na_4(PO_3)_6]$.

 $2\text{CaSO}_{4} + \text{Na}_{2}[\text{Na}_{4}(\text{PO}_{3})_{6}] \longrightarrow \text{Na}_{2}[\text{Ca}_{2}(\text{PO}_{3})_{6}] + \text{Na}_{2}\text{SO}_{4}$

 $2MgSO_4 + Na_2[Na_4(PO_3)_6] \longrightarrow Na_2[Mg_2(PO_3)_6] + Na_2SO_4$

(iv) Ion exchange Resins:- Ion exchange resins are the most popular water softener thease days. This resins are synthetic substance. The cation exchanger consists of granular insoluble organic acid resins having giant molecules with -SO₃H or -COOH groups while the anion exchanges contains giant organic molecules with basic groups derived from amine. Ion exchange resins removes all soluble mineral from water.

The water coming from cation exchanger is acidic due to H \mathbb{R} . This water is then passed through another bed containing anion exchanger. This exchanger removes anion like Cl⁻, SO₄²⁻, NO₃ by exchanging with OH–ions.

Reaction at Cation exchanger :

$$Ca^{+2} + RH_2 \longrightarrow R_2Ca + 2H^{\oplus}$$
$$Mg^{+2} + RH_2 \longrightarrow R_2Mg + 2H^{\oplus}$$

Reaction at Anion exchanger :

 $R.(OH)_{2} + Cl^{-} \longrightarrow RC1_{2} + OH^{-}$ $R.(OH)_{2} + SO_{4}^{2-} \longrightarrow RSO_{4} + OH^{-}$

NOTE : Degree of Hardness of water is measured in terms of ppm of $CaCO_3$ which is defined as number of parts of $CaCO_3$ by mass present in one million parts by mass of water whose equivalent is equal to the gram equivalent of various calcium & magnesium salts.

For **example** consider the sample of hard water which is found to contain 36 mg of MgSO_4 per kg of water.

gm equivalent of $CaCO_3 = gm eq. of MgSO_4$

$$\frac{W_{CaCO_3}}{100} \times 2 = \frac{36 \times 10^{-3}}{120} \times 2$$
$$W_{CaCO_3} = 3 \times 10^{-2} \text{gm}$$

degree of hardness = ppm of CaCO₃ = $\frac{3 \times 10^{-2}}{1000} \times 10^{6} = 30$

12. GLOSSARY

Aliquot. A portion of the whole, usually a simple fraction. A portion of a sample withdraw from a volumetric flask with a pipet is called an aliquot.

Analytical concentration. The total number of moles per litre of a solute regardless of any reactions that might occur when the solute dissolves. Used synonymously with formality.

Equivalent. The amount of a substance which furnishes or reacts with 1 mol of H^+ (acid-base), 1 mol of electrons (redox), or 1 mol of a univalent cation (precipitation and complex formation).

Equivalent weight. The weight in grams of one equivalent of a substance.

Equivalence point. The point in a titration where the number of equivalents of titrant is the same as the number of equivalents of analyte.

End point. The point in a titration where an indicator changes color.

Formula weight. The number of formula weights of all the atoms in the chemical formula of a substance.

Formality. The number of formula weights of solute per litre of solution; synonymous with analytical concentration.

Indicator. A chemical substance which exhibits different colors in the presence of excess analyte or titrant.

Normality. The number of equivalents of solute per litre of solution.

Primary standard. A substance available in a pure form or state of known purity which is used in standardizing a solution.

Standardization. The process by which the concentration of a solution is accurately ascertained.

Standard solution. A solution whose concentration has been accurately determined.

Titrant. The reagent (a standard solution) which is added from a buret to react with the analyte.

SOME MORE SOLVED EXAMPLES

- **Ex.25** A 3.00 g sample containing Fe_3O_4 , Fe_2O_3 and an inert impure substance, is treated with excess of KI solution in presence of dilute H_2SO_4 . The entire iron is converted into Fe^{2+} along with the liberation of iodine. The resulting solution is diluted to 100 mL. A 20 mL of the diluted solution require 11 mL of 0.5 M Na₂S₂O₃ solution to reduce the iodine present. A 50 mL of diluted solution after complete extraction of the iodine requires 12.80 mL of 0.25 KMnO₄ solution in dilute H_2SO_4 medium for the oxidation of Fe^{2+} . Calculate the percentages of Fe_2O_3 and Fe_3O_4 in the original sample.
- **Sol.** Let number of moles of Fe_3O_4 is 'a' and no. of moles of Fe_2O_3 is 'b' in 3 gram sample.

Now, 'a' moles Fe_3O_4 means (a moles Fe_2O_3 + a mole of FeO)

So, in sample (a + b) moles Fe₂O₃ and 'a' mole FeO present.

$$\operatorname{Fe_2O_3} + \operatorname{KI} + \xrightarrow{\operatorname{H_2SO_4}} \operatorname{FeSO_4} + \operatorname{I_2} + \operatorname{K_2SO_4} + \operatorname{H_2C}$$

No. of gram equivalent of $Fe_2O_3 = no.$ of gram equivalent of I_2

$$n_{Fe_{2}O_{3}} \times n_{f(Fe_{2}O_{3})} = n_{I_{2}} \times n_{f(I_{2})}$$

(a + b) × 2 = n_{I_{2}} × 2
n_{I_{2}} = (a + b) moles.

Now, solution is diluted to 100 ml

So,
$$[I_2] = \frac{n}{V_{\text{litre}}} = \frac{(a+b)}{100/1000} = 10(a+b)$$

 $[Fe^{2+}] = \left(\frac{n(Fe^{2+})}{V_{\text{litre}}}\right) = \frac{(3a+2b)}{100/1000} = 10(3a+2b)$

Now 20 ml of this solution titrated with 11 ml, 0.5 M Na₂S₂O₃ $I_2 + Na_2S_2O_3 \rightarrow NaI + Na_2S_4O_6$ No. of gram equivalent of $I_2 = no.$ of gram equivalent of Na₂S₂O₃ $(N \times V)_{I_2} = (N \times V)_{Na_2S_2O_3}$ $(M \times n_f \times V)_{I_2} = (M \times n_f \times V)_{Na_2S_2O_3}$ $10 (a + b) \times 2 \times 20 = 0.5 \times 1 \times 11$ $a + b = \frac{11}{800}$ (i) 50 ml of solution after extraction of I₂ allowed to oxidation of Fe²⁺ by 12.80 ml, 0.25 M KMnO₄. Fe²⁺ + KMnO₄ + H₂SO₄ → Fe³⁺ + MnSO₄ + K₂SO₄ + H₂O no. of gram equivalent of Fe²⁺ = no. of gram equivalent of KMnO₄. (M × n_f × V)_{Fe²⁺} = (M × n_f × V)_{KMnO4} 10(3a + 2b) × 1 × 50 = 0.25 × 5 × 12.80 3a + 2b = $\frac{16}{500}$ (ii) By (i) & (ii) a = 0.0045 moles b = 0.00925 moles so % Fe₂O₃ = $\frac{Wt(Fe₂O₃)}{Total wt.}$ × 100 = $\frac{b \times 160}{3} \times 100 = \frac{0.00925 \times 160}{3} \times 100 = 49.33\%$. % Fe₂O₃ = $\frac{Wt(Fe₂O₃)}{Total wt.}$ × 100 = $\frac{a \times 232}{3} \times 100 = \frac{0.0045 \times 232}{3} \times 100 = 34.8\%$

Ex.26 Hydrogen peroxide solution (20 mL) reacts quantitatively with a solution of KMnO_4 (20 mL) acidified with dilute H_2SO_4 . The same volume of KMnO_4 solution is just decolorized by 10 mL of MnSO_4 in neutral medium simultaneously forming a dark brown precipitate of hydrated MnO_2 . The brown precipitate is dissolved in 10 mL of 0.2 M sodium oxalate under boiling condition in the presence of dilute H_2SO_4 . Write the equations involved in the reactions and calculate the molarity of H_2O_2 .

Sol. Let molarity of H_2O_2 solution is M_1

 $20 \text{ ml}, \text{M}_1 \text{ molar H}_2\text{O}_2 \text{ react with } 20 \text{ ml KMnO}_4 \text{ in H}_2\text{SO}_4 \text{ solution}$

$$H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + H_2O + O_2$$

no. of gram equivalent of $H_2O_2 = no.$ of gram equivalent of KMnO₄

$$(\mathbf{M} \times \mathbf{n}_{f} \times \mathbf{V})_{\mathbf{H}_{2}\mathbf{O}_{2}} = (\mathbf{M} \times \mathbf{n}_{f} \times \mathbf{V})_{\mathbf{K}\mathbf{M}\mathbf{n}\mathbf{O}_{4}}$$
$$\mathbf{M}_{1} \times 2 \times 20 = \mathbf{M}_{\mathbf{K}\mathbf{M}\mathbf{n}\mathbf{O}_{4}} \times 5 \times 20 \qquad \dots \dots (i)$$

 20 ml KMnO_4 decolourise by 10 ml MnSO_4 in neutral medium.

 $\mathrm{KMnO}_4 \ + \ \mathrm{MnSO}_4 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{MnO}_2 + \mathrm{H}_2\mathrm{SO}_4 + \mathrm{KHSO}_4$

no. of gram equivalent of $KMnO_4 = no.$ of gram equivalent of MnO_2

 $M_{KMnO_4} \times 3 \times 20ml = no. of gram equivalent of MnO_2$

$$M_{KMnO_4} \times 3 \times 20 \times 10^{-3} = n_{MnO_2} \times 6/5$$
(ii)

and obtained MnO_2 dissolved in 10 ml, 0.2 M $Na_2C_2O_4$

 $MnO_{2} + Na_{2}C_{2}O_{4} + H_{2}SO_{4} \rightarrow MnSO_{4} + CO_{2} + Na_{2}SO_{4} + H_{2}O_{4}$

no. of gram equivalent of $MnO_2 = no.$ of gram equivalent of $Na_2C_2O_4$

 $n_{{\rm MnO}_2} \times 2 = 0.2 \times 2 \times 10 \times 10^{-3}$

 $n_{MnO_2} = 2 \times 10^{-3}$ moles From equaiton (ii)

.....(iii)

$$\begin{split} M_{\text{KMnO}_4} &\times 3 \times 20 \times 10^{-3} = 2 \times 10^{-3} \times \frac{6}{5} \\ M_{\text{KMnO}_4} &= \frac{2}{50} \\ \text{From equation (1)} \end{split}$$

$$M_1 \times 2 \times 20 = \frac{2}{50} \times 5 \times 20$$
$$M_1 = 0.1M$$

- **Ex.27** One litre of a mixture of O_2 and O_3 ($O_3 \longrightarrow O_2 + O^{2-}$) at 1 atm and 273 K was allowed to react with an excess of acidified solution of KI. The iodine liberated required 40 ml of M/10 sodium thiosulphate solution for titration. What is the percent of ozone in the mixture ? Ultraviolet radiation of wave length 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for the complete decomposition of ozone in the original mixture ?
- **Sol.** Let in 1 litre mixture x litre is O_2 and y litre is O_3 at NTP

excess KI reduce O_3 into O_2 and O^{2-}

$$\mathrm{KI} + \mathrm{O}_3 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{I}_2 + \mathrm{O}_2 + \mathrm{KOH}$$

no. of gram equivalent of $O_3 = no.$ of gram equivalent of I_2

$$(\mathbf{n} \times \mathbf{n}_{f})_{O_{3}} = (\mathbf{n} \times \mathbf{n}_{f})_{I_{2}}$$
$$\frac{\mathbf{y}}{22.4} \times 2 = \mathbf{n}_{I_{2}} \times 2$$

$$n_{I_2} = \frac{y}{22.4}$$
(1)

Now, released I₂ required 40 ml , $\frac{1}{10}$ M Na₂S₂O₃

$$I_2 + Na_2S_2O_3 \rightarrow NaI + Na_2S_4O_6$$

No. of gram equivalent of $I_2 = no.$ of gram equivalent of $Na_2S_2O_3$

$$n_{I_2} \times 2 = \frac{1}{10} \times 1 \times 40 \times 10^{-3}$$

 $n_{I_2} = 2 \times 10^{-3}$ moles

Now from equation (1)

$$\frac{y}{22.4} = 2 \times 10^{-3}$$

$$y = (44.8 \times 10^{-3}) \text{ litre} = 0.0448 \text{ litre}$$

$$x = 1 - y = 1 - 0.0448 = 0.9552 \text{ litre}$$
% (by wt) = $\frac{\text{wt}(O_3)}{\text{wt.(total)}} \times 100$

$$= \frac{n(O_3) \times 48}{n(O_3) \times 48 + n(O_2) \times 32} \times 100$$

$$= \frac{\frac{y}{22.4} \times 48}{\frac{y}{22.4} \times 48 + \frac{x}{22.4} \times 32} \times 100$$

$$= \frac{3y}{3y + 2x} \times 100$$

$$= \frac{3 \times 0.0448}{3 \times 0.048 + 2 \times 0.9552} \times 100$$

$$= \frac{0.1344}{2.0448} \times 100 = 6.57 \%$$

One photon required for breaking of one O_3 bond in to O_2 & O

$$O_3 \xrightarrow{hv} O_2 + O_2$$

So. no. of photon required = no. of O_3 bonds break

= no. of O_3 molecules

=
$$n_{0_3} \times N_A = \frac{0.0448}{22.4} \times 6 \times 10^{23}$$

= 1.2×10^{21} photons.

Ex.28 A mixture of FeO and Fe_2O_3 is reacted with acidified $KMnO_4$ solution having a concentration of 2/5 M, 100 mL of which was used. The solution was then titrated with Zn dust which converted Fe^{3+} of the solution to Fe^{2+} . The Fe^{2+} required 1000 mL of 2/15 M $K_2Cr_2O_7$ solution. Find the % by mol of FeO and Fe_2O_3 .

Sol. Let no. of moles of FeO is x millimoles & Fe_2O_3 is y millimoles in mixture.

 $FeO + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + Fe_2(SO_4)_3 + K_2SO_4 + H_2O$ no. of milligram equivalent of FeO = no. of milli gram equivalent of KMnO_4.

$$\mathbf{x} \times \mathbf{1} = \frac{2}{5} \times 5 \times 100$$

x = 200 m moles.

Zn - dust convert all Fe^{3+} to Fe^{2+}

So no. of millimoles of Fe²⁺ in solution is = (x + 2y). Fe²⁺ + K₂Cr₂O₇ + H₂SO₄ \rightarrow Cr₂(SO₄)₃ + Fe³⁺ + K₂SO₄ + H₂O no. of milli gram equivalent of Fe^{2+} = no. of milligram equivalent of $K_2Cr_2O_7$

$$(x + 2y) \times 1 = \frac{2}{15} \times 6 \times 1000$$

(200 + 2y) = $\frac{2}{15} \times 1000$
y = 300 millimoles.

% FeO (by moles) =
$$\frac{x}{x+y} \times 100 = \frac{200}{500} \times 100 = 40\%$$

% Fe_2O_3 (by moles) = 60%

- **Ex.29** A substance of crude copper is boiled in H_2SO_4 till all the copper has reacted. The impurities are inert to the acid. The SO_2 liberated in the action is passed into 100 mL of 0.4 M acidified $KMnO_4(SO_2 \rightarrow SO_4^{-2})$ The solution of KMnO₄ after passage of SO₂ is allowed to react with oxalic acid and requires 25 mL of 1 M oxalic acid. If the purity of copper is 95.25%, what was the weight of the sample.
- Sol. let given sample is w gram and no. of moles of Cu in given sample is x millimoles.

 $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$ x millimoles $SO_2 + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + H_2O + SO_3 + K_2SO_4$

no. of milligram eq. of $SO_2 = no.$ of milli gram eq. of $KMnO_4$

 $x \times 2 = no. of gram eq. of KMnO_4$

left $KMnO_4$ reduced by $H_2C_2O_4$

 $KMnO_4 + H_2SO_4 + H_2C_2O_4 \rightarrow MnSO_4 + CO_2 + H_2O + K_2SO_4$

no. of milligram eq. of $KMnO_4$ (left)

= no. of mill gram equ. of $H_2C_2O_4$

$$= 1 \times 2 \times 25$$

So, total milligram eq. of KMnO₄ = milligram eq. of SO₂ + milligram eq. of H₂C₂O₄ $0.4 \times 5 \times 100 = x \times 2 + 1 \times 2 \times 25$

x = 75 millimoles
wt(Cu) = 95.25% of W
75 × 10⁻³ × 63.5 =
$$\frac{95.25}{100}$$
 × W

 \Rightarrow W = 5 gram.

- **Ex.30** H_2O_2 is reduced rapidly by Sn^{2+} , the products being Sn^{4+} and water. H_2O_2 decomposes slowly at room temperature to yield O_2 and water. Calculate the volume of O_2 produced at 273 K and 1.00 atm when 200 g of 10.0 % by mass H_2O_2 in water is treated with 88.2 mL of 1 M Sn²⁺ and then the mixture is allowed to stand until no further reaction occurs.
- Sol. Let x millimoles of H_2O_2 react with 1M, 88.2 ml Sn^{2+}

$$H_{2}O_{2} + Sn^{2+} \rightarrow Sn^{4+} + H_{2}O$$

no. of milligram equivalent of $H_{2}O_{2}$
= no. of milligram eq. of Sn^{2+}
 $x_{millimole} \times 2 = 1 \times 2 \times 88.2$
 $x = 88.2$ millimoles
Total given moles of $H_{2}O_{2}$ is
 $n_{total} = \frac{W(H_{2}O_{2})}{34} = \frac{10\% \text{ of } 200 \text{ gram}}{34}$
 $= \frac{20}{34} \text{ moles}$
 $= 0.5882 \text{ moles}$
 $= 588.2 \text{ millimoles}.$
so. no. of moles of $H_{2}O_{2}$ that decomposed to O_{2}
 $= 588.2 - 88.2$
 $= 500 \text{ millimoles}$

$$\mathrm{H_2O_2} \rightarrow \mathrm{H_2O} + \frac{1}{2}\mathrm{O_2}$$

 $n(O_2)$ released = $\frac{1}{2} \times 500 = 250$ millimoles

 V_{0_2} (at 1 atm, 273 K) = 250 × 10⁻³ × 22.4 = 5.6 litre.

- **Ex.31** 0.84 g iron ore containing x percent of iron was taken in a solution containing all the iron in ferrous condition. The solution required x ml of a dichromatic solution for oxidizing the iron content to ferric state. Calculate the normality of dichromatic solution.
- **Sol.** Let Normality of $K_2Cr_2O_7$ solution is N

Fe²⁺ + K₂Cr₂O₇ + H⁺ → Fe³⁺ + Cr³⁺ + H₂O no. of gram eq. of Fe²⁺ = no. of gram eq. of K₂Cr₂O₇

$$n_{Fe^{2+}} \times 1 = N \times x \times 10^{-3}$$
$$\frac{W_{Fe^{2+}}}{56} \times 1 = N \times x \times 10^{-3}$$
$$\frac{\frac{x}{100} \times 0.84}{56} \times 1 = N \times x \times 10^{-3}$$
$$N = 0.15$$

- **Ex.32** 5 g of pyrolusite (impure MnO₂) were heated with conc. HCl and Cl₂ evolved was pssed through excess of KI solution. The iodine liberated required 40 mL of N/10 hypo solution. Find the % of MnO₂ in the pyrolusite.
- **Sol.** Let moles of MnO_2 in 5 gram sample is x.

$$\begin{split} &MnO_2 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O \\ &no. of gram eq. of MnO_2 = no. of gram equivalent of Cl_2 \\ &x \times 2 = n_{(Cl_2)} \times 2 \\ &x = n_{(Cl_2)} \\ &so n_{I_2} = n_{Cl_2} = x \\ &evolved Cl_2 \text{ passes through KI that released } I_2 \\ &Cl_2 + 2 \text{ KI} \rightarrow I_2 + 2 \text{ KCl} \\ &x \text{ moles} \\ \end{split}$$

Evaled I₂ required 40 ml , $\frac{N}{10}$ Na₂S₃O₃

$$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$

no. of gram equivalent of $I_2 = no.$ of gram equivalent of hypo

$$x \times 2 = \frac{1}{10} \times 40 \times 10^{-3}$$
$$x = 2 \times 10^{-3} \text{ moles}$$

% MnO₂ =
$$\frac{\text{wt.}(\text{MnO}_2)}{\text{total wt.}} \times 100$$

= $\frac{\text{x} \times 87}{5} \times 100 = \frac{2 \times 10^{-3} \times 87}{5} \times 100$

Ex.33 A 458 g sample containing Mn_3O_4 was dissolved and all manganese was converted to Mn^{2+} . In the presence of fluoride ion, Mn^{2+} is titrated with 3 lit of KMnO₄ solution (which was 1.25 N against oxalate in acidic medium), both reactants being converted to a complex of Mn(III), What was the % of Mn_3O_4 in the sample?

Sol.
$$KMnO_4 + H_2C_2O_4 + H_2SO_4 \rightarrow CO_2 + MnSO_4 + K_2SO_4 + H_2O$$

3 litre, M molar

Normality (KMnO₄) = Molarity \times n_f

 $1.25 = M \times 5$

M = 0.25

Let x moles of Mn₃O₄ present in 458 gram sample

 $Mn_{3}O_{4} \rightarrow 3Mn^{2+}$

xmole 3xmoles

 $Mn^{2+} + KMnO_4 \rightarrow Mn^{3+}$ no. of gram eq. of Mn²⁺ = no. of gram eq. KMnO₄ $3x \times 1 = (M \times n_f \times V)_{KMnO_4}$ $3x \times 1 = 0.25 \times 4 \times 3$ x = 1 moles % Mn₃O₄ (by wt) = $\frac{w(Mn_3O_4)}{w_{total}} \times 100$ = $\frac{1 \times 229}{458} \times 100 = 50\%$

Ex.34 80 gm of a sample of Anhydrous $CuSO_4$ was dissolved in water and made to 250 mL. 25 mL of this solution after taking usual precaution was treated with a little excess of KI solution. A white ppt. of Cu_2I_2 and iodine was evolved. The iodine so evolved required 40 mL of 1 M hypo solution. What is the approximate purity of $CuSO_4$ solution.

Sol. Let 80 gram sample contains x moles of $CuSO_4$ that desolve in 250 ml solution

So 25 ml solution contain (x/10) moles CuSO₄

 $CuSO_4 + KI \rightarrow Cu_2I_2 + I_2$ no. of gram eq. of $CuSO_4 = no.$ of gram eq. of I_2

$$\frac{x}{10} \times 1 = n_{(I_2)} \times 2$$

$$n_{(I_2)} = \frac{x}{20}$$
Evalved I₂ required 40 ml, 1M hypo solution
$$I_2 + Na_2S_2O_3 \rightarrow NaI + Na_2S_4O_6$$
no. of gram eq. of I₂ = no. of gram eq. of hypo

$$n(I_2) \times 2 = 1 \times 1 \times 40 \times 10^{-3}$$
$$\frac{x}{20} \times 2 = 40 \times 10^{-3}$$
$$x = 40 \times 10^{-2} \text{ moles}$$

$$\% \operatorname{CuSO}_{4} (\text{by mass}) = \frac{\operatorname{wt}(\operatorname{CuSO}_{4})}{\operatorname{wt total}} \times 100$$
$$= \frac{40 \times 10^{-2} \times 160}{80} \times 100 = 80\%$$

EXERCISE # S-I

OXIDATION NUMBER

- Calculate oxidation number of underlines elements in the following compounds 1.
 - 7 (c) $\underline{S}_2 O_3^{2-}$ (d) $\underline{C} H_4$ (g) $\underline{Z} n O_2^{2-}$ (h) $\underline{C} r O_2 C l_2$ (b) $H_4 \underline{P}_2 O_7$ (a) $H_{2}S_{2}O_{7}$
 - Ca<u>O</u>, (e) $\underline{C}Cl_{4}$ (f)
 - $Ca(\underline{Cl}O_2)_2$ (i)

RR0001

- 2. Classify each of the following unbalanced half-reactions as either an oxidation or a reduction :
 - $O_2(g) \longrightarrow OH^-(aq)$ (b) $H_2O_2(aq) \longrightarrow O_2(g)$ (a)
 - $MnO_4^{-}(aq) \longrightarrow MnO_4^{2-}(aq)$ $CH_3OH(aq) \longrightarrow CH_3O(aq)$ (c) (d)
- **RR0002**

- 3. Identify the oxidant and reductant in the following reactions :
 - $Zn(s) + \frac{1}{2}O_2(g) \longrightarrow ZnO(s)$ (a)
 - $Zn(s) + 2H^+(aq) \longrightarrow Zn^{2+}(aq) + H_2(g)$ (b)

(c)
$$10H^+(aq) + 4Zn(s) + NO_3^-(aq) \longrightarrow 4Zn^{2+}(aq) + NH_4^+(aq) + 3H_2O(\ell)$$

RR0003

BALANCING OF REDOX

- 4. Balance the following redox reactions by oxidation number method :
 - $Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O$ (Acidic medium) (i) **RR0004**

(ii)
$$Br_2 + H_2O_2 \longrightarrow BrO_3^- + H_2O$$
 (Acidic medium) **RR0005**

- (iii) $MnO_4^{-} + Fe^{+2} \longrightarrow Mn^{+2} + Fe^{+3}$ (Acidic medium) **RR0006**
- (iv) $MnO_2 + Cl^- \longrightarrow Mn^{+2} + Cl_2 + H_2O$ (Acidic medium) **RR0007**
- (v) $ClO^{-} + CrO_{2}^{-} \xrightarrow{OH^{-}} Cl^{-} + CrO_{4}^{2-} + H_{2}O$ (Basic medium) **RR0008**
- 5. Balance the following redox reactions by half-reaction method (Ion electron method):

(i)
$$MnO_4^-(aq) + I^-(aq) \longrightarrow MnO_2(s) + I_2(s)$$
(in basic medium)**RR0009**(ii) $MnO_4^-(aq) + SO_2(g) \longrightarrow Mn^{2+}(aq) + HSO_4^-(aq)$ (in acidic solution)**RR0010**(iii) $H_2O_2(aq) + Fe^{2+}(aq) \longrightarrow Fe^{3+}(aq) + H_2O(1)$ (in acidic solution)**RR0011**

(iv) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}(\operatorname{aq.}) + \operatorname{SO}_2(\operatorname{g}) \longrightarrow \operatorname{Cr}^{3+}(\operatorname{aq.}) + \operatorname{SO}_4^{2-}(\operatorname{aq.})$ (in acidic solution) **RR0012** 6. Find the valence factor for the following acid/bases -

(1) $CH_{3}COOH$ (2) $NaH_{2}PO_{4}$ (3) $H_{3}BO_{3}$ (4) NaOH (5) $Ca(OH)_{2}$ (6) CsOH

RR0013

7. Find the n-factor of underlined species in the following non redox reaction.

		RR0014
$(5) \underline{\mathbf{Na}_{\underline{2}}\mathbf{CO}_{3}} + \mathrm{HCl} \longrightarrow$	$NaCl + H_2O + CO_2$	
$(4) \underline{\operatorname{Na}_{\underline{2}}\operatorname{CO}_{\underline{3}}} + \operatorname{HCl} \longrightarrow$	NaHCO ₃ + NaCl	
$(3) \underline{Ca(OH)}_{\underline{2}} + HCl \longrightarrow$	$Ca(OH)Cl + H_2O$	
(2) NaOH + $\underline{\mathrm{H}}_{\underline{2}}\underline{\mathrm{SO}}_{\underline{4}} \longrightarrow$	$NaHSO_4 + H_2O$	
(1) NaOH + $\underline{\mathrm{H}}_{\underline{3}}\underline{\mathrm{PO}}_{4} \longrightarrow$	$NaH_2PO_4 + H_2O$	

8. What will be the equivalent wt. of H_3PO_4 in each of the reaction. $H_3PO_4 + OH^- \longrightarrow H_2PO_4^- + H_2O$ $H_3PO_4 + 2OH^- \longrightarrow HPO_4^{2-} + 2H_2O$ $H_3PO_4 + 3OH^- \longrightarrow PO_4^{3-} + 3H_2O$

9. What is the equivalent weight of HNO_3 in following reaction ? $HNO_3 + H_2S \longrightarrow H_2O + NO + S$

10. Find out the equivalent weight of the underlined species in the following reaction :

(i)	$\underline{\text{ClO}}_{3}^{-} + \text{Fe}^{2+} + \text{H}^{+} \longrightarrow \text{Cl}^{-} + \text{Fe}^{3+} + \text{H}_{2}\text{C}$
(ii)	$CuO + \underline{NH}_3 \longrightarrow Cu + N_2 + H_2O$

RR0017

RR0015

RR0016

11. Find out the n_{factor} of $(NH_4)_2Cr_2O_7$ in the following decomposition reaction. $(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + N_2(g) + H_2O$

RR0018

12. Find out the n_{factor} of IO_3^- in the following disproportination reaction. $I_2 \xrightarrow{OH^-} IO_3^- + I^-$

RR0019

ACID BASE TITRATION

13. How many millilitre of $0.5 \text{ MH}_2\text{SO}_4$ are needed to dissolve 0.5 g of copper II carbonate ?[JEE 1999] RR0020

14.	• An aqueous solution of 6.3 g of oxalic acid dihydrate is made upto 250 mL. The volume of 0.1 N			
	NaOH required to completely neutralise 10 mL of this solution is :	[JEE 2001]		
		RR0021		
15.	Calculate volume of $1 \text{N H}_3 \text{PO}_4$ required to react with 20 ml 2N Ca(OH) ₂ solution			
		RR0022		
16.	Calculate volume of $1 \text{N H}_2 \text{SO}_4$ required to react with 20 ml 1 M Al(OH) ₃ solution			
		RR0023		
17.	Calculate volume of 0.4 M NaOH required to react with following mixture			
	$HCl(1 mol) + H_2SO_4(2 mol)$			
		RR0024		
18.	Calculate volume of 0.2 M H_2SO_4 required to react with following mixture			
	$NaOH(1 mol) + Ca(OH)_2 (2 mol)$			
		RR0025		
19.	How many litre of 0.1N HCl are required to react completely with 19 gm mixture of	of Na ₂ CO ₃ and		
	NaHCO ₃ containing equimolar amount of two?			
		RR0026		
20.	H_3PO_4 is a tri basic acid and one of its salt is NaH_2PO_4 . What volume in ml of 1 M N	VaOH solution		
	should be added to 12 g of NaH ₂ PO ₄ to convert it into Na ₂ PO ₄ ?			

RR0027

REDOX TITRATION

- 21. Calculate the normality of a solution containing 50 mL of 5 M solution of $K_2Cr_2O_7$ in acidic medium. RR0028
- A 5.0 cm³ solution of H₂O₂ liberates 0.508 g of iodine from an acidified KI solution. Calculate the strength of H₂O₂ solution in terms of volume strength at STP. [JEE' 1995]
 RR0029
- **23.** Calculate the normality of a solution containing 15.8 g of $KMnO_4$ in 50 mL acidic solution.

RR0030

24. 20 mL of H_2O_2 after acidification with dil H_2SO_4 required 30 mL of $\frac{N}{12}$ KMnO₄ for complete oxidation. The strength of H_2O_2 solution is [Molar mass of $H_2O_2 = 34$]

RR0031

25. It required 40 ml of 1 M Ce⁴⁺ to titrate 20 ml of 1 M Sn²⁺ to Sn⁴⁺. What is the oxidation state of cerium in the product.

RR0032

26. A volume of 10.0 ml of 1 M SeO₂ reacted with exactly 20 ml of 2 M CrSO₄. In the reaction, Cr^{2+} was oxidized to Cr^{3+} . To what oxidation state was selenium converted by the reaction.

27. Potassium acid oxalate $K_2C_2O_4$. $3H_2C_2O_4$. $4H_2O$ can be oxidized by MnO_4^- in acid medium. Calculate the volume of 0.1 M KMnO₄ reacting in acid solution with 5.08 gm of the acid oxalate.

RR0034

28. A 1 g sample of H_2O_2 solution containing x% H_2O_2 by mass requires x cm³ of a KMnO₄ solution for complete oxidation under acidic condition. Calculate the normality of KMnO₄ solution.

RR0035

29. Metallic tin in the presence of HCl is oxidized by $K_2Cr_2O_7$ to stannic shloride, $SnCl_4$. What volume of deci-normal dichromate solution would be reduced by 11.9 gm of tin [Sn = 119]

RR0036

30. Calculate the number of millimoles of K₂Cr₂O₇ which will completely react with 40 ml 0.1 MKI Solution.

RR0037

31. Find the number of moles of $KMnO_4$ needed to oxidise one mole Cu_2S in acidic medium. The reaction is : $Cu_2S + KMnO_4 \longrightarrow Cu^{2+} + Mn^{2+} + SO_2$

RR0038

32. 0.4 M KMnO_4 solution completely reacts with 0.05 M FeSO₄ solution under acidic conditions. The volume of FeSO₄ used is 50 mL. What volume of KMnO₄ was used ?

RR0039

BACK TITRATION

33. 50 gm of a sample of $Ca(OH)_2$ is dissolved in 50 ml of 0.5 N HCl solution. The excess of HCl was titrated with 0.3N – NaOH. The volume of NaOH used was 20cc. Calculate % purity of Ca(OH)₂

RR0040

34. 10 g CaCO₃ were dissolved in 250 ml of 1 M HCl. What volume of 2 M KOH would be required to neutralise excess HCl.

RR0041

35. 20 g of a sample of $Ba(OH)_2$ is dissolved in 10 mL of 0.5 N HCl solution : The excess of HCl was titrated with 0.1 N NaOH. The volume of NaOH used was 20 cc. Calculate the percentage of $Ba(OH)_2$ in the sample. (Ba = 137)

RR0042

36. To 50 L of 0.2 N NaOH, 2.5 L of 2N HCl and 15 L of 0.1 N FeCl₃ solutions are added. What weight of Fe_2O_3 can be obtained from the precipitate? Also report the normality of NaOH left in resultant solution :

RR0043

Hardness of water

37. Softening of hard water by using sodium aluminium silicate (zeolite) is due to - Adsorption of andions of hard water, replacingions

RR0044

38. One litre of a sample of hard water contains $10 \text{ mg of } \text{CaCl}_2 \& 9.5 \text{ mg of } \text{MgCl}_2$. What is degree of hardness in terms of ppm of CaCO₃

				EXERC	CISE #	# <i>S-II</i>			
1.	Find out the oxidation number of the underlined elements in the following compounds:								
	(a)	$Na_2S_4O_6$	(b)	$\underline{C}_{3}O_{2}$	(c)	K <u>I</u> ₃	(d)	$\underline{Fe}_{3}O_{4}$	
	(e)	СН СН ОН	(f)	СН СООН	(m)	Br ()	(h)	CaOCI	RR0046
	(0)	$\underline{C}\Pi_3 \underline{C}\Pi_2 O\Pi$	(1)	<u>c</u> n <u>3</u> 0011	(g)	$\underline{\text{D1}}_{3}\text{O}_{8}$	(11)	CaO <u>C1</u> 2	RR0047
	(i)	<u>FeS₂</u>	(j)	$\underline{O}F_2$	(k)	H <u>O</u> F	(1)	$\underline{O_2}^+$	
	<i>(</i>)	0 -				G II 110	<i>.</i>	a	RR0048
	(m)	\underline{O}_2	(n)	C ₆ H ₅ <u>C</u> HO	(0)	$C_6H_5NO_2$	(p)	$C_6H_5NH_2$	R R0049
	(q)	$(\underline{C}N)_{2}$	(r)	<u>C</u> N ⁻	(s)	<u>C</u> NO [−]			KK0042
		× × 2							RR0050
2.	Calc	ulate oxidation	number	r of underlines el	ements	in the following	g compo	unds	
	(a)	$K[\underline{Co}(C_2O_4)_2]$	$(\mathrm{NH}_3)_2$]	(b)	$K\underline{Al}(\underline{SO}_4)_2 12$	H ₂ O		
	(c)	$[\underline{Fe}(CN)_6]^{4-}$			(d)	$\underline{Fe}_{0.93}O$			
									RR0051
	(e)	$H_2 \underline{S}_2 O_8$			(f)	<u>Cr</u> O ₅			
	(g)	$H_2 \underline{S}O_5$			(h) 1	$K_3 \underline{Cr}O_8$			DD0053
			-			2			RR0052
	(r)	$Na_2[\underline{Fe}(CN)_5N]$	10,]		(S)	$\underline{Cr}(CN)_6^{J^2}$			DD0052
3	Bala	nce the followin	ng rado	v reactions by ba	lf react	ion method			KK0055
5.	(i)	KMnO(ag) +	- FeC ((aa) + H SO					
	$\operatorname{MnSO}_{4}(\operatorname{aq.}) + \operatorname{Fe}_{2}(\operatorname{SO}_{4}(\operatorname{aq.}) + \operatorname{CO}_{2}(\operatorname{g}) + \operatorname{H}_{2}O(l) \text{ (Acidic medium)}$								
	$111100_4(uq.) + 10_2(00_4)_3(uq.) + 00_2(g) + 11_20(t)$ (reduce incura								RR0054
	(ii)	$P_4(s) + OH^-(a)$	q.)——	\rightarrow PH ₃ (aq) + HP	O_2^{-} (aq.) (Basic mediu	m)		
								1.	RR0055
	(111)	$I_2(s) + NaOH($	(aq.) —	\rightarrow Nal (aq.) +]	$NaIO_3(a)$	$(H_{12}) + H_{2}O(l)$ (E	asic me	dium)	DD0056
	(iv)	HNO.(ag.) \rightarrow	NO. ⁻ -	+ NO(g) (acidic	medium	1)			KK0050
	(1) (1) (2) (1) (1) (2) (1) (2) (1) (2) (1) (2)								RR0057
	(v)	(v) $IO_3^- + I^- + H^+ \rightarrow I_2 + H_2O$ (acidic m							
									RR0058
	(vi)	$Cu_2S + MnO_4$	$^{-} + H^{+} -$	\rightarrow Cu ²⁺ + Mn ²⁺ +	SO_2 (A	Acidic medium)		
	6 ···		A _ (NTT)		-()	$\sim 2 \Lambda_{-}(-) + 1100$	20^{-1}		RK0059
	(V11)	(basic medium) $(l) + 2[$	Ag(NH)	$[1_3]_2$ (aq.) + 30H	(aq.) –	$\rightarrow 2 \text{Ag}(s) + \text{HCG}$	JU (aq.)	$+4NH_{3}(aq.)$	$+2H_2O(l)$

4. A solution containing 4.2g of KOH and $Ca(OH)_2$ is neutralized by an acid. It consumes 0.1 equivalent of acid, calculate the percentage composition of the sample.

RR0061

5. Calculate volume of 0.4 M KMnO₄ required to react with following in acidic medium $KHC_2O_4(1 \text{ mol}) + H_2C_2O_4(2 \text{ mol})$

RR0062

6. Calculate volume of 0.4 M NaOH required to react with following mixture. $KHC_2O_4(1 \text{ mole}) + H_2C_2O_4(2 \text{ mol})$

RR0063

7. Calculate volume of 0.2 M KMnO₄ required to react with following mixture in acidic medium. KHC_2O_4 (128 gm) + $H_2C_2O_4$ (180 gm)

RR0064

8. 520 gm mixture of Fe_2O_3 and FeO reacts completely with 158 gm KMnO₄ in acidic medium Calculate the mole % of Fe_2O_3 in mixture.

RR0065

9. Calculate the millimoles of Br_2 produced when 10 ml of 0.1 M BrO_3^- reacts with excess of Br^- .

RR0066

10. One gm of impure sodium carbonate is dissolved in water and the solution is made up to 250 ml. To 50 ml of this made up solution, 50 ml of 0.1N – HCl is added and the mix after shaking well required 10 ml of 0.16 N – NaOH solution for complete titration. Calculate the % purity of the sample.

RR0067

11. 100 ml sample of hard water containing only Ca²⁺ hardness is passed through a column of cation exchange resin (H⁺ – resin). The water coming out the column require 20 ml of 0.02M NaOH for its titration. What is hardness of water as ppm of Ca²⁺

RR0068

12. 3.55 g sample of bleaching powder suspended in H_2O was treated with enough acetic acid and KI solution. Iodine thus liberated required 80 mL of 0.2 M hypo for titration. Calculate the % of available chlorine.

RR0069

13. 3.2 g of pyrolusite (MnO₂) was treated with 50 mL of 0.5 M oxalic acid and some sulphuric acid. The oxalic acid left undecomposed was raised to 250 mL in a flask. 25 mL of this solution when treated with 0.02 M KMnO₄ required 32 mL of the solution : Find the % of MnO₂ in the sample.

Mg can reduce NO₃⁻ to NH₃ in basic medium.
NO₃⁻ + Mg (s) + H₂O → Mg (OH)₂ (s) + OH⁻ (aq.) + NH₃(g)
A 25.0 mL sample of NO₃⁻ solution was treated with Mg. The NH₃ (g) was passed into 100 mL of 0.15 N HCl. The excess of HCl required 32.10 mL of 0.10 N NaOH for neutralization. What was the molarity of NO₃⁻ ions in the original sample ?

RR0071

15. A mixture of H_2SO_4 and $H_2C_2O_4$ (oxalic acid) and some inert impurity weighing 3.185 g was dissolved in water and the solution made up to 1 litre, 10 mL of this solution required 3 mL of 0.1 N NaOH for complete neutralization. In another experiment 100 mL of the same solution in hot condition required 4 mL of 0.02M KMnO₄ solution for complete reaction. The wt. % of H_2SO_4 in the mixture was :-

RR0072

16. An aqueous solution containing 0.10 g KIO_3 (formula wt. 214.0) was treated with an excess of KI solution. The solution was acidified with HCl. The liberated I₂ consumed 45.0 mL of thiosulphate solution to decolourise the blue starch – iodine complex. Calculate the molarity of the sodium thiosulphate solution. [JEE 1998]

•		EXER	RCISE # O-I		
1.	The oxidation nun	nber of phosphorus in Ba	$(H_2PO_2)_2$ is:		
	(A) +3	(B) +2	(C) +1	(D) –1	
					RR0074
2.	The oxidation stat	es of the most electroneg	ative element in the pro	ducts of the reac	tion of BaO_2 with
	dilute H_2SO_4 .				
	(A) 0 and -1	(B) -1 and -2	(C) -2 and 0	(D) –2 an	d +2
					RR0075
3.	In the coordinatio	n compound, K ₄ [Ni (CN	$)_6$], the oxidation state of	of nickel is	[AIEEE-03]
	(A) + 1	(B) +2	(C) –1	(D) 0	
					RR0076
4.	The oxidation stat	te of Cr in $[Cr(NH_3)_4Cl_2]$] ⁺ is -		[AIEEE-05]
	(A) +2	(B) + 3	(C) 0	(D) + 1	
					RR0077
5.	Oxidation number	r of Cl in CaOCl ₂ (bleach	ning powder is)		[AIEEE-02]
	(A) Zero, since it contains Cl_2		(B)-1, since it cor	ntains Cl ⁻	
	(C) +1, since it contains CIO ^{$-$}		(D) +1 and -1 sin	ice it contains C	IO ⁻ and CI ⁻
_					KK0078
6.	The oxidation num	mber of sulphur in S_8 , S	$_{2}F_{2}$ and $H_{2}S$ respective	ly are :	
	(A) 0, $+1$ and -2		(B) $+2$, $+1$ and -2	2	
	(C) 0, +1 and +2		(D) -2, +1 and -2	2	DD0070
-	TT1 · · · 1		1 60	1 .	KK 0079
7.	The incorrect order (A) U.S. (A) No.	er of decreasing oxidation $S \cap S \cap S$	n number of S in compo	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	7
	(A) $\Pi_2 S_2 O_7 > Na_2$	$s_{2}s_{4}O_{6} > Na_{2}s_{2}O_{3} > s_{8}$	(B) $\Pi_2 S O_5 > \Pi_2 S$ (D) $H S O_5 > S O_5$	$O_3 > SO_2 > \Pi_2 SO_2$))
	$(C) 3O_3 > 3O_2 >$	$S_8 > 11_2 S_8$	(D) $\Pi_2 SO_4 > SO_2$	$_{2} > 11_{2}3 > 11_{2}3_{2}C$	⁷ 8 RR0080
8.	Which of the follo	owing is a redox			[AIEEE-02]
0	(A) $2NaAg(CN)_{2}$	$+ Zn \longrightarrow Na_{2}Zn$ (CN)	4 + 2 Ag		
	(B) $BaO_2 + H_2SC$	$A \longrightarrow BaSO_4 + H_2O_2$	48		
	$(C) N_{0}O_{2} + H_{0}O_{2}$	\rightarrow 2HNO ₂			
	(D) $AgNO_{2} + KI$	$\longrightarrow AgI + KNO_{2}$			
	(-)83				RR0081
9.	Which reaction do	bes not represent autored	ox or disproportionation	1:-	
	(A) $Cl_{a} + OH^{-}$	\rightarrow Cl ⁻ + ClO ₂ ⁻ + H ₂ O	1 1		
	(B) $2H_{2}O_{2} \longrightarrow H_{2}O_{2}$	$H_2O + O_2$			
	$(C) 2Cu^{+} \longrightarrow C$	$u^{+2} + Cu^{2}$			
	(D) $(NH_{4})_{2}Cr_{2}O_{7}$	\longrightarrow N ₂ + Cr ₂ O ₃ + 4H ₂ O)		

10.

Which of the following is not a redox reaction?

	(A) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$				2	(B) $2BaO + O_2 \rightarrow 2BaO_2$			
	(C) 2K	$ClO_3 \rightarrow 2k$	$Cl + 3O_{2}$			(D) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$			
		5	2			2 2	2	RR0083	
11.	H.O. a	cts as a rec	ducing ag	ent in:					
	(A) Fe	$Cl_{2} + HCl$	$+ H_2O_2 -$	\longrightarrow FeC	$Cl_{2} + H_{2}C$)			
	(B) Cl.	² + H ₂ O ₂ -	\rightarrow HCl	+ O.	5 2				
	(C) HI	$+ H_{2}^{2}O_{2}^{2}$	\rightarrow I ₂ + I	H,0 ²					
	(D) H ₂	$SO_3 + H_2O_3$	$D_2 \xrightarrow{r} I$	$H_2SO_4 + I$	H ₂ O				
								RR0084	
12.	Match	List-I (Cor	npounds)	with List-	-II (Oxid	ation states of nit	trogen) and select answe	r using the	
	codes g	iven below	v the lists :	-					
		List-I				List-II			
	(a)	NaN			1.	+5			
	(B)	N ₂ H ₂			2.	+2			
	(C)	NO			3.	-1/3			
	(D)	N.O.			4.	-1			
Cod	e:	(a)	(B)	(C)	(D)				
	(A)	3	4	2	1				
	(B)	4	3	2	1				
	(C)	3	4	-	2				
	(C) (D)	у Д	3	1	2				
	(D)	Т	5	1	2			RR0085	
12	MnO -	is good or	idicina oa	ont in diff	forant ma	dium changing to	Γ.		
13.	MnO^{-}	is good ox	Mn ²⁺				μ., - [Δ		
	4	► M	$n\Omega^{2-}$						
			nO_4						
		M	n_{2}						
	Change	es in oxidat	tion numb	er respecti	ivelv are	-			
	(A) 1, 3	3, 4, 5	(B)	5, 4, 3, 2	5	(C) 5, 1, 3, 4	(D) 2, 6, 4, 3		
		<i>, ,</i>						RR0086	
14.	In the re	eaction							
	xH	I + vHNO	$\longrightarrow N($) + I + H	0				
	(A) x =	3 v = 2	3 / Pro	x = 2 $y =$	= 3	(C) $x = 6$ $y = 2$	(D) $x = 6$ $y = 1$		
	() **	-,, —	(2)	-, ,	-	(-), j -	(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	RR0087	

15.	The number of electrons to balance the following equation :-						
	$NO_{3}^{-} + 4H^{+} + e^{-}$	$\rightarrow 2H_2O + NO$ is					
	(A) 5	(B) 4	(C) 3	(D) 2			
					RR0088		
16.	Number of mole	es of electrons taken up w	when 1 mole of NO_3^{-1} ions	s is reduced to 1 mole of	of NH ₂ OH is		
	(A) 2	(B) 4	(C) 5	(D) 6			
					RR0089		
17.	For the redox re	eaction,					
	$MnO_4^- + C_2$	$O_4^{2-} + H^+ \rightarrow Mn^{2+} + Co$	$O_{2} + H_{2}O$				
	the correct coef	ficients of the reactants f	for the balanced reaction	n are :			
	MnO_{4}^{-}	$C_{2}O_{4}^{2-}$	H^+				
	(A) 2	5	16				
	(B) 16	5	2				
	(C) 5	16	2				
	(D) 2	16	5				
					RR0090		
18.	In a redox react	tion, the equivalent weigh	nt of HNO ₂ is found to be	e 23.5. The reaction pro	oducts might		
	contain						
	(A) NO ₂	(B) NO	(C) NH ₃	(D) HNO ₃			
					RR0091		
19.	When N_2 is conv	verted into NH ₃ , the equi	valent weight of nitroge	n will be :			
	(A) 1.67	(B) 2.67	(C) 3.67	(D) 4.67			
					RR0092		
20.	The equivalent	mass of MnSO ₄ is half it	ts molecular mass when	it is converted to : $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	JEE 1998]		
	(A) Mn_2O_3	(B) MnO_2	(C) MnO_4	(D) MnO_4^2			
					RR0093		
21.	When $KBrO_3$ ion reacts with Br ⁻ ion in acid solution Br_2 is liberated. The equivalent weight of KBrO ₃ in this reaction is						
	(A) $M/8$	(B) M/3	(C) M/5	(D) M/6			
	(11) 1110	(\mathbf{D}) 111/3	(\mathbf{C}) ivit \mathbf{C}		RR0004		
22.	In the reaction ($\operatorname{CrO}_5 + \operatorname{H}_2\operatorname{SO}_4 \to \operatorname{Cr}_2(\operatorname{SO}_4)$	$(D_4)_3 + H_2O + O_2$ one mo	le of CrO ₅ will liberate	e how many		
	moles of O_2 :-						
	(A) 5/2	(B) 5/4	(C) 9/2	(D) 7/4			
					RR0095		
23.	A solution of Kl	MnO ₄ is reduced to MnC	\mathbf{D}_{2} . The normality of solu	tion is 0.6. The molari	ty is :		
	(A) 1.8M	(B) 0.6M	(C) 0.1M	(D) 0.2M			
			· ·	. /	RR0096		

150	JEE-Chemistry			•
24.	The normality of 0	.3 M phosphorus aci	$d(H_3PO_3)$ is :	•
	(A) 0.1	(B) 0.9	(C) 0.3	(D) 0.6
				RR0097
25.	0.52 g of a dibasic a	cid required 100 mL	of 0.2 N NaOH for complete	neutralization. The equivalent
	weight of acid is			
	(A) 26	(B) 52	(C) 104	(D) 156
				RR0098
26.	What is the equival	ent weight of H_2SO_4	in the reaction ?	
	$H_2SO_4 + NaI -$	$\rightarrow \text{Na}_2\text{SO}_4 + \text{I}_2 + \text{H}_2\text{S}$	$+ H_2O$	
	(A) 12.25	(B) 49	(C) 61.25	(D) None of these
~-	105 1 0 (00) (1 · · · · · · · · 1 · 105 · · ·	RR0099
27.	The resulting soluti	$(v) H_2 C_2 O_4 \cdot 2H_2 O$ is r on is :-	nade to react with 125 mL of	t a 40% (w/v) NaOH solution.
	(A) neutral	(B) acidic	(C) strongly acidic	(D) alkaline
				RR0100
28.	The mass of oxalic	acid crystals $(H_2C_2O_2)$	$_{4}$ · 2H ₂ O) required to prepare	50 mL of a 0.2 N solution is :-
	(A) 4.5 g	(B) 6.3 g	(C) 0.63 g	(D) 0.45 g
• •				RR0101
29.	If 25 mL of a H_2SO_2 this acid solution :	₄ solution reacts comp	pletely with 1.06 g of pure Na	$a_2 CO_3$, what is the normality of
	(A) 1 N	(B) 0.5 N	(C) 1.8 N	(D) 0.8 N
• •				RR0102
30.	The number of mol	les of $KMnO_4$ that will	I be required to react with 2	mol of ferrous oxalate 1s
	(A) $\frac{6}{5}$	(B) $\frac{2}{5}$	(C) $\frac{4}{5}$	(D) 1
				RR0103
31.	The oxidation state	of chromium in the fir	nal product formed by the rea	ction between Kl and acidified
	potassium dichroma	ate solution is -		[AIEEE-05]
	(A) + 6	(B) +4	(C) +3	(D) +2
22	The average of mod	a of WMaQ that will	nood to noo at a annulataly wi	RR0104
32.	acidic solution is :	e of KivinO ₄ that will	need to react completely wi	[JEE 1997]
	(A) 2/5	(B) 3/5	(C) 4/5	(D) 1
~ ~				RR0105
33.	The number of mol	le of KMnO ₄ that will	be needed to react with one	mole of sulphite ion in acidic
	(A) 2/5	(B) $3/5$	(C) $4/5$	[JEE 1997] (D) 1
	() -, •	(_) 5/0		RR0106

		I.	euon & Equinaient Co	101 (Stochtonicelly 11)
▼ 34.	What volume of 0	0.1 M KMnO_4 is needed	to oxidize 100 mg of Fe	C_2O_4 in acid solution ?
	(A) 4.1 mL	(B) 8.2 mL	(C) 10.2 mL	(D) 4.6 mL
				RR0107
35.	What volume of 6	$M HNO_3$ is needed to c	oxidize 8 g of Fe^{2+} to Fe^{3}	³⁺ , HNO_3 gets converted to NO?
	(A) 8 mL	(B) 7.936 mL	(C) 32 mL	(D) 64 mL
				RR0108
36 .	The minimum qua	antity of H_2S needed to p	precipitate 63.5 g of Cu ²⁴	⁺ will be nearly.
	(A) 63.5 g	(B) 31.75 g	(C) 34 g	(D) 2.0 g
				RR0109
37.	The volume of 1.5 is :-	MH ₃ PO ₄ solution require	ed to neutralize exactly 90	0 mL of a 0.5 M Ba (OH) ₂ solution
	(A) 10 mL	(B) 30 mL	(C) 20 mL	(D) 60 mL
				RR0110
38.	Hydrogen peroxic equation	le in aqueous solution d	lecomposes on warming	; to give oxygen according to the
	$2H_2O_2$ (aq) –	$\rightarrow 2H_2O(\ell) + O_2(g)$	· • • • • • • • • • • • • • • • • • • •	
	Under conditions $3 \text{ dm}^3 \text{ of } \text{O}_2$. Thus	Where I mole of gas occ X is :-	$cupies 24 \text{ dm}^2$. 100 cm ² c	of XM solution of H_2O_2 produces
	(A) 2.5	(B) 1	(C) 0.5	(D) 0.25
				RR0111
39.	A mixture of Na 0.12 N NaOH sepa	HC_2O_4 and KHC_2O_4 . arately. What is the mola	$H_2C_2O_4$ required equal ratio of NaHC ₂ O ₄ and F	volumes of 0.2 N KMnO ₄ and KHC ₂ O ₄ . $H_2C_2O_4$ in the mixture ?
	(A) 6 : 1	(B)	(C) 1 : 3	(D) none
				RR0112
40.	Volume $V_1 mL of$ The volume of 0.3	$0.1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is needed B M KMnO ₄ needed for s	for complete oxidation of same oxidation in acidic	of 0.678 g N_2H_4 in acidic medium. medium will be :-
	(A) $\frac{2}{5}V_1$	(B) $\frac{5}{2}V_1$	(C) 113 V ₁	(D) can't say
	5	Z		RR0113
41.	As.O. is oxidised	to H.AsO, by KMnO	in acidic medium Vol	ume of 0.02M KMnO required
	for this purpose b	by 1mmol of As O_4 will	be	and a constant and a required
	(A) 10 mL	(B) 20 mL	(C) 40 mL	(D) 80 mL
	() 10 mL			

RR0114

Redox & Equivalent Concept (Stochiometry-II)

42.	When ozone is passed through dry KOH, KO_3 is obtained and O_2 is liberated. In this reaction				
	is o	xidised and	is reduced.		
	(A) hydrogen, ox	xygen	(B) potassium,	oxygen	
	(C) oxygen, oxyg	gen	(D) oxygen, hyd	drogen	
				RR0115	
43.	100 ml of 0.1M Volume of HCl r	NaAl(OH) ₂ CO ₃ is new equired is	tralised by 0.25 N HC	I to form NaCl, $AlCl_3$ and CO_2 .	
	(A) 10 mL	(B) 40 mL	(C) 100mL	(D) 160 mL	
				RR0116	
44. x mmol of XeF_4 quantitatively oxidized KI to I_2 and liberated Xe, alongwith formation of iodine required 20 ml of decinormal hypo solution for exact titration. The value of x is				alongwith formation of KF. This on. The value of x is	
	(A) 0.5	(B) 1.0	(C) 2.0	(D) 5.0	
				RR0117	
45.	Temporary hardn	ess is due to HCO_3^- of M	Ig ²⁺ and Ca ²⁺ . It is remo	ved by addition of CaO.	
	$Ca(HCO_3)_2 +$	$CaO \rightarrow 2CaCO_3 + H_2$	0		
	Mass of CaO requ	uired to precipitate 2 g C	CaCO ₃ is :-		
	(A) 2.00	(B) 0.56 g	(C) 0.28 g	(D) 1.12 g	
				RR0118	
46.	0.3 g of an oxala $KMnO_4$ for comp	te salt was dissolved in lete oxidation. The % of	100 mL solution. The oxalate ion in salt is :-	solution required 90 mL of N/20	
	(A) 33%	(B) 66%	(C) 70%	(D) 40%	

EXERCISE # O-II

1. If 10 g of V_2O_5 is dissolved in acid and is reduced to V^{2+} by zinc metal, how many mole I_2 could be reduced by the resulting solution if it is further oxidised to VO^{2+} ions ?

[Assume no change in state of Zn^{2+} ions] (V = 51, O = 16, I = 127) :

(A) 0.11 mole of I_2 (B) 0.22 mole of I_2 (C) 0.055 mole of I_2 (D) 0.44 mole of I_2

RR0120

RR0121

RR0122

RR0123

RR0124

2. The number of moles of $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ needed to oxidize 0.136 equivalents of $\operatorname{N}_2 \operatorname{H}_5^+$ by the reaction $\operatorname{N}_2 \operatorname{H}_5^+ + \operatorname{Cr}_2 \operatorname{O}_7^{2-} \rightarrow \operatorname{N}_2^- + \operatorname{Cr}^{3+}_2 + \operatorname{H}_2 \operatorname{O}$ is

(A) 0.136 (B) 0.068 (C) 0.0227 (D) 0.272

3. Dichloroacetic acid (CHCl₂COOH) is oxidized to CO_2 , H_2O and Cl_2 by 600 meq of an oxidizing agent. Same amount of acid can neutralize how many moles of ammonia to form ammonium dichloroacetate?

(A) 0.0167 (B) 0.1 (C) 0.3 (D) 0.6

4. HNO₃ oxidises NH_4^+ ions to nitrogen and itself gets reduced to NO_2 . The moles of HNO₃ required by 1 mol of $(NH_4)_2SO_4$ is :-(A) 4 (B) 5 (C) 6 (D) 2

5. During the disproportionation of iodine to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is :-

(A) 1:5 (B) 5:1 (C) 3:1 (D) 1:3

6. When arsenic sulphide is boiled with NaOH, sodium arsenite and sodium thioarsenite are formed

$$x \operatorname{As}_2 \operatorname{S}_3 + y \operatorname{NaOH} \longrightarrow \operatorname{Na}_3 \operatorname{AsO}_3 + x \operatorname{Na}_3 \operatorname{AsS}_3 + \frac{y}{2} \operatorname{H}_2 \operatorname{O}.$$
 What are the values of x and y ?
(A) 1, 6 (B) 2, 8 (C) 2, 6 (D) 1, 4

RR0125

7. 35 mL sample of hydrogen peroxide gives of 500 mL of O₂ at 27°C and 1 atm pressure. Volume strength of H₂O₂ sample will be :(A) 10 volume (B) 13 volumes (C) 11 volume (D) 12 volume

RR0126

8. An element A in a compound ABD has oxidation number A^{n-} . It is oxidised by $Cr_2O_7^{2-}$ in acid medium. In the experiment 1.68×10^{-3} moles of $K_2Cr_2O_7$ were used for 3.26×10^{-3} moles of ABD. The new oxidation number of A after oxidation is :-(A) 3 (B) 3 - n (C) n - 3 (D) +n3

- 9. $50g \text{ of pure CaCO}_3$ is heated to liberate CO₂. Liberated CO₂ required 0.4 mol of moist ammonia to yield only $(NH_4)_2CO_3$. Find the volume of CO₂ liberated at STP adding excess dil. HCl to this heated residue.
 - (A) zero (B) 4.42 L (C) 6.81 L (D) 6.72 L
- **10.** For the reaction

 $I^- + ClO_3^- + H_2SO_4 \rightarrow Cl^- + HSO_4^- + I_2$

The correct statement(s) in the balanced equation is / are :

- (A) Stoichiometric coefficient of HSO_4^{-} is 6
- (B) Iodide is oxidized
- (C) Sulphur is reduced
- (D) H_2O is one of the products

RR0129

RR0128

11. A sample of $KMnO_4$ solution required 50 ml when titrated against 3 mmol of oxalic acid. The normality of same solution in reaction with alkaline H_2O_2 is

(A) 0.120 N (B) 0.060 N (C) 0.072 N (D) 0.0	36 N
--	------

RR0130

Assertion Reason Type

12. Statement-1 :- Moles of $KMnO_4$ required for oxidation of Fe^{2+} in acidic and basic medium will be different.

Statement–2 :- Final oxidation state to which Mn^{7+} will be reduced will be different in case of acidic and basic medium.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

RR0131

13. Statement–1:- Mass of a particular substance that combine with 8 gm of oxygen is said to be equivalent weight of substance.

Statement-2:-x gm of metal gave y gm of its oxide, so equivalent weight of metal is $\left(\frac{x}{y-x}\right) \times 8$

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

Statement-1: Degree of hardness of water is measured in terms of ppm of CaCO₃.
 Statement-2: If water contains 120 ppm of MgSO₄, and 2ppm NaCl, its hardness in terms of CaCO₃ > 100 ppm.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

MATCH THE COLUMN

15.	Column-I	Column-II
	(A) $\underline{P_2H_4} \longrightarrow PH_3 + P_4H_2$	(p) $E = \frac{3M}{4}$
	(B) $\underline{I_2} \longrightarrow I^- + IO_3^-$	(q) $E = \frac{3M}{5}$
	(C) $\operatorname{MnO}_4^- + \operatorname{Mn}^{2+} + \operatorname{H}_2O \longrightarrow \operatorname{Mn}_3O_4^- + \operatorname{H}^+$	(r) $E = \frac{15M}{26}$
		EM

(D) $\underline{\mathrm{H}_{3}\mathrm{PO}_{2}} \longrightarrow \mathrm{PH}_{3} + \mathrm{H}_{3}\mathrm{PO}_{3}$ (s) $\mathrm{E} = \frac{5\mathrm{M}}{6}$

RR0134

RR0133

Paragraph for Q.16 to Q.19

Equivalent weight = $\frac{\text{Molecular weight / Atomic weight}}{n - \text{factor}}$

n-factor is very important in redox as well as non-redox reactions. With the help of n-factor we can predicts the molar ratio of the reactant species taking part in reactions. The reaciprocal of n-factor's ratio of the reactants is the molar ratio of the reactants.

In general n-factor of acid/base is number of moles of H^+/OH^- furnished per mole of acid/base. n-factor of a reactant is no. of moles of electrons lost or gained per mole of reactant.

Example 1 :

- 1. In acidic medium : $KMnO_4$ (n = 5) $\longrightarrow Mn^{2+}$
- 2. In neutral medium : $KMnO_4$ (n = 3) $\longrightarrow Mn^{2+}$
- 3. In basic medium : $KMnO_4$ (n = 1) $\longrightarrow Mn^{6+}$

Example 2 : $FeC_2O_4 \longrightarrow Fe^{3+} + 2CO_2$

Total no. of moles of e^- lost by 1 mole of $FeC_2O_4 = 1 + 1 \times 2 \Rightarrow 3$

 \therefore n-factor of FeC₂O₄ = 3

16.	n-factor of Ba(MnO ₄	$)_2$ in acid	ic medium is :			
	(A) 2	(B) 6		(C) 10		(D) none of these
						RR0135
17.	For the reaction,					
	$H_{2}PO_{2} + NaOH$	\longrightarrow Nal	$H_{PO} + H_{O}$			
	What is the equivale	ent weigl	1t of H.PO. ? (1	mol. wt. is M)		
	(A) M	(B) M	[/2	(C) M/3		(D) none of these
		(D) IV	1/ 2	(\mathbf{C}) with \mathbf{S}		(D) none of these PD0136
18.	For the reaction, Fe	_{0.95} O (mo	olar mass : M) -	\longrightarrow Fe ₂ O ₃ . What	is the o	eq. wt. of $Fe_{0.95}O$?
	(A) $\frac{M}{0.85}$	(B) <u>_</u>	M 9.95	(C) $\frac{M}{0.8075}$		(D) none of these
						RR0137
10	In the reaction vVC	$) + v E_{0}$	$\sum E_{a}O + V$	$V \mathbf{O}$. What is the	م مالیو	f y and y respectively?
17.		$(\mathbf{D}) 2$	$J_3 \longrightarrow \Gamma CO + V$	(C) 2 2	value o	(D) none of these
	(A) 1, 1	(B) 2	, 3	(C) 3, 2		(D) none of these
	· /·					KK0138
Tab	le type question :		C - 1 H		0-1	
	Column-l	••••		1		umn-111
	(1 mole of each oxid	121ng)	(oxidation n	umber	(Ke	ducing agents)
	(A) KMrQ (acidia)		$(\mathbf{D}) \mathbf{O} \mathbf{N} \circ \mathbf{f} \mathbf{M}$		(1)	2 mala of EoSO
	(A) $KWnO_4$ (actual)		$(\mathbf{P}) \mathbf{O}.\mathbf{N} \text{ of } \mathbf{M}$	n = 4	(1)	5 mole of $FeSO_4$
	(b) RWIIO_4 (neutral)		(\mathbf{Q}) U.N of M.	11 – 7	(2)	to HIO.
	(C) MnO _a (acidic)		(R) O.N of Cr	r = 6	(3)	1 mole of $K_aC_aO_a$
	 (C) MnO₂ (acidic) (D) K₂CrO₂ (acidic) 		(R) O.N of Cr(S) O.N of Cr	r = 6 r = 7	(3) (4)	1 mole of $K_2C_2O_4$ 1.5 mole K_SO
20.	 (C) MnO₂ (acidic) (D) K₂CrO₄ (acidic) Which of the followin 	g is corr	(R) O.N of Cr(S) O.N of Crrect	r = 6 r = 7	(3) (4)	1 mole of $K_2C_2O_4$ 1.5 mole K_2SO_3
20.	 (C) MnO₂ (acidic) (D) K₂CrO₄ (acidic) Which of the followin (A) A; P; 2 	g is corr (B) A ;	 (R) O.N of Cr (S) O.N of Cr rect Q:4 	r = 6 r = 7 (C) B; Q; 1	(3) (4)	 1 mole of K₂C₂O₄ 1.5 mole K₂SO₃ (D) B ; Q ; 3
20.	 (C) MnO₂ (acidic) (D) K₂CrO₄ (acidic) Which of the followin (A) A; P; 2 	g is corr (B) A ;	 (R) O.N of Cr (S) O.N of Cr rect Q; 4 	r = 6 r = 7 (C) B; Q; 1	(3) (4)	 1 mole of K₂C₂O₄ 1.5 mole K₂SO₃ (D) B ; Q ; 3 RR0139
20. 21.	 (C) MnO₂ (acidic) (D) K₂CrO₄ (acidic) Which of the followin (A) A; P; 2 Which of the followin 	g is corr (B) A ; g is corr	 (R) O.N of Cr (S) O.N of Cr rect Q; 4 	r = 6 r = 7 (C) B; Q; 1	(3) (4)	 1 mole of K₂C₂O₄ 1.5 mole K₂SO₃ (D) B ; Q ; 3 RR0139
20. 21.	 (C) MnO₂ (acidic) (D) K₂CrO₄ (acidic) Which of the followin (A) A; P; 2 Which of the followin (A) A; Q; 3 	g is corr (B) A ; g is corr (B) C ;	 (R) O.N of Cr (S) O.N of Cr rect Q; 4 rect P; 3 	r = 6 r = 7 (C) B; Q; 1 (C) C; P; 4	(3) (4)	 1 mole of K₂C₂O₄ 1.5 mole K₂SO₃ (D) B ; Q ; 3 RR0139 (D) C ; Q ; 1
20. 21.	 (C) MnO₂ (acidic) (D) K₂CrO₄ (acidic) Which of the followin (A) A; P; 2 Which of the followin (A) A; Q; 3 	g is corr (B) A ; g is corr (B) C ;	 (R) O.N of Cr (S) O.N of Cr rect Q; 4 rect P; 3 	r = 6 r = 7 (C) B; Q; 1 (C) C; P; 4	(3) (4)	1 mole of K ₂ C ₂ O ₄ 1.5 mole K ₂ SO ₃ (D) B ; Q ; 3 RR0139 (D) C ; Q ; 1 RR0139
20.21.22	 (C) MnO₂ (acidic) (D) K₂CrO₄ (acidic) Which of the followin (A) A; P; 2 Which of the followin (A) A; Q; 3 Which of the followin 	g is corr (B) A ; g is corr (B) C ; g is corr	 (R) O.N of Cr (S) O.N of Cr rect Q; 4 rect P; 3 rect 	r = 6 r = 7 (C) B; Q; 1 (C) C; P; 4	(3)(4)	1 mole of K ₂ C ₂ O ₄ 1.5 mole K ₂ SO ₃ (D) B ; Q ; 3 RR0139 (D) C ; Q ; 1 RR0139
20.21.22.	 (C) MnO₂ (acidic) (D) K₂CrO₄ (acidic) Which of the followin (A) A; P; 2 Which of the followin (A) A; Q; 3 Which of the followin (A) D; R: 1 	g is corr (B) A ; g is corr (B) C ; g is corr (B) D :	 (R) O.N of Cr (S) O.N of Cr ect Q; 4 ect P; 3 ect R; 2 	r = 6 r = 7 (C) B; Q; 1 (C) C; P; 4 (C) D; S: 1	(3) (4)	 1 mole of K₂C₂O₄ 1.5 mole K₂SO₃ (D) B ; Q ; 3 RR0139 (D) C ; Q ; 1 RR0139 (D) D ; R : 4

1.01

•		EXERC	ISE # J-MAINS				
1.	Given:			[JEE(Main-online)-2013]			
	$X Na_2 HAsO_3$	+ Y NaBrO ₃ +ZHCl \rightarrow	$NaBr + H_3AsO_4 + NaO_4$	C1			
	The values of X, Y	and Z in the above redo	ox reaction are respectiv	vely:			
	(1) 2, 1, 3	(2) 3, 1, 6	(3) 2, 1, 2	(4) 3, 1, 4			
				RR0140			
2.	Consider the follo	owing reaction :		[JEE(Main)-2013]			
	$xMnO_{4}^{-} + yC_{2}O_{4}^{2-} +$	$zH^+ \rightarrow xMn^{2+} + 2yCC$	$O_2 + \frac{z}{2} H_2O$				
	The values of x, y	and z in the reaction are	respectively :-				
	(1) 5,2 and 16	(2) 2,5 and 8	(3) 2, 5 and 16	(4) 5,2 and 8			
				RR0141			
3.	How many electro	ons are involved in the	following redox reaction	on ? [JEE(Main-online)-2014]			
	$Cr_2O_7^{2-} + Fe^{2+} +$	$-C_2O_4^{2-} \rightarrow Cr^{3+} + Fe^3$	$^{+}+\mathrm{CO}_{2}$ (Unbalanced))			
	(1) 3	(2) 4	(3) 5	(4) 6			
				RR0142			
4.	Consider the reac	tion		[JEE(Main-online)-2014]			
	$H_2SO_{3(aq)} + Sn_{(aq)}^{4+}$	$+ H_2O_{(1)} \rightarrow Sn_{(aq)}^{2+} + HSO_4^{-}$	$_{(aq)} + 3H^{+}_{(aq)}$				
	Which of the follo	owing statements is corr	ect?				
	(1) H_2SO_3 is the reducing agent because it undergoes oxidation						
	(2) H_2SO_3 is the reducing agent because it undergoes reduction						
	(3) Sn ⁴⁺ is the reducing agent because it undergoes oxidation						
	(4) Sn^{4+} is the ox	idizing agent because it	undergoes oxidation				
				RR0143			
5.	In which of the fo	ollowing reaction H ₂ O ₂	acts as a reducing agen	nt ? [JEE(Main)-2014]			
	(a) $H_2O_2 + 2H^+ +$	$-2e^- \rightarrow 2H_2O$	(b) $H_2O_2 - 2e^-$ -	$\rightarrow O_2 + 2H^+$			
	(c) $H_2O_2 + 2e^- \rightarrow$	→ 2OH-	(d) $H_2O_2 + 2OH$	$I^ 2e^- \rightarrow O_2 + 2H_2O$			
	(1) (a), (c)	(2) (b), (d)	(3) (a), (b)	(4) (c), (d)			
				RR0144			
6.	The molecular for	ormula of a commercia	l resin used for excha	inging ions in water softening is			
	C ₈ H ₇ SO ₃ Na (Mol	l. w.t 206). What would	be the maximum upta	ke of Ca ²⁺ ions by the resin when			
	expressed in mole	e per gram resin?		[JEE (Main)-2015]			

(1)
$$\frac{2}{309}$$
 (2) $\frac{1}{412}$ (3) $\frac{1}{103}$ (4) $\frac{1}{206}$

7.	The volume of 0 OH ⁻ in aqueous	.1N dibasic acid sufficie solution is :	ent to neutralize 1 g of a	a base that furnishes 0.04 mole of [JEE(Main)-OnLine-2016]		
	(1) 400 mL	(2) 200 mL	(3) 600 mL	(4) 800 mL		
				RR0146		
8.	Which of the fol	lowing reactions is an ex	kample of a redox react	tion ? [JEE(Main)-2017]		
	(1) $XeF_4 + O_2F_2$	$\rightarrow \text{XeF}_6 + \text{O}_2$	(2) $XeF_2 + PF_5 -$	\rightarrow [XeF] ⁺ PF ₆ ⁻		
	(3) $XeF_6 + H_2O$	$\rightarrow \text{XeOF}_4 + 2\text{HF}$	(4) $XeF_6 + 2H_2C$	$0 \rightarrow \text{XeO}_2\text{F}_2 + 4\text{HF}$		
	с <u>-</u>		~ <u>-</u>	RR0147		
9.	In which of the f	ollowing reaction, hydro	ogen peroxide acts as a	n oxidizing agent ?		
	(1) $I_2 + H_2O_2 + I_2O_2$	$2\mathrm{OH}^{-} \rightarrow 2\mathrm{I}^{-} + 2\mathrm{H}_{2}\mathrm{O} +$	O ₂	[JEE(Main)-OnLine-2017]		
	(2) HOCl + H_2O	$0_2 \rightarrow H_3O^+ + Cl^- + O_2$				
	(3) $PbS + 4H_2O_2$	$_2 \rightarrow PbSO_4 + 4H_2O$				
	(4) $2MnO_4^- + 3H$	$V_2O_2 \rightarrow 2MnO_2 + 3O_2 + 2O_2$	$2H_2O + 2OH^-$			
				RR0148		
10.	In KO_2 , the nature	re of oxygen species and	l the oxidation state of	oxygen atom are, respectively		
	(1) Superoxide an	nd -1/2	(2) Oxide and -2	2 [JEE(Main)-OnLine-2018]		
	(3) Peroxide and	-1/2	(4) Superoxide an	nd –1		
				RR0150		
11.	In the reaction of producing one me	Foxalate with permagana plecule of CO_2 is :	te in acidic medium, th	e number of electrons involved in [JEE(Main)-(Jan.)-2019]		
	(1) 10	(2) 2	(3) 1	(4) 5		
				RR0151		
12.	The chemical nat	ure of hydrogen preoxide	e is :-	[JEE(Main)-(Jan.)-2019]		
	(1) Oxidising and reducing agent in acidic medium, but not in basic medium.					
	(2) Oxidising and reducing agent in both acidic and basic medium					
	(3) Reducing age	ent in basic medium, but	not in acidic medium			
	(4) Oxidising age	ent in acidic medium, bu	t not in basic medium.			
				RR0152		
13.	The hardness of	a water sample (in terms	s of equivalents of CaC	O_3) containing 10 ⁻³ M CaSO ₄ is :		
	(molar mass of C	$aSO_4 = 136 \text{ g mol}^{-1}$	•	[JEE(Main)-(Jan.)-2019]		
	(1) 100 ppm	(2) 50 ppm	(3) 10 ppm	(4) 90 ppm		
				RR0153		

- 50 mL of 0.5 M oxalic acid is needed to neutralize 25 mL of sodium hydroxide solution. The amount of 14. NaOH in 50 mL of the given sodium hydroxide solution is : [**JEE**(**Main**)-(**Jan**.)-2019] (1) 4 g(2) 2 g (3) 8 g (4) 1 g **RR0154** In order to oxidise a mixture one mole of each of FeC₂O₄, Fe₂(C₂O₄)₃, FeSO₄ and Fe₂(SO₄)₃ in acidic 15. medium, the number of moles of KMnO₄ required is -[JEE(Main)-(April)-2019] (1)3 (2) 2(3)1(4) 1.5**RR0155** 16. The correct order of the oxidation states of nitrogen in NO, N₂O, NO₂ and N₂O₃ is : (1) $NO_2 < N_2O_3 < NO < N_2O_3$ (2) $NO_2 < NO < N_2O_3 < N_2O_3$ (3) $N_2O < N_2O_3 < NO < NO_2$ (4) $N_2O < NO < N_2O_3 < NO_2$ [JEE(Main)-(April)-2019] **RR0156** 17. An example of a disproportionation reaction is : [JEE(Main)-(April)-2019] (1) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$ (2) $2MnO_4^-+10I^-+16H^+ \rightarrow 2Mn^{2+}+5I_2^+8H_2O$
 - (3) $2CuBr \rightarrow CuBr_2 + Cu$ (4) $2NaBr+Cl_2 \rightarrow 2NaCl+Br_2$

18. 100 mL of a water sample contains 0.81 g of calcium bicarbonate and 0.73 of magnesium bicarbonate. The hardness of this water sample expressed in terms of equivalents of $CaCO_3$ is: (molar mass of calcium bicarbonate is 162 g mol⁻¹ and magnesium bicarbonate is 146 gmol⁻¹) (1) 1,000 ppm (2) 10,000 ppm [JEE(Main)-(April)-2019] (3) 100 ppm (4) 5,000 ppm

RR0159

RR0158

19. 25 ml of the given HCl solution requires 30 mL of 0.1 M sodium carbonate solution. What is the volume of this HCl solution required to titrate 30 mL of 0.2 M aqueous NaOH solution?

[JEE(Main)-(Jan)-2019]

(1) 25 mL (2) 50 mL (3) 12.5 mL (4) 75 mL

RR0160

Oxidation number of potassium in K₂O, K₂O₂ and KO₂, respectively, is : [JEE(Main)-(Jan)-2020] 20. (2) +1, +2 and +4(1) + 1, +4 and +2

(4) +2, +1 and $+\frac{1}{2}$ (3) + 1, +1 and +1

21. The compound that cannot act both as oxidising and reducing agent is :[**JEE**(**Main**)-(**Jan**)-2020] (1) H_2O_2 (2) H_2SO_3 (3) HNO_2 (4) H_3PO_4

RR0168

22. The hardness of a water sample containing 10^{-3} M MgSO₄ expressed as CaCO₃ equivalents (in ppm) is _____. [JEE(Main)-(Jan)-2020] (molar mass of MgSO₄ is 120.37 g/mol)

EXERCISE # J-ADVANCED

1.	Reduction of the metal centre in aqueous perma	anganate ion involves -	[JEE-2011]
	(A) 3 electrons in neutral medium	(B) 5 electrons in neutral medium	

(C) 3 electrons in alkaline medium (D) 5 electrons in acidic medium

RR0161

2. Reaction of Br_2 with Na_2CO_3 in aqueous solution gives sodium bromide and sodium bromate with evolution of CO_2 gas. The number of sodium bromide molecules involved in the balanced chemical equation is. [JEE- 2011]

RR0162

Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen(A) HNO₃, NO, NH₄Cl, N₂
(B) HNO₃, NO, N₂, NH₄Cl
(C) HNO₃, NH₄Cl, NO, N₂
(D) NO, HNO₃, NH₄Cl, N₂

[JEE- 2012]
RR0163

4. 25 mL of household bleach solution was mixed with 30 mL of 0.50 M KI and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of 0.25 N Na₂S₂O₃ was used to reach the end point. The molarity of the household bleach solution is [JEE- 2012]
(A) 0.48 M
(B) 0.96 M
(C) 0.24 M
(D) 0.024 M

RR0164

 In neutral or faintly alkaline solution, 8 moles permanganate anion quantitatively oxidize thiosulphate anions to produce X moles of a sulphur containing product. the magnitude of X is[JEE- 2016] RR0165

6. To measure the quantity of MnCl₂ dissolved in an aqueous solution, it was completely converted to KMnO₄ using the reaction, [JEE- 2018]

 $MnCl_2 + K_2S_2O_8 + H_2O \rightarrow KMnO_4 + H_2SO_4 + HCl$ (equation not balanced).

Few drops of concentrated HCl were added to this solution and gently warmed. Further, oxalic acid (225 g) was added in portions till the colour of the permanganate ion disappeard. The quantity of $MnCl_2$ (in mg) present in the initial solution is _____.

(Atomic weights in g mol^{-1} : Mn = 55, Cl = 35.5)

ANSWER-KEY

	EXERCISE # S-I									
1.	(a)	+6	(b)	+5	(c)	+2	(d)	-4		
	(e)	+4	(f)	-1	(g)	+2	(h)	+6		
	(i)	+3								
2.	(a)	Reduction			(b)	Oxidation				
	(c)	Reduction			(d)	Oxidation				
3.	(a)	Oxidant : O ₂	; Red	uctant : Zn						
	(b) Oxidant : H ⁺ ; Reductant : Zn									
	(c) Oxidant : NO ₃ ⁻ ; Reductant : Zn									
4.	(i)	$Cu + 4HNO_3 - $	\rightarrow ($\operatorname{Cu(NO_3)}_2 + 2\operatorname{NO}_2$	+ 2H					
	(ii) $\operatorname{Br}_2 + 5\operatorname{H}_2\operatorname{O}_2 \longrightarrow 2\operatorname{Br}\operatorname{O}_3^- + 4\operatorname{H}_2\operatorname{O} + 2\operatorname{H}^+$ (iii) $\operatorname{N}_2 \cap \overline{\operatorname{O}_2} = \operatorname{TD}_2^{+2} = \operatorname{OT}_2^{+2} = \operatorname{TD}_2^{+3} = \operatorname{OT}_2^{+3} = \operatorname{OT}_2^{+$									
	(III) (iv)	$MnO_4 + 5Fe$ $MnO_4 + 2C\Gamma_4$	+ 8H /H ⁺ _	\longrightarrow Mn ⁺² + Cl	е + ⊾ 2 H	4H ₂ O				
	(\mathbf{v})	$3ClO^{-} + 2CrO$	-+20	\rightarrow Nm $+$ Cl_2	$^{-211}_{2}$	²⁻ + H O				
5.	(i)	$2MnO_{4}^{-} + 6I^{-} + 4$	2 · -·	$\longrightarrow 2MnO_3 + 3l_3$	+80	H^-				
	(i) $H^+ + 2MnO^- + 5SO + 2HO = 2Mn^{2+} + 5HSO^-$									
	(ii) $2E_2^{2+} + H = 2E_2^{3+} + 2H = 2E_2^{3+} + 2H = 0$									
	$(\mathbf{m}) 2\mathbf{F}\mathbf{e}^{-} + \mathbf{H}_2\mathbf{O}_2 + 2\mathbf{H}^{-} \longrightarrow 2\mathbf{F}\mathbf{e}^{-+} + 2\mathbf{H}_2\mathbf{O}$									
	(iv)	$Cr_2O_7^{2-} + 3SO_2 +$	-2H ⁺ -	$\longrightarrow 2Cr^{3+} + 3SO_4^2$	⁻ + H	$_{2}O$				
6.	Ans.	(1) 1	(2) 2	, 1	(3) 1					
		(4) 1	(5) 2		(6) 1					
7.	(1) 1		(2) 1		(3) 1		(4) 1		(5) 2	
8.	98, 4	9, 32.67	9.	Ans.21	10.	Ans. (i) $\frac{8}{3}$	$\frac{3.5}{6}$;	(ii)	$\frac{17}{3}$	
11.	Ans.	6	12.	Ans.5	13.	Ans.(8.097	(mL)		5	
14.	Ans.((40)	15.	Ans.40 ml	16.	Ans.60 ml		17.	Ans.12	5 L
18.	Ans.	12.5 L	19.	Ans. $V = 3$ lit.	20.	Ans. 200 n	ıL	21.	Ans.	30 N
22.	Ans.((4.48)	23.	Ans. 10 N	24.	Ans.2.12 g	/L	25.	Ans.+ 3	3
26.	Ans.2	Zero	27.	Ans.V = 160 ml	28.	Ans.0.588	N	29.	Ans.4 li	t.
30.	Ans.	$\frac{2}{3}$	31.	Ans. 8/5	32.	Ans. 1.25 1	nL	33.	Ans.1.4	06%
34.	Ans.	V = 25 mL	35.	Ans.1.28%	36.	Ans.40 g,	0.051	8N		
37.	Ans.((Ca ²⁺ , Mg ²⁺ , Na	+)							

38. Ans.(19.09)

—				Kead		quivale	eni Concep	1 (51	ocnio	<i>metry-11)</i> 163	
				EXERC	TSE #	• <i>S-II</i>					
1.	(a)	+2.5	(b)	+4/3	(c)	-1/3		(d)	+8/3		
	(e)	-3, -1	(f)	-2, +2	(g)	+16/3	3	(h)	0		
	(i)	+2, -1	(j)	+2	(k)	0		(l)	+1/2		
	(m)	-1/2	(n)	+1	(0)	+3		(p)	-3		
	(q)	+3	(r)	+2	(s)	+4					
2.	(a)	+3	(b)	+3, +6	(c)	+2	(d)	$+\frac{20}{9}$	$\frac{00}{3}$		
	(e)	+6	(f)	+6	(g)	+6	(h)	+5			
	(r)	+2	(s)	+3							
3. (i) 6KMnO ₄ (aq.) + 10FeC ₂ O ₄ (aq.) + 24H ₂ SO ₄ (aq.) \longrightarrow											
			6N	$InSO_4(aq.) + 5$	Fe ₂ (SO	4) ₃ (aq.	$) + 20CO_{2}($	g) +	3K ₂ SO	$O_4 + 24H_2O(l)$	
	(ii)	$5P_4(s) + 12OH$	-(aq.)	+ $12H_2O \longrightarrow$	8PH ₃ (aq) + 1	2HPO_2^- (a	q.)			
	(iii)	$3I_2(s) + 6NaOl$	H(aq.)	\longrightarrow 5NaI (ac	I.) + N a	aIO ₃ (aq	$(1.) + 3H_2O$	(l)			
	(iv)	3HNO ₂ (aq.) →	NO ₃	+ H^+ + 2NO(g)	$+ H_2C$)					
	(v) $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$ (vi) $5Cu_2S + 8MnO_4^- + 44H^+ \rightarrow 10Cu^{2+} + 5O_2 + 8Mn^{2+} + 22 H_2O$										
	(vii) HCHO (l) + [Ag(NH ₄),] ⁺ (aq.) + 2OH ⁻ (aq.) \rightarrow Ag(s) + 2NH ₄ (aq.) + HCOO ⁻ (aq.) + H,O(l								$O^{-}(aq.) + H_2O(l)$		
4.	KOI	H = 35%, Ca(OH)	$(I)_2 = 65$	5%							
5.	Ans.	. 31	2		6.	Ans.	12.5 <i>l</i>				
7.	Ans. 6 <i>l</i>					8. Ans. 16.66%					
9.	Ans. 3					10. Ans. 90.1%					
11.	1. Ans. (80) 12. Ans						16%				
13.	13. Ans. 24.46% 14. Ans. 0.47						0.47				
15.	Ans. (40) 16. Ans. (0.0626 M)										
				EXERC	CISE #	‡ 0-I					
1.	Ans.	. (C)	2.	Ans. (B)		3.	Ans. (B)		4.	Ans. (B)	
5.	Ans.	. (D)	6.	Ans. (A)		7.	Ans. (D)		8.	Ans. (A)	
9.	Ans.	. (D)	10	. Ans. (A)		11.	Ans. (B)		12.	Ans. (A)	
13.	Ans.	. (C)	14	. Ans. (C)		15.	Ans. (C)		16.	Ans. (D)	
17.	Ans.	. (A)	18	. Ans. (D)		19.	Ans. (D)		20.	Ans. (B)	
21.	Ans.	. (C)	22	. Ans. (D)		23.	Ans. (D)		24.	Ans. (D)	
25.	Ans.	. (A)	26	. Ans. (C)		27.	Ans. (D)		28.	Ans. (C)	
29.	Ans.	. (D)	30	. Ans. (A)		31.	Ans. (C)		32.	Ans. (B)	

Ans. (A)

Ans. (C)

Ans. (C)

Ans. (B)

34.

38.

42.

46.

Ans. (A)

Ans. (A)

Ans. (C)

Ans. (B)

35.

39.

43.

Ans. (B)

Ans. (D)

Ans. (D)

36.

40.

44.

Ans. (C)

Ans. (A)

Ans. (A)

33.

37.

41.

45.

164 JEE-Cl	hemistry
------------	----------

			EXERCISE	" # O-I	Ι		
1.	Ans. (A)	2.	Ans. (C)	3.	Ans. (B)	4.	Ans. (C)
5.	Ans. (A)	6.	Ans. (A)	7.	Ans. (B)	8.	Ans. (B)
9.	Ans. (C)	10.	Ans. (A,B,D)	11.	Ans. (C)	12.	Ans. (A)
13.	Ans. (B)	14.	Ans. (C)	15.	$(\mathbf{A}) \rightarrow \mathbf{s} ; (\mathbf{B})$	\rightarrow q ; (($C) \rightarrow \mathbf{r}; (\mathbf{D}) \rightarrow \mathbf{p}$
16.	Ans. (C)	17.	Ans. (A)	18.	Ans. (A)	19.	Ans. (B)
20.	Ans. (C)	21.	Ans. (B)	22.	Ans. (A,D)		
			EXERCISE #	J-MA	INS		
1.	Ans. (2)	2.	Ans. (3)	3.	Ans. (4)	4.	Ans. (1)
5.	Ans. (2)	6.	Ans. (2)	7.	Ans. (1)	8.	Ans. (1)
9.	Ans. (3)	10.	Ans. (1)	11.	Ans. (3)	12.	Ans. (2)
13.	Ans. (1)	14.	Ans. (1)	15.	Ans. (2)	16.	Ans. (4)
17.	Ans. (3)	18.	Ans. (2)	19.	Ans. (1)	20.	Ans. (3)
21.	Ans. (4)	22.	Ans. (100)				
		E	XERCISE # J-	ADVA	NCED		
1.	Ans. (A,C,D)	2.	Ans. (5)	3.	Ans. (B)	4.	Ans. (C)
5.	Ans. (6)	6.	Ans. (126)				