

Time and Distance

Time

The duration(or interval) spent to cover a certain distance is called time.

Distance

The length of path travelled by any object ehoeen two places is called distance.

Speed

The distance moved by an object in a specific time is known as speed.

i.e.
$$Speed = \frac{Distance}{Time}$$

Conversion of Unit

$$a \text{ km/h} = \frac{\text{a} \times 1000 \text{ m}}{3600 \text{ s}} = \frac{5\text{a}}{18} \text{ m/s}$$

$$a \text{ m/s} = \frac{a \times 3600 \text{ km}}{1000 \text{ s}} = \frac{18a}{5} \text{ km/h}$$

Average Speed

The average speed of an object over a given time interval is the total distance travlled by an object divided by the total time taken.

i.e. Average speed

$$= \frac{\text{Total distance travelled by an object}}{\text{Total time taken}}$$

If an object covers a distance at x km/h and the same distance at y km/h, then average speed by an object is $\frac{2xy}{x+y}$ km/h.

Example 1 A certain distance is covered in 3 h 48 min at 5 km/h. How much time will be taken to cover it at 28.5 km/h²?

(a) 30 min (b) 40 min (c) 45 min (d) 50 min

Sol. (b) Distance = Speed × time
=
$$5 \times \frac{19}{5}$$
 km = 19 km

Now, distance = 19 km and speed = 28.5 km/h ∴ Time taken = $\frac{\text{Distance}}{\text{Speed}} = \frac{19}{28.5} = \frac{19}{28.5} \times 60$ = 40 min

Example 2 A man completes 30 km of a journey at 6 km/h and the remaining 40 km of the journey in 5 h. His average speed for the whole journey is

the whole journey is
(a)
$$6\frac{4}{11}$$
 km/h
(b) $7\frac{1}{2}$ km/h

(c) 7 km/h

(d) None of these

Sol. (c) Here, total distance = (30 + 40) km = 70 km and total time = $\left(\frac{30}{6} + 5\right)$ h = 10 h

$$\therefore$$
 Average speed = $\frac{\text{Total distance}}{\text{Total time}} = \frac{70}{10} = 7 \text{ km/h}$

Important Formulae

- (i) If two bodies are moving in the same direction with speeds a km/h and b km/h starting from the same point at the same time, then their relative speed is (a-b) km/h, but if they are in opposite direction, it is (a+b) km/h.
- (ii) The distance covered by train in passing a pole or a standing man is equal to the length of the train.
- (iii) If a train of length I, m passes through a bridge or a platform or another train of length l_2 m, the running train travels a distance $(l_1 + l_2)$ m.
- (iv) Let the speed of a boat (or a body) in still water be x km/h and that of stream be y km/h, then
 - speed of boat downstream = (x + y) km/h
 - speed of boat upstream = (x y) km/h
- (v) Let the speed of boat in downstream and upstream be u km/h and v km/h, then
 - Speed of boat in still water = $\frac{1}{2}(u + v)$ km/h
 - Speed of current = $\frac{1}{2}(u-v)$ km/h

Example 3 A 100 m long train is moving at a speed of 60 km/h. In what time will it cross a sign pole?

(a) 6 s

(b) 5 s

(c) 8 s

(d)9s

Sol. (a) Here, speed of train = 60 km/h

$$=60 \times \frac{5}{18} = \frac{50}{3} \text{ m/s}$$

∴ Time taken to pass the pole = Time taken to cover a distance of 100 m at a speed of $\frac{50}{3}$ m/s = 100 × $\frac{3}{50}$ = 6 s

Example 4 The distance between two stations, Delhi and Amritsar is 450 km. A train starts at 4 pm from Delhi and moves towards Amritsar at an average speed of 60 km/h. Another train starts from Amritsar at 3:20 pm and moves towards Delhi at an average speed of 80 km/h. How far from Delhi will the two trains meet and at what time?

- (a) 180 km, 6:30 pm
- (b) 170 km, 6:50 pm
- (c) 180 km, 7:00 pm
- (d) None of these

Sol. (b) Suppose the two trains meet a distance of x km from Delhi. Let the trains from Delhi and Amritsar be A and B respectively. Then, Time taken by B to cover (450 - x) km

$$=\frac{450-x}{80}$$

Time taken by A to cover x km = $\frac{x}{60}$

$$\therefore \frac{450 - x}{80} - \frac{x}{60} = \frac{40}{60}$$

$$\Rightarrow \qquad 3(450-x)-4x=160$$

$$\Rightarrow 7x = 1190$$

x = 170 kmThus, the trains meet at a distance of 170 km

Time taken by A to cover 170 km = $\frac{170}{60}$

= 2 h 50 min

Hence, the train meet at 6:50 pm.

Example 5 The speed of a boat in still water is 10 km/h. If it can travel 26 km downstream and 14 km upstream in the same time, find the speed of the stream.

(a) 8 km/h

from Delhi.

- (b) 4 km/h
- (c) 5 km/h
- (d) 3 km/h

Sol. (d) Let the speed of the stream = x km/hSince, speed of boat in still water = 10 km/h :. Speed of boat in downstream = (x + 10) km/h and speed of boat in upstream = (10 - x) km/h.. Time taken to travel 26 km in downstream

$$=\frac{26}{10+x}\,\mathrm{h}$$

Time taken to travel 14 km upstream = $\frac{14}{10-r}$ h

According to the given condition,

$$\frac{26}{10+x} = \frac{14}{10-x}$$

$$\Rightarrow$$
 26(10 - x)=14(10 + x)

$$\Rightarrow$$
 260 - 26x = 140 + 14x

$$\Rightarrow$$
 40 $x = 120$

$$\Rightarrow$$
 $x = 3 \text{ km/h}$

Practice Exercise

1.	If a person travels $10\frac{1}{5}$ km in 3 h, then th	16
	distance covered by him in 5 h will be	

- (a) 17 km
- (b) 20 km
- (c) 22 km
- (d) None of these
- **2.** A car travels a distance of 840 km at a uniform speed. If the speed of the car is 10 km/h more then it takes 2 h less to cover the same distance. The original speed of the car was
 - (a) 45 km/h
- (b) 50 km/h
- (c) 60 km/h
- (d) 75 km/h
- **3**. The ratio between the rates of walking of A and B is 2:3 and therefore A takes 10 min more than the time taken by B to reach the destination. If A had walked at doubled the speed, he would have covered the distance in
 - (a) 30 min (b) 20 min (c) 15 min (d) 17 min
- **4.** Two boys start together to walk a certain distance, one at 3.75 km/hour and another at 3 km/hour. The former arrives half an hour before the latter. The distance (in km) is
 - (a) 9.5
- (b) 7.5
- (c) 6
- (d) 8
- **5.** A can go round a circular path 8 times in 40 min. If the diameter of the circle is increased to 10 times the original diameter, the time required by A to go round the new path once, travelling at the same speed as before is
 - (a) 25 min
- (b) 20 min
- (c) 50 min
- (c) 100 min
- **6.** A man goes uphill with an average speed of 24 km/h and comes down with an average speed of 36 km/h. The distance travelled in both the cases being the same, the average speed for the entire journey is
 - (a) 30 km/h
- (b) 28.8 km/h
- (c) 32 km/h
- (d) None of these

- 7. If a person travels $\frac{2}{5}$ th of a distance at 20 km/h, $\frac{1}{5}$ th of the distance 30 km/h and rest of the journey at 40 km/h, then what is his average speed for the entire journey?
 - (a) 27.77 km/h
- (b) 27.27 km/h
- (c) 37.77 km/h
- (d) None of these
- **8.** Two cyclists start from the same place in opposite directions. One goes towards north at 18 km/h and the other goes towards south at 20 km/h. What time will they take to be 47.5 km apart?
 - (a) $1\frac{1}{4}$ h
- (c) 3 h
- (d) None of these
- 9. Two trains of length of 120 m and 80 m are running in the same direction with velocities of 40 km/h and 50 km/h respectively. The time taken by them to cross each other is
 - (a) 60 s
- (b) 75 s
- (c) 72 s
- (d) 80 s
- **10**. A police car is ordered to chase a speeding car that is 5 km ahead. The car is travelling at an average speed of 80 km/h and the police car pursues it at an average speed of 100 km/h. How long does it take for the police car to overtake the other car? (a) 13 min (b) 15 min (c) 17 min (d) 19 min
- **11.** A car daiver, driving in a fog passes a pedestrian who was walking at the rate of 2 km/h in the same direction. The pedestrian could see the car for 6 min and it was visible to him up to a distance of 0.6 km. What was the speed of the car?
 - (a) 30 km/h
- (b) 15 km/h
- (c) 20 km/h
- (d) 8 km/h
- **12.** A train 700 m long is running at the speed of 72 km/h. If it crosses a tunnel in 1 min, then the length of the tunnel is (a) 650 m (b) 500 m (c) 550 m (d) 700 m

- 13. Two trains whose lengths are 180 m and 220 m respectively are running in directions opposite to one another with respective speeds of 40 km/h and 50 km/h. Time taken by them in crossing one another will be
 - (a) 17 s
- (b) 16 s
- (c) 18 s
- (d) 20 s
- **14.** Two trains start running at the same time from two stations 210 km apart and going in opposite directions cross each other at a distance of 100 km from one of the station. The ratio of their speed is
 - (a) 9:11
- (b) 10:11
- (c)11:9
 - (d) 11:10
- **15.** A man standing on a railway platform observes that a train going in one direction takes 4 s to pass him. Another train of same length going in the opposite direction takes 5 s to pass him. The time taken (in seconds) by the two trains to cross each other will be

- (a) $\frac{49}{9}$ (b) $\frac{40}{9}$ (c) $\frac{50}{9}$ (d) $\frac{31}{9}$

- 16. A boat goes 40 km upstream in 8 h and a distance of 36 km downstream in 6 h. The speed of the boat in standing water (in km/h) is
 - (a) 5

- (b) 6
- (c) 5.5
- (d)7
- 17. A motor boat takes 2 h to travel a distance of 9 km down the current and it takes 6 h to travel the same distance against the current. The speed of the boat in still water and that of the current (in km/h) respectively are
 - (a) 3, 2
- (b) 3.5, 2.5
- (c) 3, 1.5
- (d) 3, 1
- **18.** A boat goes downstream in half the time it taken to go upstream, then the ratio between the speed of the boat in still water to that of stream is
 - (a) 3:1
- (b) 1:2
- (c)1:3
- (d) 2:1

Answers

1	(a)	2	(c)	3	(c)	4	(b)	5	(c)	6	(b)	7	(b)	8	(a)	9	(c)	10	(b)
11	(d)	12	(b)	13	(b)	14	(d)	15	(b)	16	(c)	17	(c)	18	(a)				

Hints and Solutions

- **1.** (a) Speed = $\frac{\text{Distance}}{\text{Time}} = \frac{51}{5} \times \frac{1}{3} = \frac{17}{5} \text{ km/h}$
 - ∴ Distance = Speed × Time = $\frac{17}{5}$ × 5 = 17 km
- **2.** (c) Let the original speed be x km/h. According to the given condition,

$$\frac{840}{x} - \frac{840}{x+10} = 2$$

- 840(x+10) 840x = 2x(x+10) \Rightarrow
- $x^2 + 10x 4200 = 0$
- (x + 70)(x 60) = 0 \Rightarrow
 - $x = 60 \,\mathrm{km/h}$
- **3.** (c) Ratio of time taken = $\frac{1}{2} : \frac{1}{3} = 3 : 2$

$$\left[\because \operatorname{speed} \propto \frac{1}{\operatorname{time}}\right]$$

Suppose B takes $x \min$. Then, A takes $(x + 10) \min$.

$$\therefore \frac{x+10}{x} = \frac{3}{2} \implies 2(x+10) = 3x \Rightarrow x = 20$$

Thus, A takes 30 min.

As A double the speed, it will take 15 min.

4. (b) Let the distance be x km.

Then,
$$\frac{x}{3} - \frac{x}{3.75} = \frac{1}{2}$$

$$\Rightarrow 0.75x = \frac{3 \times 3.75}{2} \Rightarrow x = \frac{3 \times 3.75}{2 \times 0.75}$$

$$\Rightarrow$$
 $x = 7.5 \text{ km}$

5. (c) Time taken in completing 1 round = 5 min

As the diameter becomes 10 times, so the circumference also becomes 10 times.

.. Time take in completing 1 round

$$= 5 \times 10 = 50 \,\mathrm{min}$$

6. (b) Average speed =
$$\frac{2xy}{x + y} = \frac{2 \times 24 \times 36}{24 + 36}$$

= 28.8 km/h

7. (b) Let the total distance be d km/h.

∴ Average speed =
$$\frac{1}{\frac{2d}{5} \times \frac{1}{20} + \frac{d}{5} \times \frac{1}{30} + \frac{2d}{5} + \frac{1}{40}}$$
$$= \frac{600}{2 \times 6 + 4 + 2 \times 3}$$
$$= \frac{300}{11} = 27.27 \text{ km/h}$$

8. (a) Since, they are in opposite direction. So, relative speed = 18 + 20 = 38 km/h

For 47.5 km apart, time taken =
$$\frac{1}{38} \times 47.5$$

= $1\frac{1}{4}$ h

9. (c) Since, the trains are running in same direction, therefore

Relative speed = (50 - 40) km/h

$$=10 \times \frac{5}{18} = \frac{25}{9}$$
 m/s

Required time = Time taken to cover

$$(120 + 80)$$
 at $\frac{25}{9}$ m/s = $200 \times \frac{9}{25}$ = 72 s

10. (b) Since, police car and other car are moving in same direction, so

speed =
$$100 - 80 = 20 \text{ km/h}$$
.

Now, police car has to travel 5 km to overtake other car.

.. Required time =
$$\frac{5}{20} \times 60 \text{ min} = 15 \text{ min}$$

11. (d) Let the speed of the car be x km/h.

Then, the relative speed = (x - 2) km/h

$$\therefore \qquad x - 2 = \frac{0.6}{6/60}$$

$$\Rightarrow$$
 $x-2=6 \Rightarrow x=8 \text{ km/h}$

12. (b) Speed =
$$72 \times \frac{5}{18} = 20 \text{ m/s}$$

Let the length of tunnel be x m.

Then,
$$\frac{700 + x}{20} = 60 \Rightarrow x = 500 \text{ m}$$

13. (b) Since, the trains are running in opposite direction, therefore

Relative speed =
$$(40 + 50)$$
 km/h = $90 \times \frac{5}{18}$ m/s

$$= 25 \, \text{m/s}$$

∴ Required time = Time taken to cover (180 + 220) at 25 m/s = $\frac{400}{25}$ = 16 s

14. (d) Let their respective speeds be x km/h and y km/h respectively. Then, the time taken by Ist train to cover 110 km = Time taken by IInd train to cover 100 km

Thus,
$$\frac{110}{x} = \frac{100}{y} \Rightarrow \frac{x}{y} = \frac{11}{10}$$

15. (b) Let the length of each train be x m.

Then, speed of first train = $\frac{x}{4}$ m/s

and speed of second train = $\frac{x}{5}$ m/s

Relative speed =
$$\left(\frac{x}{4} + \frac{x}{5}\right)$$
 m/s = $\frac{9x}{20}$ m/s

:. Time taken to cross each other

= Time taken to cover $2x \text{ m at} \left(\frac{9x}{20}\right) \text{ m/s}$

$$=2x \times \frac{20}{9x} = \frac{40}{9}$$
 s

16. (c) Rate of upstream = $\frac{40}{9}$ = 5 km/h

Rate of downstream = $\frac{36}{6}$ = 6 km/h

 \therefore Rate in still water = $\frac{1}{2}$ (5 + 6) = 5.5 km/h

17. (c) Rate downstream = $\frac{9}{2}$ = 4.5 km/h

Rate upstream = $\frac{9}{6}$ = 1.5 km/h

 \therefore Rate in still water = $\frac{1}{2}$ (4.5 + 1.5) = 3 km/h

Rate of the current = $\frac{1}{2}$ (4.5 – 1.5) = 1.5 km/h

18. (a) Let the speed of the boat in still water be x km/h and that of the stream be y km/h.

Then, speed downstream = (x + y) km/hand speed upstream = (x - y) km/hLet k be the distance travelled.

Then,
$$\frac{k}{x+y} = \frac{1}{2} \left(\frac{k}{x-y} \right)$$

$$\Rightarrow \qquad 2x - 2y = x + y \Rightarrow x = 3y$$

$$\therefore \qquad \qquad x: y = 3:1$$