Chapter 4

Breathing and Exchange of Gases

Solutions

SECTION - A

Objective Type Questions

(Respiratory Organs)

- 1. Which group of animals respire through lungs?
 - (1) Earthworm and insects
 - (3) Fishes and aquatic arthropods

Sol. Answer (4)

- (i) Earthworm \rightarrow Respires through moist cuticle
- (ii) Insects (Cockroach) \rightarrow Tracheal system
- (iii) Sponges Well-developed respiratory organs are not
- (iv) Coelenterates is present. Exchange of gases occurs
- (v) Flatworms) by simple diffusion.
- (vi) Fish
- (vii) Aquatic arthropods
- (viii) Amphibians
- (ix) Reptiles
- (x) Birds
- (xi) Mammals
- 2. Skin of man cannot act as a respiratory organ because
 - (1) It is dry (2) It is not thin
 - (3) It is not permeable to O_2 and CO_2 (4) All of these
- Sol. Answer (4)

Human skin is dry (does not allow exchange of gases), it is not thin (gases can pass through thin membrane) and it is impermeable to O_2 and CO_2).

- 3. What is the function of respiratory part of human respiratory system?
 - (1) It clears the incoming air from foreign particles
 - (2) It brings the temperature of air upto the body temperature
 - (3) It transports the atmospheric air
 - (4) It exchanges O2 and CO2 between blood and atmospheric air

Sol. Answer (4)

Respiratory part of human respiratory system includes alveoli and their ducts. It is the main site of human respiratory system where diffusion of gases (O_2 and CO_2) occurs.

- (2) Sponges, coelenterates and flatworms
- (4) Amphibians, reptiles, birds and mammals

4.	Ventrally and laterally, the thoracic chamber is formed by								
	(1) Diaphragm and sternum	respectively	(2)	Ribs and sternum re	spec	tively			
	(3) Sternum and ribs respec	ctively	(4)	Vertebral column and	d dia	phragm respectively			
Sol.	Answer (3)								
	Thoracic cavity is formed :								
	Dorsally - By the vertebral	column							
	Ventrally – By the sternum								
	Laterally – By the ribs								
5.	Adam's apple is another nar	ne for							
	(1) Sound box in birds		(2)	Sound box in man					
	(3) Epiglottis		(4)	Thyroid cartilage					
Sol.	Answer (4)								
	Its shape is like apple. It is	composed of hyaline cartila	age	and more prominent	in m	ales.			
6.	Ring like cartilage of larynx	is known as							
	(1) Thyroid cartilage ((2) Arytenoid cartilage	(3)	Cricoid cartilage	(4)	Cartilage of Santorini			
Sol.	Answer (3)								
	Cricoid cartilage has signed cartilage.	t ring-like structure lie belc	ow tl	he thyroid cartilage a	nd i	t is made up of hyaline			
7.	Which of the following preve	ents collapsing of trachea?							
	(1) Muscles ((2) Diaphragm	(3)	Ribs	(4)	Cartilaginous rings			
Sol.	Answer (4)								
	Trachea is lined by C-shape	ed cartilagenous ring, which	pre	events the collapsing of	of tra	achea.			
8.	Number of alveoli in the hun	nan lungs has been estimat	ted t	o be approximately					
	(1) 100 million ((2) 300 million	(3)	125 million	(4)	300 billion			
Sol.	Answer (2)								
9.	In humans, oblique fissure is	s present in							
	(1) Right lung ((2) Left lung	(3)	Both the lungs	(4)	None of these			
Sol.	Answer (3)								
	Both right and left lungs have	ve oblique fissure whereas	only	right lung also has a	hor	izontal fissure.			
10.	A pair of external nostrils pro	esent in humans opens out							
	(1) Below the upper lip		(2)	Above the upper lip					
	(3) Between upper and lowe	er lips	(4)	Above the larynx					
Sol.	Answer (2)								
11.	During inspiration, the volum	ne of thoracic cavity increas	es b	ecause of					
	(1) Contraction of diaphragr	m and external intercostal m	nusc	cles					
	(2) Relaxation of diaphragm	and external intercostal m	uscl	es					
	(3) Contraction of diaphrag	m and relaxation of external	l inte	ercostal muscles					
	(4) Relaxation of diaphragm and contraction of external intercostal muscles								

Sol. Answer (1)

During inspiration, the contraction of diaphragm muscle causes it to become flat and lowered down, thereby increasing the volume of thoracic cavity in antero-posterior axis.

The contraction of external intercostal muscles, lift ribs and sternum up and outward causing an increase in volume of thoracic cavity in the *dorso-ventral* axis *i.e.*, backward-forward direction.

- 12. Volume of thoracic chamber increases in antero-posterior and dorso-ventral axis in rabbit by
 - (1) Contraction of diaphragm and external intercostal muscles respectively
 - (2) Relaxation of diaphragm and external intercostal muscles respectively
 - (3) Relaxation of diaphragm and abdominal muscles respectively
 - (4) Contraction of abdominal muscles and relaxation of external intercostal muscles respectively

Sol. Answer (1)

During inspiration, the contraction of diaphragm causes it to become flat and lowered down, thereby increasing the volume of thoracic cavity in antero-posterior axis.

The contraction of external intercostal muscles, lift ribs and sternum up and outward causing an increase in volume of thoracic cavity in the *dorso-ventral* axis *i.e.*, backward-forward direction.

13. Which instrument helps in clinical assessment of pulmonary functions?

(1) Sphygmomanometer	(2) Stethoscope	(3) Spirometer	(4) Electrocardiograph
----------------------	-----------------	----------------	------------------------

Sol. Answer (3)

Sphygomomanometer \rightarrow Used to measure the blood pressure.

Stethoscope \rightarrow To check the normal rhythm of heart (*i.e.*, to listen normal and abnormal heart sound).

Spirometer \rightarrow To assess pulmonary function.

 $\label{eq:Electrocardiograph} \mathsf{Electrocardiograph} \to \mathsf{Instrument} \ \mathsf{use} \ \mathsf{for} \ \mathsf{taking} \ \mathsf{ECG}.$

- 14. Normal expiration occurs due to
 - (1) Relaxation of diaphragm and external intercostal muscles
 - (2) Contraction of internal intercostal muscles and diaphragm
 - (3) Relaxation of abdominal and internal intercostal muscles
 - (4) Contraction of diaphragm and relaxation of abdominal muscles

Sol. Answer (1)

Expiration : It is the moving of air out of lungs if the pressure within the lungs is more than the atmospheric pressure.

Relaxation of the diaphragm and the external intercostal muscle returns the diaphragm and sternum to their normal thoracic volume and thereby pulmonary volume.

- 15. What happens to the volume of pulmonary cavity when there is an decrease in the volume of chest chamber?
 - (1) It decreases
 - (3) It remains same

- (2) It increases
- (4) First decreases and then increases

Sol. Answer (1)

Decrease in the volume of chest cavity

Leads to

Similar decrease in the volume of pulmonary cavity

Causes

Increase in pressure within the pulmonary cavity

Causes

Expulsion of air from lungs to atmosphere.

16. Diaphragm is a dome-shaped muscular structure which separates (1) Coelomic cavity from pelvic cavity (2) Pleural cavity from thoracic cavity (3) Thoracic cavity from abdominal cavity (4) Pelvic cavity from abdominal cavity Sol. Answer (3) Thoracic is closed below by the diaphragm which is a dome-shaped structure made up of muscles and separates thoracic cavity from abdominal cavity (containing most of the digestive organs). 17. What happens when pressure within the pulmonary cavity is higher than the atmospheric pressure? (1) Inhalation of air (2) Expulsion of air (3) No inhalation and expulsion of air occurs (4) Lungs inflate and rupture Sol. Answer (2) High pressure in pulmonary cavity compared to atmosphere results in explusion of air. Air moves high pressure to low pressure. 18. An additional volume of air, a person can inspire by a forceful inspiration is known as (1) Inspiratory capacity (2) Expiratory capacity (4) Inspiratory reserve volume (3) Expiratory reserve volume Sol. Answer (4) IRV is the additional volume of air a person can inspire by a forceful inspiration. IRV = 2500 - 300 ml IC = IRV + TV3000 - 3500 ml 19. Volume of air remains in the lungs after normal expiration is (1) ERV + RV (2) IRV + RV (3) RV + IRV + ERV (4) TV Sol. Answer (1) Volume of air remains in the lungs after normal expiration is known as functional residual capacity (FRC). FRC = ERV + RV = 2500 ml 20. If a person exhales out forcefully by applying all his efforts. What will the pulmonary volume inhaled by him immediately under normal condition without applying any extra effort? (1) TV + IRV (3) TV + ERV (2) TV only (4) TV + IRV + ERV Sol. Answer (3) After a normal inspiration, the total volume of air a person can expire is known as expiratory capacity (EC) = TV + ERVExhaled forcefully \Rightarrow TV goes out, ERV goes out Normal inspiration \Rightarrow ERV + TV has to be filled (Exchange of gases, Transport of gases) 21. Solubility of CO₂ is _____ times higher than that of O₂ (2) 20 - 25 (3) 100 - 200 (1) 40 - 45 (4) 200 - 300 Sol. Answer (2) $CO_2 : O_2$ (Solubility of $CO_2 : O_2$) 25:1 22. What are the characteristics of alveoli? (1) Very thin, irregular walled and highly vascularised (2) Thick and smooth membrane (3) Network of blood capillaries and thick-walled (4) Thick, regular walled and lack of blood vessels

Sol. Answer (1)

Alveolar membrane is very thin, irregular, richly supplied with blood vessels because of which exchange of gases easily occurs here.

- 23. What is the value of pO2 in alveoli and tissues respectively?
 - (1) 104 mm Hg and 150 mm Hg
 - (3) 104 mm Hg and 40 mm Hg

- (2) 45 mm Hg and 0.3 mm Hg
- (4) 95 mm Hg and 159 mm Hg

Sol. Answer (3)

Respiratory gas	Atmospheric air	Alveoli	Blood (oxygenated)	Blood (Deoxygenated)	Tissue
O ₂	159	104	40	95	40
CO ₂	0.3	40	45	40	45

24. Which are the three main layers that form the diffusion membrane?

(1) Thin squamous epithelium of alveoli, basement membrane of bronchioles and basement substance

(2) Thin squamous epithelium of alveoli, endothelium of alveolar capillaries and the basement substance

(3) Basement substance, cuboidal epithelium of alveoli and stratified epithelium of bronchiole

(4) Ciliated epithelium of trachea, endothelium of capillaries and basement substance

Sol. Answer (2)

Diffusion of O_2 and CO_2 depends on the thickness of diffusion membrane.

- 25. Which of the following is not a character of respiratory surface?
 - (1) Thin, permeable to gases (2) Extensive
 - (3) Least vascular (4) Moist
- Sol. Answer (3)

Respiratory surface should be highly vascular for the easy transport of gases or exchange of gases with the blood.

26. What is the percentage of O2 transported in dissolved form through the plasma?

(1) About 7%	(2) About 3%
(3) About 20–25%	(4) About 15%

Sol. Answer (2)

Oxygen transport by plasma = 3%

Oxygen transport by oxyhaemoglobin = 97%

27. How many O2 molecules can bind with single molecule of Hb?

(1)	8	(2)	6
(2)	1	(4)	1 E

- (3) 4 (4) 4.5
- Sol. Answer (3)

Haemoglobin consists of four polypeptide chain (2α and 2β) having heme as prosthetic group. Heme is iron (Fe²⁺) containing prophyrin ring. One haemoglobin binds four oxygen molecules, one per heme and form oxyhemoglobin.

 $Hb + 4O_2 \implies Hb(O_2)_4$

28.	To which part of Hb does	CO ₂ bind?			
20.	(1) Haem	-	alobin (3)	Iron of haem group	(4) Carboxy group of globin
Sol.	Answer (2)	() 554	0 • • • • •	3 1	()
	Haemoglobin =	Heme	+	Globin	
		Ļ		Ļ	
	Contain Fe	²⁺ with porphyrin ring	Include for	ur polypeptide chain ($lpha_2$	β ₂)
	CO_2 bind to amino group	of globin and form ca	rbaminohaen	noglobin.	
	Hb + CO ₂ == (Haemoglobin) (Amino group)	HbCO ₂ (Carbamino haemoglobir	1)		
29.	Which of the following co	ndition is not respons	ible for shiftir	ng the oxygen dissoc	iation curve towards left?
	(1) High pO ₂		(2)	Low pCO ₂	
	(3) Low temperature		(4)	High H ⁺ ion concent	ration
Sol.	Answer (4)				
	Following are the condition	ons responsible for sh	ifting the cur	ve towards left :	
	(a) High pO ₂				
	(b) Low pCO ₂	n and bisk all			
	(c) Less H ⁺ concentratio	n and nign pH			
	(d) Low temperatureAll above four conditions	are favourable for the	association	of oxygen with hemo	alohin, at alveoli
				or oxygen war nemo	
30.	Which factors favour the	_			.0
	(1) High pCO_2 and high $ $	-		Low pCO ₂ and high	-
Sal	(3) Low pCO ₂ and low p(Answer (4)	02	(4)	High pCO ₂ and low	50 ₂
501.	Condition favourable for	the binding of CO ₂ wit	h Hb or we o	can say dissociation (of $\Omega_{\rm e}$ from Hb are .
	(a) Low pO_2	the binding of OO_2 with		High pCO $_2$	
	(c) More H ⁺ concentratio	n and low pH		High temperature	
	In these conditions, oxyg	en dissociation curve	will shift to ri	ght.	
31.	In mature mammalian erv	throcytes, respiration is	3		
	(1) Aerobic		(2)	Anaerobic	
	(3) Sometimes aerobic a	and sometimes anaero	bic (4)	Absent	
Sol.	Answer (2)				
	Mature RBCs do not ha respiration occurs.	ave cell organelle (lik	e mitochond	lria) and nucleus, so	o in mature RBC anaerobic
32.	The amount of oxygen de	elivered by one litre of	blood under	strenous condition is	approximately
	(1) 5 ml	(2) 50 ml	(3)	15 ml	(4) 150 ml
Sol.	Answer (4)				
	100	ml of blood contains abo	out $\sim 20 \text{ ml of } 0$	D ₂	
	↓ ↓		I	_	
	In normal physiological con	dition	In strenous/	exercise condition	
	5 ml goes to tissue + 15 ml \rightarrow returned via venou	is blood	15 ml goes 5 ml → retu	to tissue + rned via venous blood	
	So, 100 ml of blood trans				
		nsport \rightarrow 150 ml of O ₂			
			۷		

(Regulation of respiration, Disorders of respiratory system)

- 33. Pneumotaxic centre can moderate the functions of respiratory rhythm centre by
 - (1) Reducing the duration of inspiration
 - (2) Increasing the duration of inspiration only
 - (3) First increasing and then reducing the duration of expiration
 - (4) Increasing the duration of expiration only

Sol. Answer (1)

Pneuomotaxic centre is present in the pons region of hind brain.

It is also known as "switch off point of inspiration" *i.e.* it reduces the duration of inspiration and alter the respiratory rate and depth of breathing.

- 34. A chronic disorder in which alveolar walls are damaged due to excessive cigarette smoking is
 - (1) Asthma
 - (3) Silicosis

(2) Emphysema(4) Bronchitis

Sol. Answer (2)

Due to excessive cigarette smoking

Emphysema

Walls of alveoli get damaged and loss of elasticity of walls of bronchioles and alveoli

Due to which, surface area for exchange of gases is reduced

Asthma : Caused because of allergen and effects the respiratory tract.

Bronchitis : Inflammation of bronchi.

Silicosis : It is an occupational respiratory disorder caused due to continuous exposure of asbestos dust at place of work.

- 35. Which of the following is not a symptom of asthma?
 - (1) Difficulty in breathing
 - (3) Alveolar walls are damaged

- (2) Breathing noisily / wheezing
- (4) Inflammation of bronchi and bronchioles

Sol. Answer (3)

Wall of alveoli get damaged due to excessive smoking is a symptom of chronic disorder, emphysema.

SECTION - B

Previous Years Questions

1. Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively?

[NEET-2018]

- (1) Inflammation of bronchioles; Decreased respiratory surface
- (2) Increased number of bronchioles; Increased respiratory surface
- (3) Decreased respiratory surface; Inflammation of bronchioles
- (4) Increased respiratory surface; Inflammation of bronchioles

Sol. Answer (1)

Asthma is a difficulty in breathing causing wheezing due to inflammation of bronchi and bronchioles. Emphysema is a chronic disorder in which alveolar walls are damaged due to which respiratory surface is decreased.

2. Match the items given in Column I with those in Column II and select the correct option given below:

	Colum	n I				Column II
a.	Tidal vo	olume			i.	2500 – 3000 mL
b.	Inspirat	ory Res	erve		ii.	1100 – 1200 mL
	volume					
c.	Expirate	ory Res	erve		iii.	500 – 550 mL
	volume					
d.	Residua	al volum	ne		iv.	1000 – 1100 mL
	а	b	С	d		
(1)	iii	ii	i	iv		
(2)	iii	i	iv	ii		
(3)	iv	iii	ii	i		
(4)	i	iv	ii	iii		

Sol. Answer (2)

Tidal volume is volume of air inspired or expired during normal respiration. It is approximately 500 mL. Inspiratory reserve volume is additional volume of air a person can inspire by a forceful inspiration. It is around 2500 – 3000 mL. Expiratory reserve volume is additional volume of air a person can be expired by a forceful expiration. This averages 1000 – 1100 mL.

Residual volume is volume of air remaining in lungs even after forceful expiration. This averages 1100 - 1200 mL.

- 3. Which of the following is an occupational respiratory disorder?
 - (1) Anthracis (2) Silicosis (3) Emphysema (4) Botulism

Sol. Answer (2)

Silicosis is due to excess inhalation of silica dust in the workers involved grinding or stone breaking industries.

Long exposure can give rise to inflammation leading to fibrosis and thus causing serious lung damage.

Anthrax is a serious infectious disease caused by *Bacillus anthracis*. It commonly affects domestic and wild animals. Emphysema is a chronic disorder in which alveolar walls are damaged due to which respiratory surface is decreased.

Botulism is a form of food poisoning caused by *Clostridium botulinum*.

- 4. Lungs are made up of air-filled sacs the alveoli. They do not collapse even after forceful expiration, because of [NEET-2017]
 - (1) Residual Volume

(3) Tidal Volume

(2) Inspiratory Reserve Volume(4) Expiratory Reserve Volume

Sol. Answer (1)

Volume of air present in lungs after forceful expiration as residual volume which prevents the collapsing of alveoli even after forceful expiration.

- 5. The partial pressure of oxygen in the alveoli of the lungs is
 - (1) Equal to that in the blood
 - (2) More than that in the blood
 - (3) Less than that in the blood
 - (4) Less than that of carbon dioxide

Sol. Answer (2)

Partial pressure of oxygen in alveoli of lungs is 104 mm of Hg that is more than that of blood in pulmonary artery (40 mm of Hg).

[NEET-2018]

[NEET-2018]

[NEET(Phase-2) 2016]

- Lungs do not collapse between breaths and some air always remains in the lungs which can never be expelled because [NEET(Phase-2) 2016]
 - (1) There is a negative pressure in the lungs
 - (2) There is a negative intrapleural pressure pulling at the lung walls
 - (3) There is a positive intrapleural pressure
 - (4) Pressure in the lungs is higher than the atmospheric pressure
- Sol. Answer (2)

Lungs do not collapse between breaths and some air always remains in the lung which can never be expelled because there is a negative intrapleural pressure pulling at the lung walls.

(2) Emphysema

- 7. Name the chronic respiratory disorder caused mainly by cigarette smoking
 - (1) Respiratory alkalosis
 - (3) Asthma (4) Respiratory acidosis
- Sol. Answer (2)

Emphysema is characterised by inflation of alveoli which is mainly due to chronic cigarette smoking.

- 8. Reduction in pH of blood will
 - (1) Release bicarbonate ions by the liver
 - (2) Reduce the rate of heart beat
 - (3) Reduce the blood supply to the brain
 - (4) Decrease the affinity of hemoglobin with oxygen
- Sol. Answer (4)

Reduction in pH of blood favours the dissociation of oxyhemoglobin.

- 9. Asthma may be attributed to
 - (1) Accumulation of fluid in the lungs
 - (3) Allergic reaction of the mast cells in the lungs
- (2) Bacterial infection of the lungs(4) Inflammation of the trachea

Sol. Answer (3)

Asthma is an allergic reaction characterised by spasm of bronchi muscles because of effect of histamine released by mast cells.

10. When you hold your breath, which of the following gas changes in blood would first lead to the urge to breathe?

[AIPMT-2015]

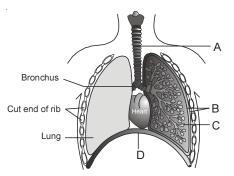
- (1) Rising CO_2 and falling O_2 concentration
- (2) Falling O₂ concentration
- (3) Rising CO_2 concentration
- (4) Falling CO₂ concentration

Sol. Answer (3)

11. Approximately seventy percent of carbon-dioxide absorbed by the blood will be transported to the lungs

[AIPMT-2014]

- (1) As bicarbonate ions
- (2) In the form of dissolved gas molecules
- (3) By binding to R.B.C
- (4) As carbamino haemoglobin
- Sol. Answer (1)


Nearly 20 – 25 percent of CO_2 is transported by RBCs, whereas, 70 percent of it is carried as bicarbonates. About 7 percent of CO_2 is carried as dissolved state in plasma.

[NEET-2016]

[NEET-2016]

[NEET-2016]

12. The figure shows a diagrammatic view of human respiratory system with labels A, B, C, and D. Select the option which gives correct identification and main function and/or characteristic. [NEET-2013]

- (1) B-pleural membrane-surround ribs on both sides to provide cushion against rubbing
- (2) C-Alveoli-thin walled vascular bag like structures for exchange of gases
- (3) D-lower end of lungs-diaphragm pulls it down during inspiration
- (4) A-trachea-long tube supported by complete cartilaginous rings for conducting inspired air

Sol. Answer (2)

- 13. Which one of the following is the correct statement for respiration in humans? [AIPMT (Prelims)-2012]
 - (1) About 90% of carbon dioxide (CO₂) is carried by haemoglobin as carbamino-haemoglobin
 - (2) Cigarette smoking may lead to inflammation of bronchi
 - (3) Neural signals from pneumotoxic centre in pons region of brain can increase the duration of inspiration
 - (4) Workers in grinding and stone-breaking industries may suffer, from lung fibrosis

Sol. Answer (4)

Option (1) is wrong, because ~70% of CO₂ is carried by haemoglobin as carbaminohaemoglobin.

Option (2) is wrong, because cigarette smoking lead to damage of alveoli wall.

Option (3) is wrong, because pneumotaxic centre in pons region of brain decrease the duration of inspiration.

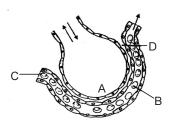
14. People who have migrated from the planes to an area adjoining Rohtang Pass about six months back

[AIPMT (Prelims)-2012]

- (1) Have the usual RBC count but their haemoglobin has very high binding affinity to O₂
- (2) Have more RBCs and their haemoglobin has a lower binding affinity of O₂
- (3) Are not physically fit to play games like football
- (4) Suffer from altitude sickness with symptoms like nausea, fatigue, etc

Sol. Answer (2)

High altitude (pO2 less) so more RBC production, which leads to polycythemia *i.e.*, increased RBC count.


- A large proportion of oxygen is left unused in the human blood even after its uptake by the body tissues. This O₂ [AIPMT (Prelims)-2011]
 - (1) Helps in releasing more O_2 to the epithelial tissues
 - (2) Acts as a reserve during muscular exercise
 - (3) Raises the pCO₂ of blood to 75 mm of Hg.
 - (4) Is enough to keep oxyhaemoglobin saturation at 96%

Sol. Answer (2)

During exercise, contraction of muscle occurs and for that more energy is required and for energy oxygen is required.

16. The figure given below shows a small part of human lung where exchange of gases takes place. In which one of the options given below, the one part A, B, C or D is correctly identified along with its function.

[AIPMT (Prelims)-2011]

Option:

- (1) **B:** Red blood cell transport of CO_2 mainly.
- (2) C: Arterial capillary passes oxygen to tissues
- (3) A: Alveolar cavity main site of exchange of respiratory gases
- (4) **D:** Capillary wall exchange of O₂ and CO₂ takes place here.

Sol. Answer (3)

Option (1) is wrong because RBCs are involved in transport of CO₂ and O₂ both

Option (2) is wrong because C is blood capillary.

Option (4) is wrong because D is basement membrane - substance

- 17. Bulk of carbon dioxide (CO₂) released from body tissues into the blood is present as [AIPMT (Mains)-2011]
 - (1) 70% carbamino-haemoglobin and 30% as bicarbonate
 - (2) Carbamino-haemoglobin in RBCs
 - (3) Bicarbonate in blood plasma and RBCs
 - (4) Free CO₂ in blood plasma

Sol. Answer (3)

CO₂ transport via plasma 7% Bicarbonate = 70% (Major) Haemoglobin = 20–25%

18. Which one of the following is a possibility for most of us in regard to breathing, by making a conscious effort?

[AIPMT (Mains)-2011]

- (1) One can consciously breathe in and breathe out by moving the diaphragm alone, without moving the ribs at all
- (2) The lungs can be made fully empty by forcefully breathing out all air from them
- (3) One can breathe out air totally without oxygen
- (4) One can breathe out air through eustachian tubes by closing both the nose and the mouth

Sol. Answer (1)

If we push voluntarily abdominal contents towards diaphragm, it will lead to expiration without involvement of intercostal muscle.

- 19. Which two of the following changes (a-d) usually tend to occur in the plain dwellers when they move to high altitudes (3,500 m or more)?
 - (a) Increase in red blood cell size
 - (c) Increased breathing rate

Changes occurring are

- (b) Increase in red blood cell production
- (d) Increase in thrombocyte count

[AIPMT (Prelims)-2010]

- (1) (a) and (b) (2) (b) and (c)
- (3) (c) and (d) (4) (a) and (d)

Sol. Answer (2)

- 20. Listed below are four respiratory capacities (a d) and four jumbled respiratory volumes of a normal human adult: Respiratory capacities and volumes
 - (a) Residual volume 2500 mL
 - (c) Inspiratory reserve volume 1200 mL

Which one of the following is the correct matching of two capacities and volumes? [AIPMT (Prelims)-2010)]

- (1) (a) 4500 mL, (b) 3500 mL
- (3) (c) 1200 mL, (d) 2500 mL
- Sol. Answer (4)

Residual volume	_	1200 ml
Vital capacity	_	4500 ml
Inspiratory reserve volume	_	2500 ml
Inspiratory capacity	_	3500 ml

- 21. What is vital capacity of our lungs?
 - (1) Total lungs capacity minus residual volume
 - (2) Inspiratory reserve volume plus tidal volume
 - (3) Total lungs capacity minus expiratory reserve volume
 - (4) Inspiratory reserve volume plus expiratory reserve volume

Sol. Answer (1)

Vital capacity is the maximum volume of air a person can breathe in after a forceful expiration.

Vital capacity (VC) = Total lung capacity - Residual volume

22. Increased asthamatic attacks in certain seasons are related to

- (1) Low temperature
- (3) Eating fruits preserved in tin containers (4) Inhalation of seasonal pollen
- (2) Hot and humid environment

- Sol. Answer (4)
- 23. People living at sea level have around 5 million RBC per cubic millimeter of their blood whereas those living at an altitude of 5400 metres have around 8 million. This is because at high altitude [AIPMT (Prelims)-2006]
 - (1) People get pollution-free air to breathe and more oxygen is available
 - (2) Atmospheric O₂ level is less and hence more RBCs are needed to absorb the required amount of O₂ to survive
 - (3) There is more UV radiation which enhances RBC production
 - (4) People eat more nutritive food, therefore more RBCs are formed
- Sol. Answer (2)
- 24. Which one of the following statements is **incorrect**?
 - (1) The residual air in lungs slightly decreases the efficiency of respiration in mammals
 - (2) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds
 - (3) In insects, circulating body fluids serve to distribute oxygen to tissues
 - (4) The principle of countercurrent flow facilitates efficient respiration in gills of fishes
- Sol. Answer (3)

In insects tracheal system serve to distribute oxygen to tissues. Openings of trachae are called spiracles and present for entry and exist of gases.

- (b) Vital capacity 3500 mL
- (d) Inspiratory capacity 4500 mL

(2) (b) 2500 mL, (c) 4500 mL

(4) (d) 3500 mL, (a) 1200 mL

[AIPMT (Prelims)-2008]

[AIPMT (Prelims)-2007]

[AIPMT (Prelims)-2006]

25. The majority of carbon dioxide produced by our body cells is transported to the lungs

[AIPMT (Prelims)-2006]

- (1) Dissolved in the blood
- (3) As carbonates

- (2) As bicarbonates
- (4) Attached to haemoglobin

Sol. Answer (2)

26. In man and other mammals, air passes from outside into the lungs through

- (1) Nasal cavity, larynx, pharynx, trachea, bronchi, alveoli
- (2) Nasal cavity, larynx, pharynx, trachea, bronchioles, alveoli
- (3) Nasal cavity, pharynx, larynx, trachea, bronchioles, bronchi, alveoli
- (4) Nasal cavity, pharynx, larynx, trachea, bronchi, bronchioles, alveoli
- Sol. Answer (4)

Respiratory passage :	External nostils
	Nasal chamber
Conducting part	↓ Internal nares ↓ Nasopharynx ↓ Larynx
	Trachea
	Bronchi
	Bronchioles
Respiratory/Exchange par	↓ Alveolar duct t Alveoli
Lunge are enclosed in	

27. Lungs are enclosed in

(1)	Peritoneum	(2)	Perichondrium	(3)	Pericardium	(4)	Pleural membranes
-----	------------	-----	---------------	-----	-------------	-----	-------------------

Sol. Answer (4)

Lungs are enclosed in pleural membranes. *i.e.* external pleura and internal pleura and in between pleural fluid is present.

Perichondrium \rightarrow Outer covering of cartilage

 $\ensuremath{\mathsf{Pericardium}}\xspace \to \ensuremath{\mathsf{Membrane}}\xspace$ covers the heart

Peritoneum \rightarrow Covering of visceral organ

28. When a person breathes air through a tube directly into the trachea (tracheotomy) it may lead to serious lung crushing and infection due to

(1) Cooling effect (2) Drying effect (3) Non filtering effect (4) All of these

Sol. Answer (4)

Because upper respiratory tract helps in filtering the air, bringing air to body temperature and making it moist.

29. Pitch of the voice is lower in males than females as the vocal cords of man are

	(1) Thicker and longer	(2) Thinner and longer	(3) Thicker and shorter	(4)	Thinner and shorter
Sol	. Answer (1)				
	In males, vocal cord is thic	cker and longer than female	s and pitch is affected by	this	

 $\text{Male} \rightarrow \text{Low}$ pitch and female $\rightarrow \text{High}$ pitch

- 30. Which of the following statement is **not** true for man?
 - (1) Forceful expiration is an active process
 - (2) Mammals have negative pressure breathing
 - (3) Internal intercostal and abdominal muscles are muscles of forceful inspiration
 - (4) Respiration excretes CO_2 , water etc.

Sol. Answer (3)

Internal intercostal muscle | Muscles of Abdominal muscle | forceful expiration

31. The ventilation movements of the lungs in mammals are governed by

(1) Muscular walls of lung (2) Diaphragm (3) Costal muscles (4) Both (2) & (3)

Sol. Answer (4)

Inspiration and expiration both governed by diaphragm and costal muscles.

- 32. In lungs, the air is separated from the venous blood through
 - (1) Transitional epithelium of alveoli + squamous epithelium of blood vessel
 - (2) Squamous epithelium of alveoli + endothelium of blood vessel
 - (3) Squamous epithelium of alveoli + cubical epithelium of blood vessel
 - (4) Cubical epithelium of alveoli + columnar epithelium of blood vessel

Sol. Answer (2)

Alveolar-capillary membrane or respiratory membrane or diffusion membrane, made up of

- (1) Thin squamous epithelium of alveoli
- (2) Basement membrane
- (3) Endothelial lining of alveolar capillary/blood vessel
- 33. Which of the following volume or capacity of lungs can't be measured directly by the spirometer?
 - (1) Residual volume

(3) Total capacity

(2) Functional residual capacity(4) All of these

Sol. Answer (4)

Spirometer can measure the volume of air goes inside and outside the lungs. It does not measure the residual volume of air that remains inside the lungs. So, residual volume, functional residual capacity and total capacity cannot be measured by spirometer.

- 34. Amount of air left in the lung after normal expiration is
 - (1) Residual volume

- (2) Inspiratory reserve volume
- (3) Expiratory reserve volume
- (4) Functional residual capacity

Sol. Answer (4)

It is the volume of air left in the lung after normal expiration.

FRC = ERV + RV = 2500 ml

- 35. Minute Volume of Respiration (MVR) in a person can be defined as
 - (1) Tidal volume × Breathing rate
 - (2) (Tidal volume Anatomic dead space) × Breathing rate
 - (3) Vital capacity ÷ Breathing rate
 - (4) Vital capacity ÷ Tidal volume
- Sol. Answer (1)

Minute volume is the volume of air a person can inhale per minute.

Minute volume = Tidal volume × Breathing rate

= 6000 - 8000 ml/min

36. When CO₂ concentration in blood increases, breathing becomes (1) Shallower and slow (2) There is no effect on breathing (3) Slow and deep (4) Faster and deeper Sol. Answer (4) Like exercise, when [CO₂] increases in blood and [O₂] decreases in blood, then breathing become faster and deeper. 37. The CO₂ content by volume, in the atmospheric air is about (1) 3.34% (3) 0.0314% (2) 4% (4) 0.34% Sol. Answer (3) Air composition : Nitrogen = 78% Oxygen = 21% $CO_2 = 0.03\%$ Argon = <1%Other gases = <1%38. Although much CO₂ is carried in blood, yet blood does **not** become acidic, because (1) CO₂ is continuously diffused through the tissues and is not allowed to accumulate (2) In CO₂ transport, blood buffers play an important role (3) CO₂ is absorbed by the leucocytes (4) CO₂ combines with water to form H₂CO₂ which is neutralized by NaCO₂ Sol. Answer (2) Blood acts as a buffer, which resists the change in pH of blood, because of bicarbonate ions. 39. The carbon dioxide is transported via blood to lungs (1) In combination with haemoglobin only (2) Dissolved in blood plasma only (3) In the form of carbonic acid only (4) As carbaminohaemoglobin and as bicarbonates Sol. Answer (4) CO₂ transport via plasma = 7%; Bicarbonate = 70%; Haemoglobin = 20–25% 40. How does the transport of O₂ and CO₂ by blood occur? (1) With the help of WBCs and blood serum (2) With the help of platelets and corpuscles (3) With the help of RBCs and blood plasma (4) With the help of RBCs and WBCs Sol. Answer (3) Blood is the medium of transport for O_2 and CO_2 . 41. Blood analysis of a patient reveals an unusually high quantity of carboxyhaemoglobin content. The patient has been inhaling polluted air containing unusually high content of (1) Carbon disulphide (2) Chloroform (3) Carbon dioxide (4) Carbon monoxide Sol. Answer (4) $\underbrace{\text{CO}_2}_{(\text{Carbon dioxide})} + \text{Hb} \xleftarrow{} \text{HbCO}_2$

(Carbon monoxide) + Hb = HbCO (Carboxyhaemoglobin)

- 42. What is true about RBCs in humans?
 - (1) They do not carry CO₂ at all
 - (2) They carry both CO₂ and O₂
 - (3) They transport 99.5 percent of O₂
 - (4) They transport about 80 percent oxygen only and the rest 20 percent of it is transported in dissolved state in blood plasma

Sol. Answer (2)

RBCs carry 20-25% of CO₂ as carbaminohaemoglobin and 97% of O₂ as oxyhaemoglobin.

- 43. How carbon monoxide, emitted by automobiles, prevents transport of oxygen to the body tissues?
 - (1) By forming a stable compound with haemoglobin
 - (2) By inhibiting exchange of O₂ at alveoli
 - (3) By changing oxygen into carbon dioxide
 - (4) By destroying the haemoglobin
- Sol. Answer (1)

Carbon monoxide has more affinity to bind with haeme group of haemoglobin, than oxygen

250:1

CO : O₂

- 44. The respiratory centre, which regulates respiration, is located in
 - (1) Cerebellum (2) Medulla oblongata (3) Cerebral peduncle (4) The vagus nerve
- Sol. Answer (2)

Respiratory centre is located in medulla oblongata.

- 45. Mark the incorrect statement
 - (1) Hering Breuer's reflex prevents the over expansion of lungs
 - (2) Oxygen dissociation curve for foetal haemoglobin is on the left side with respect to maternal haemoglobin
 - (3) When pneumotaxic centre transmits strong signals then inspiration time becomes shorter
 - (4) Amount of air left in the lung after normal expiration is termed as residual volume only
- Sol. Answer (4)

Amount of air left in the lung after forceful expiration is termed as residual volume.

- 46. Which of the following reflex is involved to prevent excessive inflation of the lungs?
 - (1) Stretch reflex (2) Hering-Breuer's reflex (3) Withdrawal reflex (4) Conditioned reflex

Sol. Answer (2)

Excessive inflation \rightarrow Stretch receptors get activated \rightarrow Cause expiration by sending signal through vagus nerve to inhibit inspiratory area.

- 47. Chemoreceptors present in carotid and aortic arch are very much sensitive to
 - (1) Increase in pCO₂ in arterial blood
 - (3) Decrease in pO_2 in venous blood
- (2) Increase in pO₂ in arterial blood
- (4) Both (2) & (3)

Sol. Answer (1)

Chemoreceptors present in carotid and aortic are sensitive to CO₂ and H⁺.

- 48. A person remaining at high altitudes for years becomes more and more acclimatized to the low pO₂ by the following except
 - (1) Increased pulmonary ventilation
 - (3) Polycythemia

- (2) Increased in RBCs and haemoglobin concentration
- (4) Increased cardiac output permanently

Sol. Answer (4)

At high altitude (less pO₂) then more RBC production which leads to increase RBC count (polycythemia) in blood, due which viscosity of blood increases, hence cardiac output decreases. 49. If the blood does not deliver adequate O₂ to the tissues, it is called (1) Anaemia (2) Anorexia (3) Hypoxia (4) Hypopnea Sol. Answer (3) Anorexia - Loss of apetite Hypoxia - Low oxygen condition in tissue Hypopnea Slow breathing Anaemia Low hemoglobin, immature RBC 50. Less oxygen due to high levels of carbon dioxide is called (1) Carbon monoxide poisoning (2) Asphyxia (3) Dyspnea (4) Apnoea Sol. Answer (2) - Painful breathing Dyspnea Apnoea - No breathing - Combination of Hypoxia (low O₂) + Hypercapnia (more CO₂) Asphyxia 51. Which of the following is not pollution related disorder? (1) Silicosis (2) Pneumoconiosis (3) Fluorosis (4) Leprosy Sol. Answer (4) Leprosy is caused by Mycobacterium leprae. 52. Hiccups can be best described as (1) Forceful sudden expiration (2) Jerky incomplete inspiration (3) Vibration of the soft palate during breathing (4) Sign of indigestion Sol. Answer (2) Because hiccups occur due to spasm of phrenic muscle which leads to jerky inspiration. 53. Number of alveoli in the human lungs has been estimated to be approximately (1) 100 million (2) 300 million (3) 125 million (4) 300 billion Sol. Answer (2) 54. Which of the following can be termed as opposite of Bohr's effect? (1) Haldane's effect (2) Hamburger's phenomenon (3) Hering - breuer reflex (4) None of these Sol. Answer (1) Haldane's effect and Bohr effect complement each other. In the tissue, addition of CO₂ to the blood facilitates unloading of O, by Bohr effect. In turn, O, unloading favours uptake of CO, by Haldane'e effect. **SECTION - C Assertion-Reason Type Questions** 1. A : Pneumotaxic centre controls rate of respiration. R : Primarily it controls switch off point of inspiration.

Sol. Answer (1)

Pneumotaxic centre is called switch off centre of inspiration.

- 2. A : Asthmatic patients use bronchi odilator drugs as well as inhalers for symptomatic relief.
- R : Asthma is characterized by the spasm of smooth muscles in the wall of bronchioles due to allergens. **Sol.** Answer (1)

Asthma is response to an allergic reaction.

3. A : Major part of carbondioxide is transported in the form of sodium bicarbonate.

R: 0.3 ml of carbon dioxide is transported per 100 ml of blood in dissolved state in plasma of blood.

Sol. Answer (2)

Only 7% of CO₂ is transported in dissolved state in plasma of blood.

- 4. A : Diffusion of carbon dioxide is 20 times faster than oxygen.
 - R : It is due to difference in partial pressure as well as solubility of diffusing gases.
- Sol. Answer (1)

Solubility of CO₂ is 20 times higher than that of O₂.

- 5. A : The passage starting with the external nostrils upto the terminal bronchioles constitutes the respiratory part.
 - R : The respiratory part transports the air to the alveoli, where clears it from the foreign material, humidifies it and brings the air to body temperature.
- Sol. Answer (4)

The passage starting with the external nostils upto the terminal bronchioles constitutes the conducting part. Alveoli are not part of conducting part.

- 6. A : Normal expiration during quiet breathing, unlike inspiration, is a passive process because no muscular contractions are involved.
 - R : Normal expiration results from the elastic recoil of the chest wall and lungs.

Sol. Answer (1)

Normal expiration in human is due to relaxation of muscles.

- 7. A : Human blood always contains more amount of CO₂ than blood oxygen.
- R : Solubility coefficient of CO_2 is more than O_2 .
- Sol. Answer (1)

In 100 ml oxygenated blood, amount of O₂ is about 20 ml while of CO₂ is about 48 ml.

- 8. A : When a person starts doing exercise, rate of breathing increases due to changes in pCO_2 or H⁺ concentration.
 - R : The main stimulus for these quick changes is due to input from the proprioreceptors, which monitor movements of joints and muscles.

Sol. Answer (1)

- 9. A : Emphysema is a chronic obstructive disease of lung, causing irreversible distension and loss of elasticity of alveoli.
 - R : Emphysema is preventable if chronic exposure to smoke (cigarette and others) and pollutants is avoided.

Sol. Answer (2)

Emphysema is due to inflation of alveoli.

- 10. A: 100 ml of venous blood has 14.4 ml of O₂ *i.e.*, it is still 75% saturated with oxygen under normal physiological condition.
 - R : About 4.6 ml of O₂, *i.e.* 25% diffuses from arterial blood into the tissue during exercise.
- Sol. Answer(3)

During normal conditions, oxygen demand in tissue is low.

