

IONIC EQUILIBRIUM

ACCORDING TO STRENGTH IONIC CONDUCTORS ARE OF 2 TYPES :

- 1. **Strong electrolyte** : Those ionic conductors which are completely ionized in aqueous solution are called as strong electrolyte.
 - *Ex.* Na⁺Cl⁻, K⁺Cl⁻, etc.
 - (a) Strong acid \rightarrow H₂SO₄, HCl, HNO₃ HClO₄, H₂SO₅, HBr, HI
 - (b) Strong base \rightarrow KOH, NaOH, Ba(OH)₂ CsOH, RbOH
 - (c) All Salts \rightarrow NaCl, KCl, CuSO₄.....

2. Weak electrolytes : Those electrolytes which are partially ionized in aqueous solution are called as weak electrolytes. For weak electrolytes the value of α is less than one.

Ex.

- (a) Weak acid \rightarrow HCN, CH₃COOH, HCOOH, H₂CO₃, H₃PO₃, H₃PO₂, B(OH)₃
- (b) Weak base \rightarrow NH₄OH, Cu(OH)₂, Zn(OH)₂, Fe(OH)₃, Al(OH)₃

ACIDS BASES AND SALTS :

Arrhenius concept :

Arrhenius Acid : Substance which gives H⁺ ion on dissolving in water (H⁺ donor)

- **Ex.** HNO_3 , $HClO_4$, HCl, HI, HBr, H_2SO_4 , H_3PO_4 etc.
- H_3BO_3 is not Arrhenius acid.
- Arrhenius base : Any substance which releases OH⁻ (hydroxyl) ion in water (OH⁻ ion donor).
 - First group elements (except Li.) form strong bases

Bronsted - Lowery concept : (Conjugate acid - base concept) (Protonic concept)

Acid : substances which donate H^+ are Bronsted Lowery acids (H^+ donor)

Base : substances which accept H^+ are Bronsted Lowery bases (H^+ acceptor)

Conjugate acid - base pairs :

In a typical acid base reaction

$$HX + B \implies X^- + HB^+$$

$$HX + B \implies HB^+ + X^-$$
acid base Conjugate Conjugate Base
Conjugate pair

	Acid	Conjugate base	Base	Conjugate acid
Ex :	HCl	Cl⁻	NH ₃	NH_4^+
	H ₂ SO ₄	HSO ₄	H ₂ O	H_3O^+
	HSO ₄	SO ₄ ²⁻	RNH ₂	RNH_3^+
	H ₂ O	OH⁻		

Ex.

LEWIS CONCEPT (electronic concept) :

An acid is a molecule/ion which can accept an electron pair with the formation of a coordinate bond.

Acid $\rightarrow e^{-}$ pair acceptor

Electron deficient molecules	: BF ₃ , AlCl ₃
Cations	: H^+ , Fe^{2+} , Na^+
Molecules with vacant orbitals	: SF ₄ , PF ₃

A base is any molecule/ion which has a lone pair of electrons which can be donated.

Base \rightarrow (One electron pair donor)

Ex.	Molecules with lone pairs	:	$\mathrm{NH_{3}},\ \mathrm{PH_{3}},\ \mathrm{H_{2}O},\ \mathrm{CH_{3}OH}$
	Anions	:	⁻ OH, H ⁻ , ⁻ NH ₂

IONIC PRODUCT OF WATER :

According to arrhenius concept

$$H_2O \implies H^+ + OH^-$$
 so, ionic product of water, $K_{\mu\nu} = [H^+][OH^-] = 10^{-14}$ at 25 (exp.)

Dissociation of water is endothermic, so on increasing temperature K_{w} increases.

 $\boldsymbol{K}_{\!\scriptscriptstyle w}$ increases with increase in temperature.

Now $pH = -log[H^{\dagger}] = 7$ and $pOH = -log[OH^{-}] = 7$ for water at 25 C (experimental) pH = 7 = pOH \Rightarrow neutral pH < 7 or pOH > 7 \Rightarrow acidic pH > 7 or pOH < 7 \Rightarrow Basic PH = 7 = pOH \Rightarrow Basic

• Ionic product of water is always a constant whatever has been dissolved in water since its an equilibrium constant so will be dependent only on temperature.

Degree of dissociation of water :

$$H_2O \implies H^+ + OH^- \implies \alpha = \frac{\text{no. of moles dissociated}}{\text{Total no. of moles initially taken}}$$

= $\frac{10^{-7}}{55.55} = 18 \quad 10^{-10} \text{ or } 1.8 \quad 10^{-7} \%$ [at 25 C]

Absolute dissociation constant of water :

$$H_{2}O \xrightarrow{} H^{+} + OH^{-} \qquad K_{a} = K_{b} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]} = \frac{10^{-7} \times 10^{-7}}{55.55} = 1.8 \quad 10^{-16}$$

So, $pK_{a} = pK_{b} = -\log(1.8 \quad 10^{-16}) = 16 - \log 1.8 = 15.74$

□ ACIDITY AND pH SCALE :

Acidic strength means the tendency of an acid to give $\mathrm{H_3O^{+}}\,\mathrm{or}\,\,\mathrm{H^{+}}\,\mathrm{ions}$ in water.

So greater then tendency to give H^* , more will be the acidic strength of the substance.

Basic strength means the tendency of a base to give OH⁻ ions in water.

So greater the tendency to give OH ions, more will be basic strength of the substance.

The concentration of H^+ ions is written in a simplified form introduced by Sorenson known as pH scale.

pH is defined as negative logarithm of activity of H^+ ions.

 $\therefore \quad pH = -\log a_{H^+} \text{ (where } a_{H^+} \text{ is the activity of } H^+ \text{ ions)}$

Activity of H^+ ions is the concentration of free H^+ ions or H_3O^+ ions in a dilute solution.

19

JEE-Chemistry Handbook

The pH scale was marked from 0 to 14 with central point at 7 at 25 C taking water as solvent.

If the temperature and the solvent are changed, the pH range of the scale will also change. For example

0 - 14 at 25 C ($K_w = 10^{-14}$)

Neutral point, pH = 7

0 - 13 at 80 C ($K_w = 10^{-13}$)

Neutral point, pH = 6.5

pH can also be negative or > 14

P pH Calculation of different Types of solutions :

(a) Strong acid solution :

- (i) If concentration is greater than 10^{-6} M.
 - In this case $\boldsymbol{H}^{\!\scriptscriptstyle +}\!$ ions coming from water can be neglected,
 - so $[H^+]$ = normality of strong acid solution
- (ii) If concentration is less than 10^{-6} M

In this case $\boldsymbol{H}^{\scriptscriptstyle +}$ ions coming from water cannot be neglected.

So $[H^{\dagger}]$ = normality of strong acid + H^{\dagger} ions coming from water in presence of this strong acid

(b) pH of a weak acid (monoprotic) Solution :

- Weak acid does not dissociated 100 % therefore we have to calculate the percentage dissociation using K_ dissociation constant of the acid.
- We have to use Ostwald's Dilution law (as have been derived earlier)

$$HA \iff H^{+} + A^{-}$$

$$t = 0 C \qquad 0 \qquad 0$$

$$t_{eq} C(1 - \alpha) C\alpha \qquad C\alpha \qquad K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{C\alpha^{2}}{1 - \alpha}$$

If
$$\alpha \le 1 \Rightarrow (1 - \alpha) \approx 1 \Rightarrow K_a \approx C\alpha^2 \Rightarrow \alpha = \sqrt{\frac{K_a}{C}}$$
 (is valid if $\alpha \le 0.1$ or 10%)

$$[H^{\dagger}] = C\alpha = C\sqrt{\frac{K_a}{C}} = \sqrt{K_a \times C} \text{ So } pH = \frac{1}{2}(pK_a - \log C)$$

on increasing the dilution $\Rightarrow C \downarrow = \alpha \uparrow$ and $[H^+] \downarrow \Rightarrow pH \uparrow$

(c) pH of a mixture of weak acid (monoprotic) and a strong acid solution :

- $\bullet \qquad \text{Weak acid and Strong acid both will contribute } H^{^+} \text{ ion.}$
- For the first approximation we can neglect the H⁺ ions coming from the weak acid solution and calculate the pH of the solution from the concentration of the strong acid only.
- To calculate exact pH, we have to take the effect of presence of strong acid on the dissociation equilibrium of the weak acid.
- ♦ If the total [H⁺] from the acid is more than 10⁻⁶ M, then contribution from the water can be neglected, if not then we have to take [H⁺] from the water also.

Relative strength of weak acids and bases :

For two acids of equimolar concentrations.

 $\frac{\text{Strength of acid (I)}}{\text{Strength of acid (II)}} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$

(d) pH of a mixture of two weak acid (both monoprotic) solution :

- Both acids will dissociate partially.
- Let the acid are $HA_1 & HA_2$ and their final concentrations are $C_1 & C_2$ respectively, then

20

II step

(Since $\alpha_1^{}, \, \alpha_2^{}$ both are small in comparision to unity)

$$K_{a_1} = (C_1 \alpha_1 + C_2 \alpha_2) \alpha_1$$
; $K_{a_2} = (C_1 \alpha_1 + C_2 \alpha_2) \alpha_2 \implies \frac{K_{a_1}}{K_{a_2}} = \frac{\alpha_1}{\alpha_2}$

$$[H^{*}] = C_{1}\alpha_{1} + C_{2}\alpha_{2} = \frac{C_{1}K_{a_{1}}}{\sqrt{C_{1}K_{a_{1}} + C_{2}K_{a_{2}}}} + \frac{C_{2}K_{a_{2}}}{\sqrt{C_{1}K_{a_{1}} + C_{2}K_{a_{2}}}} \implies [H^{*}] = \sqrt{C_{1}K_{a_{1}} + C_{2}K_{a_{2}}}$$

• If the dissociation constant of one of the acid is very much greater than that of the second acid then contribution from the second acid can be neglected.

(e) pH of a solution of a polyprotic weak acid :

Diprotic acid is the one, which is capable of giving 2 protons per molecule in water. Let us take a weak diprotic acid (H₂A) in water whose concentration is c M.

In an aqueous solution, following equilbria exist.

If

 α_1 = degree of ionization of H₂A in presence of HA⁻ K_{a_1} = first ionisation constant of H₂A

 α_2 = degree of ionisation of HA⁻ in presence of H₂A K_{a2} = second ionisation constant of H₂A

I step

$$(K_{eq})_{1}[H_{2}O] = \frac{[H_{3}O^{+}][HA^{-}]}{[H_{2}A]} = K_{a_{1}} \qquad (K_{eq})_{2}[H_{2}O] = \frac{[H_{3}O^{+}][A^{2-}]}{[HA^{-}]} = K_{a_{2}}$$

$$\therefore \quad K_{a_{1}} = \frac{(c\alpha_{1} + c\alpha_{1}\alpha_{2})[c\alpha_{1}(1 - \alpha_{2})]}{c(1 - \alpha_{1})} \qquad K_{a_{2}} = \frac{(c\alpha_{1} + c\alpha_{1}\alpha_{2})[c\alpha_{1}\alpha_{2})]}{c\alpha_{1}(1 - \alpha_{2})}$$

$$= \frac{[c\alpha_{1}(1 + \alpha_{2})][\alpha_{1}(1 - \alpha_{2})]}{1 - \alpha_{1}} \qquad (i) \qquad = \frac{[c\alpha_{1}(1 + \alpha_{2})]\alpha_{2}}{1 - \alpha_{2}} \qquad (ii)$$

Knowing the values of K_{a_1} , K_{a_2} and c, the values of α_1 and α_2 can be calculated using equations (i) and (ii) After getting the values of α_1 and α_2 , $[H_3O^+]$ can be calculated as

 $\left[H_{3}O^{+}\right]_{T} = c\alpha_{1} + c\alpha_{1}\alpha_{2}$

Finally, for calculation of $\ensuremath{\text{pH}}$

- If the total $[H_3O^+] < 10^{-6} \text{ M}$, the contribution of H_3O^+ from water should be added.
- If the total $[H_3O^{\dagger}] > 10^{-6} \text{ M}$, then $[H_3O^{\dagger}]$ contribution from water can be ignored. Using this $[H_3O^{\dagger}]$, pH of the solution can be calculated.

21

Approximation :

 \therefore 1 – $\alpha_2 \approx$ 1 and 1 + $\alpha_2 \approx$ 1

Thus, equation (i) can be reduced to $K_{a_1} = \frac{C\alpha_1 \times \alpha_1}{1 - \alpha_1}$

This is expression similar to the expression for a weak monoprotic acid.

• Hence, for a diprotic acid (or a polyprotic acid) the $[H_3O^+]$ can be calculated from its first equilibrium constant expression alone provided $K_{a_2} \leq K_{a_1}$

SALTS :

Salts are the ionic compounds formed when its positive part (Cation) come from a base and its negative part (Anion) come from an acid.

- Classification of salts :
- (1) Simple salts
- (2) Normal salt : (i) Acid salts (ii) Basic salts
- (3) Double salts
- (4) Complex salts
- (5) Mixed salts
- TYPES OF SALT HYDROLYSIS :
- (1) Hydrolysis of strong acid weak base [SA WB] type salt Ex. $CaSO_4$, NH_4Cl , $(NH_4)_2SO_4$, $Ca(NO_3)_2$, $ZnCl_2$, $CuCl_2$, $CaCl_2$

 $NH_4Cl + H_2O \longrightarrow NH_4OH + HCl$

 $NH_4^++Cl^- + H_2O \longrightarrow NH_4OH + H^+ + Cl^-$

$$NH_4^+ + H_2O \implies NH_4OH + H^+$$

Summary :

(1)
$$K_{h} = \frac{K_{w}}{K_{b}}$$

(2) $h = \sqrt{\frac{K_{h}}{C}} = \sqrt{\frac{K_{w}}{K_{b} \times C}}$
(3) $\left[H^{+}\right] = Ch = \sqrt{\frac{K_{w} \times C}{K_{b}}}$
(4) $pH = -\log [H^{+}]$
 $pH = 7 -\frac{1}{2}pK_{b} -\frac{1}{2}\log C$

(2) Hydrolysis of [WA – SB] type salt –
Ex. KCN, NaCN,
$$K_2CO_3$$
, $BaCO_3$, K_3PO_4
NaCN + $H_2O \implies$ NaOH + HCN
Na⁺ + CN⁻ + $H_2O \implies$ Na⁺ + OH⁻ + HCN
CN⁻ + $H_2O \implies$ HCN + OH⁻

Summary :

(1)
$$K_h = \frac{K_w}{K_a}$$
 (2) $h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{K_w}{K_a \times C}}$

(3)
$$[OH^-] = Ch = \sqrt{\frac{K_w \times C}{K_a}}$$
 (4) $[H^+] = \sqrt{\frac{K_w \times K_a}{C}}$

(5)
$$pH = -\log [H^+]$$

 $pH = 7 + \frac{1}{2} pK_a + \frac{1}{2} \log C$

(3) Hydrolysis of (WA - WB) type salt : Ex. NH₄CN, CaCO₃, (NH₄)₂ CO₃, ZnHPO₃

Summary :

(1)
$$K_{h} = \frac{K_{w}}{K_{a} \times K_{b}}$$

(2) $h = \sqrt{K_{h}} = \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}$
(3) $[H^{+}] = \sqrt{\frac{K_{w} \times K_{a}}{K_{b}}} = K_{a}.h$ (4) $pH = -\log [H^{+}]$
 $pH = 7 + \frac{1}{2} pK_{a} - \frac{1}{2} pK_{b}$

(4) Hydrolysis of [SA – SB] type salt –

- *Ex.* NaCl, $BaCl_2$, Na_2SO_4 , $KClO_4$ etc.
- (i) Hydrolysis of salt of [SA SB] is not possible
- (ii) Solution is neutral in nature (pH = pOH = 7)
- (iii) pH of the solution is 7

BUFFER SOLUTIONS :

A solution that resists change in pH value upon addition of small amount of strong acid or base (less than 1 %) or when solution is diluted is called buffer solution.

The capacity of a solution to resist alteration in its pH value is known as buffer capacity and the mechanism of buffer solution is called buffer action.

Types of buffer solutions

- (A) Simple buffer solution
- (B) Mixed buffer solution

SIMPLE BUFFER SOLUTION :

A salt of weak acid and weak base in water e.g. CH_3COONH_4 , $HCOONH_4$, AgCN, NH_4CN . Buffer action of simple buffer solution

$$pH = 7 + \frac{1}{2}pk_a - \frac{1}{2}pk_b$$

MIXED BUFFER SOLUTIONS :

(a) Acidic buffer solution :

$$pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$$
$$pH = pK_{a} + \log \frac{[Salt]}{[Acid]}$$

(b) Basic buffer solution :

A basic buffer solution consists of a mixture of a weak base and its salt with strong acid. The best known example is a mixture of NH_4OH and NH_4Cl .

• Condition for maximum buffer action :

 $[NH_4OH] : [NH_4Cl]$ $1 \qquad 1$ $pOH = pK_b + log \frac{1}{1}$

 $pOH = pK_{b} \qquad \text{and} \qquad pH = 14 - pK_{b}$

SOLUBILITY (s) AND SOLUBILITY PRODUCT (K_{sv}) :

This is generally used for sparingly soluble salts. We will be dealing with the solubilities in the following type of solution.

Solubility product (K_{sp}) is a type of equilibrium constant, so will be dependent only on temperature for a particular salt.

• Simple solubility

Let the salt is $A_x B_v$, in solution in water, let the solubility in H_2O = 's' M, then

 $\begin{array}{cccc} A_{x}B_{y} & & & \\ - & & xs & ys \end{array} & \therefore & K_{sp} = (xs)^{x}(ys)^{y} = x^{x}, \ y^{y}.(s)^{x+y} \end{array}$

- Condition of precipitation
- For precipitation ionic product [IP] should be greater than solubility product k_{sp}.