

# Excretory Products and their Elimination

### MULTIPLE CHOICE QUESTIONS

| Topic | Introduction |
|-------|--------------|
| 1     |              |

- 1. Least toxic nitrogenous waste is -
  - (a) NH<sub>3</sub>
- (b) Urea
- (c) Uric acid
- (d) NH, and urea
- 2. Which of the following is retained in small amount in kidney matrix of some animals to maintain a desired osmolarity?
  - (a) NH,
- (b) Urea
- (c) Uric acid
- (d) NH, and uric acid
- **3.** Terrestrial organisms must conserve water. The least amount of water is lost with the excretion of which nitrogenous waste product?
  - (a) NH<sub>3</sub>
- (b) Uric acid
- (c) Urea
- (d) CO,
- **4.** The less amount of water is lost with the excretion of which nitrogenous product?
  - (a) NH, and urea
- (b) NH<sub>3</sub> and uric acid
- (c) NH<sub>3</sub>
- (d) Urea and uric acid
- **5.** Which of the following is correct about protonephridia/flame cells?
  - (a) Protonephridia are the excretory structures in Platyhelminthes (e.g., *Planaria*), rotifers and some annelids
  - (b) Protonephridia are the excretory structures in the cephalochordates e.g., *Amphioxus*
  - (c) Protonephridia are primarily concerned with ionic and fluid volume regulation i.e., osmoregulation
  - (d) All Excretory products and their elimination

- **6.** Ammonia and urea are waste products derived from the metabolic breakdown of-
  - (a) Lipids
  - (b) Carbohydrates
  - (c) Proteins
  - (d) Sugars
- 7. Which of the following molecules is the most toxic to the cells?
  - (a) NaCl
- (b) Urea
- (c) Uric acid
- (d) Ammonia
- **8.** The terms "ammonotelic", "ureotelic", and "uricotelic" are used to describe-
  - (a) Modes of excretory system development
  - (b) The actions of hormones on the excretory systems
  - (c) The types of nitrogenous waste produced by various classes of vertebrates
  - (d) Modification of kidney tubules to enhance excretion
- 9. Which of the following statements is correct?
  - (a) Many bony fishes, aquatic amphibia and aquatic insects are ammoniotelic
  - (b) Ammonia is readily soluble
  - (c) NH<sub>3</sub> is generally excreted by the body surface or through gills (in fishes) as NH<sub>4</sub><sup>+</sup>
  - (d) All of the above
- **10.** Which of the following statements is wrong?
  - (a) Kidney does not play any significant role in the removal of ammonia
  - (b) Ureotelic animals excrete most of the

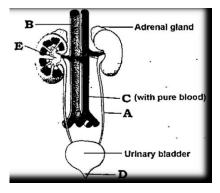
- nitrogenous waste as urea
- (c) Ammonia and urea are the waste products derived from the metabolic breakdown of proteins
- (d) None of the above is wrong
- 11. Urea and uric acid are -
  - (a) More toxic than NH,
  - (b) Less toxic than NH,
  - (c) Equally toxic to NH,
  - (d) Non-toxic
- **12.** Which of the following group of animals is ureotelic?
  - (a) Many terrestrial amphibians
  - (b) Mammals
  - (c) Marine fishes
  - (d) All of the above
- 13. NH<sub>3</sub> is converted into urea in
  - (a) Kidney
- (b) Liver
- (c) Spleen
- (d) Intestine
- **14.** Which of the following groups of animals is uricotelic?
  - (a) Reptiles
  - (b) Insects
  - (c) Birds and land snail
  - (d) All of the above
- **15.** Excretion of nitrogenous products in semi-solid forms by -
  - (a) Uricotelic animals
  - (b) Ureotelic animals
  - (c) Ammoniotelic animals
  - (d) Amniotes
- 16. Match the column I with column II.

|    | Column I                          |      | Column II               |
|----|-----------------------------------|------|-------------------------|
| A. | Nephridia                         | I.   | Crustaceans (Prawn)     |
| В. | Malpighian tubules                | II.  | Annelids<br>(Earthworm) |
| C. | Anteenal Gland<br>or Green Glands | III. | Insects (Cockroach)     |

- (a) A-I, B-II, C-III
- (b) A-III, B-II, C-I

- (c) A-II, B-III, C-I
- (d) A-II, B-I, C-III

| Topic | <b>Human Excretory System</b> |
|-------|-------------------------------|
| 2     |                               |

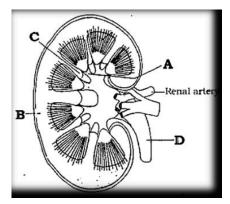

- **17.** Which of the following statements is wrong about the human excretory system?
  - (a) Excretory system consists of one pair of bean shaped kidneys, one pair of ureter, a urinary bladder and a urethra.
  - (b) Kidneys are situated between the 12<sup>th</sup> thoracic and 3rd lumbar vertebrae close to the dorsal wall in abdominal cavity.
  - (c) Right kidney is a little higher level than the left one.
  - (d) All of the above
- 18. Each kidney of adult human measures-

|    | Length   | Width   | Thickness | Weight    |
|----|----------|---------|-----------|-----------|
| A) | 10 - 12  | 5 - 7cm | 2 - 3cm   | 120-170 g |
|    | cm       |         |           |           |
| B) | 10 - 20  | 10 - 12 | 6 - 12 cm | 40-50 g   |
|    | cm       | cm      |           |           |
| C) | 2 – 6 cm | 10 - 12 | 6 - 12 cm | 40-50 g   |
|    |          | cm      |           |           |
| D) | 10 - 12  | 5 - 7   | 2 - 3 mm  | 120-170 g |
|    | mm       | mm      |           |           |

- **19.** The part of kidney which serves as gateway for ureter, nerves and blood vessels is-
  - (a) Hilum
- (b) Renal pore
- (c) Minor calyx
- (d) Major calyx
- **20.** Inner to the hilum of kidney is a broad funnel shaped space called-
  - (a) Cortex
- (b) Medulla
- (c) Pelvis
- (d) Calyx
- 21. Which of the following statements is false?
  - I. Outer cortex and inner medulla are the two zones in kidney
  - II. Medulla is divided into about 8 to 18 renal pyramids
  - III. Pyramid projects into calyx
  - IV. Inwards extension of cortex between the

pyramids is called renal column of Bertini

- (a) I and IV
- (b) II and IV
- (c) IV
- (d) None
- **22.** Observe the following figure.




Identify structure A to E.

|   | A                  | В                  | C               | D       | E      |
|---|--------------------|--------------------|-----------------|---------|--------|
| A | Superior vena cava | Inferior vena cava | Dorsal<br>Aorta | Urethra | Pelvis |
| В | Inferior vena cava | Superior vena cava | Dorsal<br>Aorta | Urethra | Pelvis |
| С | Ureter             | Inferior vena cava | Dorsal<br>Aorta | Urethra | Pelvis |
| D | Dorsal<br>Aorta    | Inferior vena cava | Urethra         | Cortex  | Pelvis |

- 23. Which one of the following is the structural and functional unit of kidney?
  - (a) Urethra
- (b) Urinary bladder
- (c) Renal column (d) Nephron
- 24. Renal corpuscle or Malpighian body is-
  - (a) Glomerulus only
  - (b) Glomerulus along with Bowman's capsule
  - (c) Bowman's capsule
  - (d) Glomerulus with afferent arteriole
- **25.** Which one of the following is a tube that carries urine from kidney to the urinary bladder?
  - (a) Loop of Henle (b) Ureter
  - (c) Urethra
- (d) Uvula

**26.** Study the following figure:



Identify A to D

|   | A       | В      | С            | D       |
|---|---------|--------|--------------|---------|
| A | Cortex  | Calyx  | Renal Column | Ureter  |
| В | Calyx   | Cortex | Renal Column | Ureter  |
| С | Medulla | Cortex | Renal Column | Urethra |
| D | Calyx   | Cortex | Renal Column | Urethra |

- 27. Each kidney has how many nephrons?
  - (a) About 2 million (b) About 1 million
  - (c) About 5000
- (d) About 50000
- 28. The bed of capillaries in the vertebrate kidney where water, urea and salts are filtered out of the blood is the -
  - (a) Bowman's capsule
  - (b) Collecting duct
  - (c) Glomerulus
  - (d) Loop of Henle
- 29. All of the following structures are situated in the renal cortex except -
  - (a) Loop of Henle
  - (b) Malpighian corpuscle
  - (c) PCT
  - (d) DCT
- **30.** The DCTs of many nephrons open into a straight tube called -
  - (a) PCT
  - (b) Loop of Henle
  - (c) Collecting duct
  - (d) Bowman's capsule

- **31.** Which of the following statements is false?
  - (a) Renal tubule starts with a double-walled cup like structure called Bowman's capsule
  - (b) In majority of nephrons, the loop of Henle is too short and such nephrons are cortical nephrons
  - (c) Juxta medullary nephron has long loop of Henle
  - (d) None
- **32.** Which is the correct pathway for passage of urine in humans?
  - (a) Collecting tubule→ ureter→ bladder→ urethra
  - (b) Renal vein→ renal ureter→ bladder→ urethra
  - (c) Pelvis→ Medulla → bladder→ urethra
  - (d) Cortex→ Medulla→ bladder→ ureter
- **33.** Match the column I with column II. Column I

| A. | Delivers blood to      | I.   | Ascending and   |
|----|------------------------|------|-----------------|
|    | glomerulus             |      | descending limb |
| B. | Carries urine to       | II.  | Renal artery    |
|    | pelvis, also acts in   |      |                 |
|    | water reabsorption     |      |                 |
| C. | Collects filtrate from | III. | Collecting duct |
|    | Bowman's capsule       |      | _               |
| D. | Loop of Henle          | IV.  | PCT             |

- (a) A II, B III, C IV, D I
- (b) A-I, B III, C-II, D- IV
- (c) A II, B IV, C I, D III
- (d) A- IV, B III, C II, D I
- **34.** Which of the following is correct about juxta medullary nephrons?
  - (a) Vasa recta is prominent
  - (b) Loop of Henle is long
  - (c) NaCl is returned to the interstitium by ascending limb of vasa recta
  - (d) All of the above
- **35.** Which of the following places the region of nephron in their correct sequence with respect to flow of tubular fluid?

- (a) PCT→ Descending limb of Henle (DLH) →
   Ascending limb of Henle (ALH) → DCT→
   Collecting duct(CD)
- (b)  $PCT \rightarrow ALH \rightarrow DLH \rightarrow OCT \rightarrow CD$
- (c) ALH  $\rightarrow$ DLH  $\rightarrow$ PCT $\rightarrow$ OCT $\rightarrow$ CD
- (d) OCT $\rightarrow$ ALH $\rightarrow$ DLH $\rightarrow$ PCT $\rightarrow$ CD
- 36. Vasa recta is -
  - (a) I-shaped
- (b) S-shaped
- (c) U-shaped
- (d) J-shaped
- 37. In glomerulus, afferent arteriole -
  - (a) is wider than efferent arteriole
  - (b) and efferent arteriole has similar diameter
  - (c) is narrower than efferent arteriole
  - (d) is narrow than efferent capillaries
- **38.** Which of the following is incorrect?
  - (a) Blood vessel leading to glomerulus is called efferent arteriole
  - (b) Vasa recta, peritubular capillaries, Glomerulus all have blood
  - (c) Cortical nephron has no or highly reduced vasa recta
  - (d) Vasa recta runs parallel to the Henle's loop in juxtamedullary nephrons

| Topic | <b>Urine Formation</b> |
|-------|------------------------|
| 3     |                        |

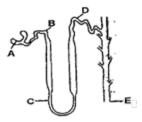
- 39. Urine formation involves-
  - (a) Ultra filtration and reabsorption occurring in different parts of nephron
  - (b) Ultrafiltration and reabsorption occurring in same part of nephron
  - (c) Ultrafiltration, reabsorption and secretion occurring in different parts of nephron
  - (d) Ultrafiltration, reabsorption and secretion occurring in same part of nephron
- **40.** Match the column I with column II.

|   | Column I |     | Column II                    |
|---|----------|-----|------------------------------|
| A | PCT      | I.  | Concentrated urine formation |
| В | DCT      | II. | Filtration of blood          |

84 Zoology

| С | Loop of Henle              | III. | Reabsorption of 70 - 80% electrolytes    |
|---|----------------------------|------|------------------------------------------|
| D | Counter- current mechanism | IV.  | Ionic balance                            |
| Е | Renal corpuscle            | V.   | Maintenance of conc. gradient in medulla |

|     | A   | В   | С  | D  | Е  |
|-----|-----|-----|----|----|----|
| (a) | III | IV  | I  | V  | II |
| (b) | III | V   | IV | II | I  |
| (c) | I   | III | II | V  | IV |
| (d) | III | I   | IV | V  | II |


- 41. Which of the following statements is correct?
  - I. Renal vein take blood away from kidney
  - II. Loop of Henle conserves water
  - III. Podocytes occur in inner wall of Bowman's capsule
  - IV. Ultrafiltrate nephric filtrate is plasma minus proteins.
  - (a) I and II
- (b) I and Ill
- (c) III and IV
- (d) I, II, III, IV
- **42.** The glomerular capillaries cause filtration of blood through \_\_\_\_ layers
  - (a) 1
- (b) 2
- (c) 3
- (d) 6
- **43.** The layers between the blood in glomerular and the Bowman's space are:
  - (a) Tunica media + Cuboidal epithelium+ Basement's membrane
  - (b) Endothelium + Epithelium of Bowman's capsule + Basement membrane between the 2 layers
  - (c) Endothelium of glomerular blood vessel + Endothelium of Bowman's capsule + Parietal layer of Bowman's capsule
  - (d) Tunica media + Epithelium of Bowman's capsule + Endothelium of Bowman's capsule
- 44. On average, \_\_\_\_\_ mL of blood is filtrated by the kidney per minute which constitute roughly \_\_\_ of the blood pumped out by each ventricle of heart in a minute.

- (a) 125 ml, 1/6th
- (b) 100 -125 ml, 1/6th
- (c) 1100 -1200 ml, 1/5th
- (d) 5 L, 1/10th
- **45.** The amount of the filtrate formed by the kidney / minute is called GFR (Glomerular Filtration Rate). The GFR of a healthy adult is-
  - (a) 80 mL/min
- (b) 125 mL/min
- (c) 300 mL/min
- (d) 20 mL/min
- **46.** The GFR/day in a healthy adult is
  - (a) 5 L
- (b) 180 L
- (c) 200 L
- (d) 20 L
- **47.** Juxtaglomerular apparatus, a special sensitive cellular region is formed in
  - (a) PCT and DCT
  - (b) PCT and DCT at the location of their contact
  - (c) PCT and loop of Henle at the location of their contact
  - (d) DCT and afferent arteriole at the location of their contact
- **48.** Of the filtrate, nearly how many of it is reabsorbed by the renal tubules?
  - (a) 5%
- (b) 99%
- (c) 50%
- (d) 25%

| Topic | Function of the Tubules |
|-------|-------------------------|
| 4     |                         |

- 49. Which of following statements is false?
  - (a) The kidney has built-in mechanisms for regulation of GFR
  - (b) Tubular secretion does not play any significant role in urine formation
  - (c) The amount of urine output per day in normal adult is about 1.5 L
  - (d) During urine formation tubular cells secrete H<sup>+</sup>, K<sup>+</sup> and NH<sub>3</sub> in the filtrate
- **50.** Which of the following statements about proximal convoluted tubule (PCT) is false?
  - (a) It is lined by simple cuboidal brush border epithelium which increases the surface area

- (b) Nearly all the essential nutrients, 70 80% electrolytes, 70% H<sub>2</sub>O are reabsorbed by PCT
- (c) PCT is not the site of selective secretion
- (d) PCT helps to maintain the pH and ionic balance of body fluids
- **51.** PCT helps to maintain the pH and ionic balance of body fluids by -
  - (a) Selective secretion of H<sup>+</sup>, NH<sub>3</sub> and K<sup>+</sup> ions in filtrate
  - (b) Reabsorption of HCO<sub>3</sub> from filtrate
  - (c) Both (a) and (b)
  - (d) Secreting regulatory hormone like renin and angiotensinogen
- **52.** If Loop of Henle were absent from mammalian nephrons, which of the following is to be expected?
  - (a) The urine will be more dilute
  - (b) There will be no urine formation
  - (c) The urine will be more concentrated
  - (d) There will be hardly any change in quality and quantity of urine formed
- **53.** Use following diagram to complete the statements about the human nephron –



- The composition of the filtrate would be most like plasma in the tubule next to the letter.
- II. The urine would be most concentrated in the collecting duct next to letter
- III. Most of the glomerular filtrate is reabsorbed into peritubular capillary next to the letter
- IV. Conducting of urine to pelvis of the kidney from the structure next to the letter
- V. Most water is reabsorbed by the structure next to the litter

- (a) A C B E D
- (b) A E B C D
- (c) A B E C D
- (d) A E B D C

54.

- I. Reabsorption in this region is minimum.
- II. This region plays a significant role in the maintenance of high osmolarity of intestinal fluid
- III. Its descending limb is permeable to water but almost impermeable to electrolytes
- IV. Its ascending limb is impermeable to water but allows transport of electrolyte actively or passively
- V. In descending limb filtrate is hypertonic while in ascending limb filtrate is hypotonic

The above characteristics are associated with -

- (a) PCT
- (b) Loop of Henle
- (c) DCT
- (d) Bowman's capsule
- **55.** Which of the following statements is correct?
  - I. Reabsorption of water occurs passively in the initial segment of nephron
  - II. Nitrogenous waste are absorbed by passive transport
  - III. Conditional reabsorption of Na<sup>+</sup> and water takes place in DCT
  - IV. DCT reabsorbs HCO<sub>3</sub>
  - V. DCT is capable of selective secretion of H<sup>+</sup>,
     K<sup>+</sup> and NH<sub>3</sub> to maintain pH and Na<sup>+</sup> K<sup>+</sup>
     balance in blood
  - VI. Substances like glucose, amino acids, Na<sup>+</sup>, etc., in the filtrate are reabsorbed actively
  - (a) I and II
- (b) II and III
- (c) IV and V
- (d) All
- **56.** Tubular secretion helps to maintain a proper acid-base balance by removing one of the following from blood
  - (a) H<sup>+</sup> and NH,
- (b) Uric acid
- (c) H+ and urea
- (d) NH<sub>3</sub> and creatinine
- **57.** Which of the following statements is false regarding the collecting duct?

Zoology 86

- I. Collecting duct is a straight duct
- II. It extends from the cortex to medulla
- III. Large amount of water could be reabsorbed from it to produce concentrated urine-
- IV. Small amount of urea diffuses out from it into the medulla to keep up the osmolarity
- V. It plays a role to maintain pH and ionic balance of blood by the selective secretion of H<sup>+</sup> and K<sup>+</sup> ions
- (a) Only I
- (b) Only III
- (c) IV and V
- (d) None

#### Topic Mechanism of Concentration of the Filtrate 5

- **58.** Mammals have the ability to produce urine.
  - (a) Hypotonic
- (b) Hypertonic
- (c) Isotonic
- (d) Alkaline
- 59. Which one plays an important role in countercurrent mechanism?
  - (a) Vasa recta
- (b) PCT
- (c) Loop of Henle (d) Both (a) and (c)
- **60.** In which of the following counter current operates?
  - (a) In ascending limb of loop of Henle
  - (b) In descending limb of loop of Henle
  - (c) In ascending limb or descending limb of vasa recta
  - (d) Between the 2 limb of Henle's loop and those of vasa recta
- **61.** Medullary gradient is developed by all the following except -
  - (a) Reabsorption of Na<sup>+</sup> from ascending limb of Henle's loop into medullary interstitium
  - (b) Reabsorption of Na+ from descending limb of Henle's loop
  - (c) Diffusion of small amount of urea from collecting duct into medullary interstitium
  - (d) Proximity between Henle's loop and vasa recta as well as the counter-current in them

- **62.** The medullary gradient is mainly caused by -
  - (a) Urea & K+
- (b) H<sup>+</sup> and K<sup>+</sup>
- (c) NaCl and Urea (d) Urea and H<sup>+</sup>
- **63.** The counter-current mechanism helps to maintain a concentration gradient. This gradient helps in -
  - (a) Easy passage of water from medulla to collecting tubule and thereby concentrating urine
  - (b) Easy passage of water from collecting tubule and thereby concentrating urine
  - (c) Easy passage of water from medullary interstitial fluid to collecting tubule and thereby diluting urine
  - (d) Inhibition of passage of water between the collecting tubule and medulla and so isotonic urine is formed
- 64. NaCl is transported by the ascending limb of Henle's loop which is exchanged with -
  - (a) DCT
  - (b) PCT
  - (c) Ascending limb of vasa recta
  - (d) Descending limb of vasa recta
- **65.** NaCl is returned to the put here a dash as in fill in blanks type by the ascending limb of vasa recta.
  - (a) Ascending limb of Henle's loop
  - (b) DCT
  - (c) PCT
  - (d) Interstitial fluid of medulla
- **66.** Human kidney can produce urine nearly how many times concentrated than the initial filtrate formed?
  - (a) 4
- (b) 2
- (c) 10
- (d) 100
- 67. The high osmolarity of the renal medulla is maintained by all of the following, except -
  - I. Diffusion of salt from the ascending limb of the loop of Henle
  - II. Active transport of salt from the upper region of the ascending limb
  - III. The spatial arrangement of juxtamedullary nephrons

- IV. Diffusion of urea from the collecting duct
- V. Diffusion of salt from the descending limb of the loop of Henle
- (a) Only I
- (b) Only V
- (c) III and IV
- (d) I and V

## Topic 6 Regulation of Kidney Function

- **68.** Which one of the following is produced in the kidneys?
  - (a) Rennin
- (b) Renin
- (c) Uricase
- (d) Arginase
- **69.** Reabsorption of Na<sup>+</sup> is controlled by
  - (a) Vasopressin or ADH
  - (b) Aldosterone
  - (c) Renin
  - (d) Rennin
- **70.** The reabsorption of water in the kidneys is under the control of a hormone
  - (a) STH
- (b) ACTH
- (c) LH
- (d) ADH/Vasopressin
- **71.** Antidiuretic hormone secretion increases when the hypothalamus is stimulated by–
  - (a) Angiotensin receptors
  - (b) Glucose receptors
  - (c) Osmoreceptors
  - (d) Renin receptors
- **72.** The kidneys help regulate acid-base balance by controlling the level of \_\_\_\_\_ in the blood.
  - (a) CO,
- (b) H<sup>+</sup>
- (c) HCO<sub>2</sub>
- (d) B and C
- **73.** The functioning of the kidneys is efficiently monitored and regulated by hormonal feedback mechanisms involving -
  - (a) Hypothalamus only
  - (b) JGA only
  - (c) The heart only
  - (d) Hypothalamus, JGA and heart (to certain extent)

- **74.** Osmoreceptors in the body are activated by changes in -
  - (a) Blood volume but not body fluid volume
  - (b) Body fluid volume but not blood volume
  - (c) Blood volume and body fluid volume
  - (d) Blood volume, body fluid volume and ionic concentration
- **75.** Which of the following sequences is correct for regulation of kidney function?
  - (a) An excess loss of water from body→ Stimulates hypothalamus→ Osmoreceptors→ Neurohypophysis→ ADH→ Increases water permeability of DCT and CT→ Prevention of diuresis
  - (b) An excess loss of fluid from body→ Osmoreceptors→ Hypothalamus→ Neurohypophysis→ ADH→ Increases water permeability of DCT and CT→ Prevention of diuresis.
  - (c) An excess loss of fluid from body→ Osmoreceptors→ Hypothalamus→ Neurohypophysis→ Aldosterone→ Water permeability of DCT and CT increases→ Prevention of diuresis
  - (d) An excess loss of fluid from body→ osmoreceptor→ Hypothalamus→ Adenohypophysis→ ADH→ Increases water permeability of DCT and CT→ Prevention of diuresis
- **76.** Osmoregulation is the function of-
  - (a) Oxytocin
  - (b) Prolactin
  - (c) Vasopressin (ADH)
  - (d) None of the above
- 77. ADH is synthesised by, \_\_\_\_\_ released by \_\_\_\_\_ and acts on \_\_\_\_\_.
  - (a) Hypothalamus, Neurohypophysis, DCT and CT
  - (b) Hypothalamus, Neurohypophysis, Loop of Henle
  - (c) Hypothalamus, Adenohypophysis, DCT and CT

- (d) Hypothalamus, Adenohypophysis, Loop of Henle
- **78.** Which of the following sequence is correct?
  - (a) An increase in body fluid volume → switch off the Osmoreceptors → suppresses the ADH release
  - (b) ADH → Constricting effect on blood vessel→ B. P. high~ Glomerular blood flow more → GFR more
  - (c) Angiotensinogen→ Angiotensin I→ Angiotensin II→ Adrenal cortex → Aldosterone
  - (d) All of the above
- **79.** Which of the following factors can active at the JG cells to release renin?
  - (a) A fall in glomerular blood pressure (GBP)
  - (b) A fall in glomerular blood flow (GBF)
  - (c) A fall in GFR
  - (d) A fall in GFR / GBP / GBF
- **80.** Which of the following statements is false?
  - (a) Angiotensin II, being a powerful vasoconstrictor, increases glomerular pressure and thereby GFR
  - (b) Angiotensin II activates the adrenal cortex to release aldosterone
  - (c) Aldosterone promotes reabsorption of Na<sup>+</sup> and water from the DCT and CT leading to an increase in B.P. and GFR
  - (d) ANF causes vasoconstriction
- **81.** RAAS (Renin -Angiotensinogen Aldosterone System)-
  - (a) Is triggered when the juxtaglomerular cells of JGA releases renin in response to various stimuli
  - (b) Is responsible for regulation of kidney function
  - (c) Are stimulated when ANF is more in blood
  - (d) Both (a) and (b) are correct
- **82.** Which of the following is true about Atrial Natriuretic factor (ANF)?
  - (a) An increase in blood volume and B.P. stimulates cardiac atria to release ANF

- (b) ANF promotes vasoconstriction and thereby decrease B.P.
- (c) ANF acts as a check on RAAS
- (d) Both (a) and (c)
- 83. Renin-angiotensin pathway controls
  - (a) Ultrafiltration
  - (b) Blood pressure
  - (c) Glucose reabsorption
  - (d) Cardia output
- **84.** RAAS secretes which of the following hormones?
  - (a) Glucocorticoids
  - (b) Renin
  - (c) Mineralocorticoids
  - (d) All of the above

| Topic | Micturition |
|-------|-------------|
| 7     |             |

- **85.** The expulsion of urine from the urinary bladder is called -
  - (a) Uricolysis
- (b) Micturition
- (c) Uremia
- (d) Anuria
- 86. In micturition -
  - (a) Urethra 1 sphincter relaxes
  - (b) Ureter relaxes
  - (c) Ureter contracts
  - (d) Urethra contracts
- **87.** The outline of principal event of urination is given below in unordered manner:
  - I. Stretch receptors on the wall of urinary bladder send signal to the CNS
  - II. The bladder fills with urine and becomes distended
  - III. Micturition
  - IV. CNS passes on motor messages to initiate the contraction of smooth muscles of bladder and simultaneous relaxation of urethral sphincter

The correct order of steps for urination is-

- (a)  $I \rightarrow II \rightarrow III \rightarrow IV$
- (b)  $IV \rightarrow III \rightarrow II \rightarrow I$

- (c)  $II \rightarrow I \rightarrow IV \rightarrow III$
- (d) III $\rightarrow$  II  $\rightarrow$ I  $\rightarrow$  IV
- **88.** The neural mechanisms causing urination is called -
  - (a) Scarth reflex
  - (b) Withdrawal reflex
  - (c) Micturition reflex
  - (d) None
- 89. Average pH of human urine is -
  - (a) 6
- (b) 9
- (c) 3
- (d) 7
- 90. Match the column I with column II.

|    | Column I               |      | Column II                     |
|----|------------------------|------|-------------------------------|
| A. | Uremia                 | I.   | Henle's loop                  |
| B. | Ketonuria              | II.  | Ketone bodies in urine        |
| C. | Glycosuria             | III. | Artificial kidney             |
| D. | Blood<br>dialyser      | IV.  | Glucose in urine              |
| E. | Concentration of urine | V.   | Accumulation of urea in blood |

- (a) A V, B II, C IV, D III, E I
- (b) A- III, B II, C IV, D I, E V
- (c) A-I, B II, C IV, D III, E V
- (d) A- I, B II, C IV, D V, E III
- 91. Diabetes mellitus is characterized by-
  - (a) Oilgonuria
  - (b) Ketonuria and glycosuria
  - (c) Anuria
  - (d) Haematuria
- **92.** How much urea is excreted per day by a normal adult?
  - (a) 0 gm
- (b) 25 30 gm
- (c) 50 gm
- (d) 1 2 gm

| Topic | Role of other Organs in |
|-------|-------------------------|
| 8     | Excretion               |

- **93.** Other than kidneys, which of the following also helps in the elimination of excretory wastes?
  - (a) Skin
- (b) Liver
- (c) Lungs
- (d) All

- **94.** How much CO<sub>2</sub> is removed per minute by our lungs?
  - (a) 18 mL
- (b) 200 mL
- (c) 1L
- (d) 8 L
- 95. Which of the following statements is false?
  - (a) Micturition is carried out by a reflex
  - (b) Cholesterol is excreted in the bile and waxes are excreted in the sebum
  - (c) 8 L urine is excreted per day
  - (d) The primary function of sweat is excretion
- **96.** Liver (largest gland) is both secretory and excretory organ. It secretes bile. Which of the following are major excretory products of bile?
  - (a) Degraded and steroid hormones
  - (b) Vitamins and drugs
  - (c) Bilirubin and Biliverdin
  - (d) Cholesterol
- **97.** Most of excretory products of bile ultimately pass out along with-
  - (a) Urine
- (b) Digestive wastes
- (c) Urea
- (d) Sweat

98.

- The human skin possesses sweat and sebaceous glands which eliminate some wastes in their secretion.
- II. Sweat is waxy protective secretion having sterols, hydrocarbons and fatty acid
- III. Sebum is an aqueous fluid having NaCl, lactic acid, urea, amino acids, glucose

Which one of the above statement is correct?

- (a) Only I
- (b) II and III
- (c) Only II
- (d) I and II

| Topic | Disorder of the Excretory |
|-------|---------------------------|
| 9     | System                    |

- **99.** In uremia, artificial kidney is used for removing accumulated waste products like urea by the process called-
  - (a) Micturition
- (b) Haemolysis
- (c) Ureotelism
- (d) Hemodialysis

90 Zoology

- **100.** In artificial kidney dialysing fluid contains all the constituents as in plasma expect-
  - (a) Na<sup>+</sup>
  - (b) Water
  - (c) Glucose
  - (d) Nitrogenous wastes
- 101. Kidney stone is produced by-
  - (a) Deposition of sand particles
  - (b) Crystallization of Ca- oxalate
  - (c) Precipitation of protein
  - (d) KCI or NaCl
- 102. Bright's disease/Glomerulonephritis is-
  - (a) Glycosuria
  - (b) Cystitis
  - (c) Inflammation of glomeruli
  - (d) Ketonuria

101. (b) 102. (c) 103. (c)

- 103. Following are the steps of dialysis:
  - A. Blood is passed into a vein.
  - B. Blood is mixed with heparin.
  - C. Blood is mixed with anti-heparin.
  - D. Blood is drained from convenient artery.
  - E. Blood is passed through a coiled and porous cellophane tube bathing in dialysis fluid.
  - F. Removal of nitrogenous wastes from blood.

The correct sequence of steps is-

- (a)  $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F$
- (b)  $F \rightarrow C \rightarrow E \rightarrow B \rightarrow A \rightarrow D$
- (c)  $D \rightarrow B \rightarrow E \rightarrow F \rightarrow C \rightarrow A$
- (d)  $D \rightarrow C \rightarrow E \rightarrow F \rightarrow B \rightarrow A$

#### **ANSWER KEY**

| 1. (c)  | 2. (b)  | 3. (b)  | 4. (d)  | 5. (a)  | 6. (c)  | 7. (d)  | 8. (c)  | 9. (d)  | 10. (d)  |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| 11. (b) | 12. (d) | 13. (b) | 14. (d) | 15. (a) | 16. (c) | 17. (c) | 18. (a) | 19. (a) | 20. (c)  |
| 21. (d) | 22. (c) | 23. (d) | 24. (b) | 25. (b) | 26. (b) | 27. (b) | 28. (c) | 29. (a) | 30. (c)  |
| 31. (d) | 32. (a) | 33. (a) | 34. (d) | 35. (a) | 36. (c) | 37. (a) | 38. (a) | 39. (c) | 40. (a)  |
| 41. (d) | 42. (c) | 43. (b) | 44. (c) | 45. (b) | 46. (b) | 47. (d) | 48. (b) | 49. (b) | 50. (c)  |
| 51. (c) | 52. (a) | 53. (d) | 54. (b) | 55. (d) | 56. (a) | 57. (d) | 58. (b) | 59. (d) | 60. (d)  |
| 61. (b) | 62. (c) | 63. (b) | 64. (d) | 65. (d) | 66. (a) | 67. (b) | 68. (b) | 69. (b) | 70. (d)  |
| 71. (c) | 72. (d) | 73. (d) | 74. (d) | 75. (b) | 76. (c) | 77. (a) | 78. (d) | 79. (d) | 80. (d)  |
| 81. (d) | 82. (d) | 83. (b) | 84. (c) | 85. (b) | 86. (a) | 87. (c) | 88. (c) | 89. (a) | 90. (a)  |
| 91. (b) | 92. (b) | 93. (d) | 94. (b) | 95. (c) | 96. (c) | 97. (b) | 98. (a) | 99. (d) | 100. (d) |