

Maxima and Minima

Learning & Revision for the Day

Maxima and Minima of a Function

• Concept of Global Maximum/Minimum

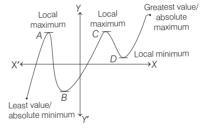
Maxima and Minima of a Function

A function f(x) is said to attain a **maximum** at x = a, if there exists a neighbourhood $(a - \delta, a + \delta)$, $x \neq a$ i.e. f(x) < f(a), $\forall x \in (a - \delta, a + \delta)$,

 $x \neq a \cdot h > 0$ (very small quantity)

In such a case f(a) is said to be the maximum value of f(x) at x = a.

A function f(x) is said to attain a **minimum** at x = a, if there exists a neighbourhood $(a - \delta, a + \delta)$ such that $f(x) > f(a), \forall x \in (a - \delta, a + \delta), x \neq a$.



Graph of a continuous function explained local maxima (minima) and absolute maxima (minima). In such a case f(a) is said to be the minimum value of f(x) at x = a.

The points at which a function attains either the maximum or the minimum values are known as the **extreme points** or **turning points** and both minimum and maximum values of f(x) are called extreme values. The turning points A and C are called **local maximum** and points B and D are called **local minimum**.

Critical Point

- A point c in the domain of a function f at which either f'(c) = 0 or f is not differentiable is called a **critical point** of f. Note that, if f is continuous at point c and f'(c) = 0, then there exists h > 0 such that f is differentiable in the interval (c h, c + h).
- The converse of above theorem need not be true, that is a point at which the derivative vanishes need not be a point of local maxima or local minima.

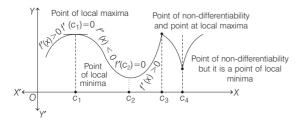
Method to Find Local Maxima or Local Minima

First Derivative Test

Let f be a function defined on an open interval I and f be continuous at a critical point c in I. Then,

(i) If f'(x) changes sign from positive to negative as x increases through c, i.e. if f'(x) > 0 at every point sufficiently close to and to the left of c and f'(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of **local maxima**.

- (ii) If f'(x) changes sign from negative to positive as x increases through point c, i.e. if f'(x) < 0 at every point sufficiently close to and to the left of c and f'(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of local minima.
- (iii) If f'(x) does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima. Infact, such a point is called point of inflection.



Graph of *f* around *c* explained following points.

(iv) If c is a point of local maxima of f, then f(c) is a local maximum value of f. Similarly, if c is a point of local minima of f, then f(c) is a local minimum value of f.

Second or Higher Order Derivative Test

- (i) Find f'(x) and equate it to zero. Solve f'(x) = 0 let its roots be $x = a_1, a_2, \dots$
- (ii) Find f''(x) and at x = a,
 - (a) if $f''(a_1)$ is positive, then f(x) is minimum at $x = a_1$.
 - (b) if $f''(a_1)$ is negative, then f(x) is maximum at $x = a_1$.
- (iii) (a) If at $x = a_1, f''(a_1) = 0$, then find f'''(x). If $f'''(a_1) \neq 0$, then f(x) is neither maximum nor minimum at x = a.
 - (b) If $f'''(a_1) = 0$, then find $f^{iv}(x)$.
 - (c) If $f^{iv}(x)$ is positive (minimum value) and $f^{iv}(x)$ is negative (maximum value).
- (iv) If at $x = a_1, f^{iv}(a_1) = 0$, then find $f^{v}(x)$ and proceed similarly.

Point of Inflection

At point of inflection

- (i) It is not necessary that 1st derivative is zero.
- (ii) 2nd derivative must be zero or 2nd derivative changes sign in the neighbourhood of point of inflection.

nth Derivative Test

Let f be a differentiable function on an interval I and α be an interior point of I such that

- (i) $f'(a) = f''(a) = f'''(a) = \dots = f^{n-1}(a) = 0$ and
- (ii) $f^n(a)$ exists and is non-zero.

Important Results

- If *n* is even and $f^n(a) < 0 \Rightarrow x = a$ is a point of local maximum.
- If *n* is even and $f^n(a) > 0 \Rightarrow x = a$ is a point of local minimum.
- If n is odd ⇒ x = a is a point of neither local maximum nor a point of local minimum.
- The function $f(x) = \frac{ax + b}{cx + d}$ has no local maximum or minimum regardless of values of a, b, c and d.
- The function $f(\theta) = \sin^m \theta \cdot \cos^n \theta$ attains maximum values at $\theta = \tan^{-1} \left(\sqrt{\frac{m}{n}} \right)$.
- If AB is diameter of circle and C is any point on the circumference, then area of the Δ ABC will be maximum, if triangle is isosceles.

Concept of Global Maximum/Minimum

- Let y = f(x) be a given function with domain D and $[a,b] \subseteq D$, then global maximum/minimum of f(x) in [a,b] is basically the greatest / least value of f(x) in [a,b].
- Global maxima/minima in [a, b] would always occur at critical points of f(x) within [a, b] or at end points of the interval.

Global Maximum/Minimum in [a, b]

In order to find the global maximum and minimum of f(x) in [a,b].

- **Step I** Find out all critical points of f(x) in [a, b] [i.e. all points at which f'(x) = 0] and let these points are c_1, c_2, \dots, c_n .
- **Step II** Find the value of $f(c_1)$, $f(c_2)$,..., $f(c_n)$ and also at the end points of domain i.e. f(a) and f(b).
- **Step III** Find $M_1 o$ Global maxima or greatest value and $M_2 o$ Global minima or least value. where, $M_1 = \max\{f(a), f(c_1), f(c_2), ..., f(c_n), f(b)\}$ and $M_2 = \min\{f(a), f(c_1), f(c_2), ..., f(c_n), f(b)\}$

Some Important Results on Maxima and Minima

- (i) Maxima and minima occur alternatively i.e. between two maxima there is one minimum and *vice-versa*.
- (ii) If $f(x) \to \infty$ as $x \to a$ or b and f'(x) = 0 only for one value of x (say c) between a and b, then f(c) is necessarily the minimum and the least value.
- (iii) If $f(x) \to -\infty$ as $x \to a$ or b, then f(c) is necessarily the maximum and greatest value.
- (iv) The **stationary points** are the points of the domain, where f'(x) = 0.

DAY PRACTICE SESSION 1

FOUNDATION QUESTIONS EXERCISE

1 If *f* is defined as $f(x) = x + \frac{1}{x}$, then which of following is

10 If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where a > 0

attains its maximum and minimum at p and q

	true?	→ NCERT Exemplar		respectively such that $p^2 = q$, then a is equal to				
	(a) Local maximum value of $f(x)$ is -2 (b) Local minimum value of $f(x)$ is 2			(a) 3	(b) 1	, ,	(d) $\frac{1}{2}$	
	(c) Local maximum value of f(x) is less the value of f(x)(d) All the above are true	11 If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2cx + b^2$ such that minimum $f(x) > \max g(x)$, then the relation between b and c is						
2	If the sum of two numbers is 3, then the of the product of the first and the square			(a) 0 < c < b (c) c > b	$0\sqrt{2}$ $1\sqrt{2}$	(b) c < l (d) No rea	$b \mid \sqrt{2}$ I values of b and c	
		→ NCERT Exemplar	12	12 Let $f(x)$ be a polynomial of degree four having extreme				
3	(a) 4 (b) 1 (c) 3 If $y = a \log x + bx^2 + x$ has its extremur	(d) 0 n value at $x = 1$		values at x	= 1 and x = 2.	If $\lim_{x \to 0} \left[1 + \frac{f(x)}{x^2} \right]$	= 3, then $f(2)$ is	
Ī	and $x = 2$, then (a, b) is equal to	vaido at x		equal to			→ JEE Mains 2015	
	(a) $\left(1, \frac{1}{2}\right)$ (b) $\left(\frac{1}{2}, 2\right)$ (c) $\left(2, \frac{-1}{2}\right)$	$(d) \left(\frac{-2}{3}, \frac{-1}{6}\right)$		(a) -8 (c) 0		(b) -4 (d) 4		
4	The function $f(x) = a \cos x + b \tan x +$ values at $x = 0$ and $x = \frac{\pi}{6}$, then	13 If a differential function $f(x)$ has a relative minimum at $x = 0$, then the function $\phi(x) = f(x) + ax + b$ has a relative minimum at $x = 0$ for						
	(a) $a = -\frac{2}{3}$, $b = -1$ (b) $a = \frac{2}{3}$, $b = -1$			(a) all <i>a</i> and (c) all <i>b</i> > 0		(b) all <i>b</i> , if (d) all <i>a</i> > 0		
	(c) $a = -\frac{2}{3}$, $b = 1$ (d) $a = \frac{2}{3}$, $b = 1$	0 = 1	14 The denominator of a fraction is greater than 16 of the square of numerator, then least value of fraction is					
5	The minimum radius vector of the curve			(a) $-1/4$		(b) $-1/8$		
	$\frac{4}{V^2} + \frac{9}{V^2} = 1$ is of length			(c) 1/12		(d) 1/16		
	a) 1 (b) 5 (c) 7 (d) None of these			15 The function $f(x) = ax + \frac{b}{x}$, b , $x > 0$ takes the least value				
6	The function $f(x) = 4x^3 - 18x^2 + 27x - 7$			at x equal to			<u></u>	
	(a) one local maxima	→ NCERT Exemplar		(a) b	(b) √ <i>a</i>	(c) √ <i>b</i>	(d) $\sqrt{\frac{b}{a}}$	
	(b) one local minima(c) one local maxima and two local minin(d) neither maxima nor minima	na	16	Let f be a fu	ınction define	and by $f(x) = \begin{cases} \frac{1}{2} & \text{if } x > 0 \end{cases}$	$\frac{\tan x}{x}$, $x \neq 0$	
7	The function $f(x) = \frac{x^2 - 2}{x^2 + 4}$ has					1 , $x = 0$		
′	The function $T(x) = \frac{1}{x^2 - 4}$ has			Statement	$\mathbf{I} x = 0$ is poi	nt of minima	of f .	
	(a) no point of local minima (b) no point of local maxima (c) exactly one point of local minima (d) exactly one point of local maxima $R \text{ Let } f: R \to R \text{ be defined by } f(x) = \begin{cases} k-2x, & \text{if } x \le -1 \\ 2x+3, & \text{if } x > -1 \end{cases}$			Statement	II $f'(0) = 0$.		→ AIEEE 2011	
				 (a) Statement I is true, Statement II is true; Statement II is a correct explanation for Statement I (b) Statement I is true, Statement II is true; Statement II is not a correct explanation for Statement I (c) Statement I is true; Statement II is false 				
8								
	If f has a local minimum at $x = -1$, then a possible value			(d) Statement I is false; Statement II is true				
	of <i>k</i> is (a) 1 (b) 0 (c) $-\frac{1}{2}$	→ AIEEE 2010 (d) -1	17	7 The absolute maximum and minimum values of the function f given by $f(x) = \cos^2 x + \sin x$, $x \in [0, \pi]$				
0	2		(a) 2.25 and 2		→ NCERT Exemplar (b) 1.25 and 1			
9	The minimum value of $9x + 4y$, where x (a) 48 (b) 28 (c) 38	(y) = 16 is (d) 18		(a) 2.25 and (c) 1.75 and		(d) None o		

18	The maximum	value of $f(x)$	$=\frac{X}{4+X+X^2}$	on [-1,1] is		(a) $\frac{1}{2}$ (area of	of $\triangle ABC$)	(b) $\frac{1}{4}$ (area	of ΔABC)	
	(a) $-\frac{1}{4}$	(b) $-\frac{1}{3}$	(c) $\frac{1}{6}$	(d) $\frac{1}{5}$		(c) $\frac{1}{6}$ (area o	f ΔABC)	(d) $\frac{1}{8}$ (area	of $\triangle ABC$)	
10	In intorval [1 a	1 the greates	t value of x^2 le	na v ie	28	If $y = f(x)$ is a	a parametrical	ly defined ex	pression such	
13	In interval [1, e], the greatest value of $x^2 \log x$ is (a) e^2 (b) $\frac{1}{e} \log \frac{1}{\sqrt{e}}$ (c) $e^2 \log \sqrt{e}$ (d) None of these				that $x = 3t^2 - 18t + 7$ and $y = 2t^3 - 15t^2 + 24t + 10$, $\forall x \in [0, 6]$.					
	If x is real, the maximum value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ is					Then, the maximum and minimum values of $y = f(x)$ are				
20	If x is real, the	maximum va	alue of $\frac{3x^2+3}{3x^2+3}$			(a) 36, 3	(b) 46, 6	(c) 40, -6	(d) 46, -6	
			47	→ AIEEE 2007	29	The value of a, so that the sum of the squares of the roots of the equation $x^2 - (a-2)x - a + 1 = 0$ assume				
	(a) 41	(b) 1	(c) $\frac{17}{7}$	(d) $\frac{1}{4}$		roots of the e the least valu		(a – 2)x – a +	- 1 = 0 assume	
21	The maximum					(a) 2	(b) 1	(c) 3	(d) 0	
	$f(x) = \sec x + \log \cos^2 x$, $0 < x < 2\pi$ are respectively			30	The minimum intercepts made by the axes on the					
	→ NCERT Exemplar					tangent to the				
	(a) (1, -1) and {2 (1 - log 2), 2 (1 + log 2)}				tangoni to tin	16	9			
	(b) $(1, -1)$ an		1, 2 (1 – log 2)}			(a) 25	(b) 7	(c) 1	(d) None of these	
	(c) (1, - 1) an (d) None of the				31	The curved s	urface of the	cone inscribe	d in a given	
22	, ,		notant and lan	at values of the		sphere is ma	,			
22	The difference	e between gre	eatest and lea Γππ]	st values of the		(a) $h = \frac{4R}{3}$	(b) $h = \frac{R}{R}$	(c) $h = \frac{2R}{2}$	(d) None of these	
	function $f(x)$ =	$\sin 2x - x$, or	$1 \left -\frac{2}{2}, \frac{2}{2} \right $ is	→ NCERT Exemplar		O	0	O		
					32		-	one that can	be inscribed in a	
	(a) π	(b) 2π	(ε) 3π	(d) $\frac{\pi}{2}$		sphere of rac			→ NCERT	
23	The point of in	flection for th	ie curve $y = x$	^{5/2} is		(a) $\frac{3}{8}$ of the v	olume of the s	phere		
	(a) (1, 1) (b) (0, 0) (c) (1, 0) (d) (0, 1)					(b) $\frac{8}{27}$ of the volume of the sphere				
24	The maximum area of a right angled triangle with									
	hypotenuse h	nypotenuse <i>h</i> is → JEE Main 2013			(c) $\frac{2}{7}$ of the volume of the sphere					
	(a) $\frac{h^3}{2\sqrt{2}}$	(b) $\frac{h^2}{2}$	(c) $\frac{h^2}{\sqrt{2}}$	(d) $\frac{h^2}{4}$		(d) None of t				
25	A straight line is drawn through the point $P(2, 4)$ meeting			33	_		gle that can b	oe inscribed in		
25	A straight line is drawn through the point $P(3, 4)$ meeting the positive direction of coordinate axes at the points A and B . If O is the origin, then minimum area of $\triangle OAB$ is				the ellipse $\frac{x}{a}$	$\frac{y^2}{2} + \frac{y^2}{12} = 1$ is				
					а	D				
	equal to					(a) <i>√ab</i>	(b) $\frac{a}{b}$	(c) 2ab	(d) <i>ab</i>	
	(a) 12 sq unit		(b) 6 sq unit		31	The real num	hor v whon a	ddad ta ite inv	verse gives the	
	(c) 24 sq units (d) 48 sq units		34		ue of the sum		•			
26	Suppose the cubic $x^3 - px + q$ has three distinct real roots, where $p > 0$ and $q > 0$. Then, which one of the following holds? (a) The cubic has maxima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$				(a) 2	(b) 1	(c) -1	(d) -2		
				35	The greatest	,	(-)	(=) =		
				33	o .		[0 4]:			
						$-(x-1)^{1/3}$		→ AIEEE 2002		
				, 5		. ,	(b) 2	. ,	(d) 1/3	
	(b) The cubic has minima at $\sqrt{\frac{p}{3}}$ and maxima at $-\sqrt{\frac{p}{3}}$				36	The coordinate of a point on the parabola $y^2 = 8x$ whose distance from the circle $x^2 + (y + 6)^2 = 1$ is minimum, is				
	(c) The cubic	has minima a	at $-\sqrt{\frac{p}{3}}$ and ma	axima at \sqrt{p}			(b) (2,4)			

(d) The cubic has minima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$

maximum area of such parallelogram is

27 If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of a \triangle ABC. A parallelogram AFDE is drawn with D, E and F on the line segment BC, CA and AB, respectively. Then,

38 Maximum slope of the curve $y = -x^3 + 3x^2 + 9x - 27$ is (a) 0 (b) 12 (c) 16 (d) 32

37 The volume of the largest cylinder that can be inscribed

(a) $\frac{4\pi r^3}{\sqrt{3}}$ (b) $\frac{4\pi r^3}{3\sqrt{3}}$ (c) $\frac{4\pi r^3}{2\sqrt{3}}$ (d) $\frac{4\pi r^3}{5\sqrt{2}}$

in a sphere of radius r cm is

- **39** If ab = 2a + 3b, a > 0, b > 0, then the minimum value of ab
 - (a) 12

(b) 24

(c) $\frac{1}{1}$

- (d) None of these
- **40** The perimeter of a sector is p. The area of the sector is maximum, when its radius is

 - (a) \sqrt{p} (b) $\frac{1}{\sqrt{p}}$ (c) $\frac{p}{2}$ (d) $\frac{p}{4}$

DAY PRACTICE SESSION 2

PROGRESSIVE QUESTIONS EXERCISE

1 The minimum radius vector of the curve $\frac{a^2}{v^2} + \frac{b^2}{v^2} = 1$ is of

lenath

- (a) a b
- (b) a + b
- (c) 2a + b
- (d) None of these
- **2** $f(x) = x^2 4 | x |$ and $g(x) = \begin{cases} \min \{f(t) : -6 \le t \le x\}, & x \in [-6, 0] \\ \max \{f(t) : 0 < t \le x\}, & x \in (0, 6] \end{cases}, \text{ then } g(x) \text{ has}$
 - (a) exactly one point of local minima
 - (b) exactly one point of local maxima
 - (c) no point to local maxima but exactly one point of local minima
 - (d) neither a point of local maxima nor minima
- 3 $f(x) = \begin{cases} 4x x^3 + \log(a^2 3a + 3), & 0 \le x < 3 \\ x 18, & x \ge 3 \end{cases}$

Complete the set of values of a such that f(x) has a local maxima at x = 3. is

- (a) [-1, 2]
- (b) $(-\infty, 1) \cup (2, \infty)$
- (c) [1, 2]
- (d) $(-\infty, -1) \cup (2, \infty)$
- **4** The point in the interval $[0, 2\pi]$, where $f(x) = e^x \sin x$ has maximum slope is

(c) π

- (d) None of these
- **5** The total number of local maxima and local minima of the function $f(x) = \begin{cases} (2+x)^3, -3 < x \le -1 \\ x^{2/3}, -1 < x < 2 \end{cases}$ is

- 6 If 20 m of wire is available for fencing off a flower-bed in the form of a circular sector, then the maximum area (in sam) of the flower-bed is → JEE Mains 2017 (a) 12.5 (b) 10 (c) 25
- **7** The cost of running a bus from A to B, is $\sqrt[q]{av + \frac{b}{c}}$

where v km/h is the average speed of the bus. When the bus travels at 30 km/h, the cost comes out to be ₹75

- ₹75 while at 40 km/h, it is ₹65. Then, the most economical speed (in km/h) of the bus is → JEE Mains 2013

- 8 If $f(x) = \begin{cases} |x^2 2|, & -1 \le x < \sqrt{3} \\ \frac{x}{\sqrt{3}}, & \sqrt{3} \le x < 2\sqrt{3}, \text{ then the points,} \\ 3 x, & 2\sqrt{3} \le x \le 4 \end{cases}$
 - where f(x) takes maximum and minimum values, are
 - (a) 1.4

- 9 Let $f(x) = \begin{cases} |x^3 + x^2 + 3x + \sin x| \left(3 + \sin \frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0 \end{cases}$, then
 - number of points [where, f(x) attains its minimum value]
 - (a) 1

(c) 3

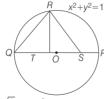
- (d) infinite many
- 10 A wire of length 2 units is cut into two parts which are bent respectively to form a square of side = x units and a circle of radius = r units. If the sum of the areas of the square and the circle so formed is minimum, then
 - (a) $2x = (\pi + 4)r$
- (b) $(4 \pi)x = \pi r$

- **11** Let $f(x) = x^2 + \frac{1}{x^2}$ and $g(x) = x \frac{1}{x}$, $x \in R \{-1, 0, 1\}$. If
 - $h(x) = \frac{f(x)}{g(x)}$, then the local minimum value of h(x) is \rightarrow **JEE Mains 2018**(a) 3 (b) -3 (c) $-2\sqrt{2}$ (d) $2\sqrt{2}$

- **12** The largest term in the sequence $a_n = \frac{n^2}{n^3 + 200}$ is given by

- (d) None of these
- 13 All possible values of the parameter a so that the function $f(x) = x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2$ has a negative point of local minimum are
 - (a) all real values
- (b) no real values
- (c) $(0, \infty)$
- (d) $(-\infty,0)$

14 The circle $x^2 + y^2 = 1$ cuts the X-axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X-axis and the line segment PQ at S. Then, the maximum area of the ΔQSR is



- (a) $4\sqrt{3}$ sq units
- (b) 14√3 sq units
- (c) $\frac{4\sqrt{3}}{9}$ sq units
- (d) $15\sqrt{3}$ sa units

- **15** Given, $P(x) = x^4 + ax^3 + bx^2 + cx + d$ such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1,1].
 - (a) P(-1) is the minimum and P(1) is the maximum of P(-1)
 - (b) P(-1) is not minimum but P(1) is the maximum of P
 - (c) P(-1) is the minimum and P(1) is not the maximum of P
 - (d) Neither P(-1) is the minimum nor P(1) is the maximum of P

ANSWERS

Hints and Explanations

SESSION 1

1 Let
$$y = x + \frac{1}{x}$$
 \Rightarrow $\frac{dy}{dx} = 1 - \frac{1}{x^2}$
Now, $\frac{dy}{dx} = 0 \Rightarrow x^2 = 1$
 $\Rightarrow x = \pm 1$
 $\Rightarrow \frac{d^2y}{dx^2} = \frac{2}{x^3}$, therefore
 $\frac{d^2y}{dx^2}$ (at $x = 1$) > 0
and $\frac{d^2y}{dx^2}$ (at $x = -1$) < 0

Hence, local maximum value of y is at x = -1 and the local maximum value = -2.

Local minimum value of y is at x=1 and local minimum value = 2. Therefore, local maximum value – 2 is less than local minimum value 2.

2 Let two numbers be x and
$$(3 - x)$$
.
Then, product $P = x(3 - x)^2$

$$\frac{dP}{dx} = -2x(3 - x) + (3 - x)^2$$

$$\frac{dP}{dx} = (3 - x)(3 - 3x) \text{ and } \frac{d^2P}{dx^2} = 6x - 12$$
For maxima or minima, put $\frac{dP}{dx} = 0$

 \Rightarrow $(3-x)(3-3x)=0 \Rightarrow x=3, 1$

At
$$x = 3$$
,
$$\frac{d^2P}{dx^2} = 18 - 12 = 6 > 0 \text{ [minima]}$$

At
$$x = 1$$
,
$$\frac{d^2P}{dx^2} = -6 < 0$$

So, P is maximum at x = 1.

 \therefore Maximum value of $P = 1(3-1)^2 = 4$

3
$$\frac{dy}{dx} = \frac{a}{x} + 2bx + 1$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{x=1} = a + 2b + 1 = 0$$

$$\Rightarrow a = -2b - 1$$
and
$$\left(\frac{dy}{dx}\right)_{x=2} = \frac{a}{2} + 4b + 1 = 0$$

$$\Rightarrow \frac{-2b - 1}{2} + 4b + 1 = 0$$

$$\Rightarrow -b + 4b + \frac{1}{2} = 0 \Rightarrow 3b = \frac{-1}{2}$$

$$\Rightarrow b = \frac{-1}{6} \text{ and } a = \frac{1}{3} - 1 = \frac{-2}{3}$$

4
$$f'(x) = -a \sin x + b \sec^2 x + 1$$

Now, $f'(0) = 0$ and $f'\left(\frac{\pi}{6}\right) = 0$
 $\Rightarrow b + 1 = 0$ and $-\frac{a}{2} + \frac{4b}{2} + 1 = 0$

$$\Rightarrow \qquad b = -1, a = -\frac{2}{3}$$

5 The given curve is
$$\frac{4}{x^2} + \frac{9}{y^2} = 1$$

Put $x = r \cos \theta$, $y = r \sin \theta$, we get $r^2 = (2 \sec \theta)^2 + (3 \csc \theta)^2$ So, r^2 will have minimum value $(2 + 3)^2$.

or r have minimum value equal to 5.

6
$$f(x)=4x^3-18x^2+27x-7$$

 $f'(x)=12x^2-36x+27$
 $=3(4x^2-12x+9)=3(2x-3)^2$
 $f'(x)=0 \Rightarrow x=\frac{3}{2}$ (critical point)
Since, $f'(x)>0$ for all $x<\frac{3}{2}$ and for all

Hence, $x = \frac{3}{2}$ is a point of inflection *i.e.*, neither a point of maxima nor a point of minima.

 $x = \frac{3}{2}$ is the only critical point and f

has neither maxima nor minima.

7 For
$$y = \frac{x^2 - 2}{x^2 - 4} \Rightarrow \frac{dy}{dx} = \frac{-4x}{(x^2 - 4)^2}$$

$$\Rightarrow \frac{dy}{dx} > 0, \text{ for } x < 0$$
and
$$\frac{dy}{dx} < 0, \text{ for } x > 0$$

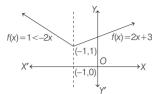
Thus, x = 0 is the point of local maxima for y. Now, $(y)_{x=0} = \frac{1}{2}$ (positive). Thus,

- x = 0 is also the point of local maximum for $y = \left| \frac{x^2 - 2}{x^2 - 4} \right|$
- **8** If f(x) has a local minimum at x = -1,

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$$

$$\Rightarrow \lim_{x \to -1^+} 2x + 3 = \lim_{x \to -1^-} 1 < -2x$$

$$\Rightarrow -2 + 3 = k + 2 \Rightarrow k = -1$$



9 Let S = 9x + 4v

Since, xy = 16 is given.

$$y = \frac{16}{x} \text{ or } S = 9x + \frac{64}{x}$$

On differentiating both sides, we get

$$\frac{dS}{dx} = 9 - \frac{64}{x^2} \qquad \dots(i)$$

$$\therefore \qquad \frac{dS}{dx} = 0 \Rightarrow \frac{64}{x^2} = 9 \Rightarrow x = \pm \frac{8}{3}$$

w.r.t. *x*, we get
$$\frac{d^2S}{dx^2} = \frac{128}{x^3}$$

Hence, it is minimum at $x = \frac{8}{3}$ and minimum value of S is

$$S_{\min} = 9\left(\frac{8}{3}\right) + 4(6) = 48$$

10 We have

$$f(x) = 2x^3 - 9 ax^2 + 12a^2 x + 1$$

$$f'(x) = 6x^2 - 18 ax + 12a^2$$

$$f''(x) = 12x - 18 a$$

For maximum and minimum,

$$6x^2 - 18ax + 12a^2 = 0$$

$$\Rightarrow \qquad x^2 - 3ax + 2a^2 = 0$$

$$\Rightarrow$$
 $x = a \text{ or } x = 2a$

At x = a maximum and at x = 2aminimum.

$$p^2 = q$$

$$a^2 = 2a \Rightarrow a = 2 \text{ or } a = 0$$

But a > 0, therefore a = 2

But
$$a > 0$$
, therefore $a = 2$

11 Minimum of $f(x) = -\frac{D}{4a}$

$$= \frac{-(4b^2 - 8c^2)}{4}$$

and maximum of $g(x) = -\frac{(4c^2 + 4b^2)}{4(-1)}$

$$b^2 + c^2$$

Since, $\min f(x) > \max g(x)$

$$\Rightarrow 2c^2 - b^2 > b^2 + c^2$$

$$\Rightarrow c^2 > 2b^2$$

$$\Rightarrow \qquad |c| > \sqrt{2} |b|$$

12 Central Idea Any function have extreme values (maximum or minimum) at its critical points, where

f'(x) = 0.Since, the function have extreme values

at x = 1 and x = 2.

$$f'(x) = 0 \text{ at } x = 1 \text{ and } x = 2$$

$$\Rightarrow f'(1) = 0 \text{ and } f'(2) = 0$$

Also it is given that

$$\lim_{x \to 0} \left[1 + \frac{f(x)}{x^2} \right] = 3 \Rightarrow 1 + \lim_{x \to 0} \frac{f(x)}{x^2} = 3$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x)}{x^2} = 2$$

 $\Rightarrow f(x)$ will be of the form

$$ax^4 + bx^3 + 2x^2$$

[:: f(x)] is of four degree polynomial Let $f(x) = ax^4 + bx^3 + 2x^2 \Rightarrow f'(x)$

$$= 4ax^{3} + 3bx^{2} + 4x$$

$$\Rightarrow f'(1) = 4a + 3b + 4 = 0 \qquad ...$$

$$\Rightarrow f'(1) = 4a + 3b + 4 = 0 \qquad ...(1)$$
and $f'(2) = 32a + 12b + 8 = 0$

$$\Rightarrow 8a + 3b + 2 = 0 \qquad ...(1)$$

On solving Eqs. (i) and (ii), we get

$$a = \frac{1}{2}, b = -2$$

$$f(x) = \frac{x^4}{2} - 2x^3 + 2x^2$$

$$\Rightarrow f(2) = 8 - 16 + 8 = 0$$

13
$$\phi'(x) = f'(x) + a$$

Also,
$$\phi'(0) > 0 \ [\because f''(0) > 0]$$

$$\Rightarrow \phi(x)$$
 has relative minimum at $x = 0$ for all b , if $a = 0$

14 Let the number be x, then $f(x) = \frac{x}{x^2 + 16}$

$$f(x) = \frac{x}{x^2 + 16}$$

On differentiating w.r.t. x, we get

$$f'(x) = \frac{(x^2 + 16) \cdot 1 - x(2x)}{(x^2 + 16)^2}$$
$$= \frac{x^2 + 16 - 2x^2}{(x^2 + 16)^2} = \frac{16 - x^2}{(x^2 + 16)^2} \qquad \dots (i)$$

Put f'(x) = 0 for maxima or minima

$$f'(x) = 0 \quad \Rightarrow \quad 16 - x^2 = 0$$

$$x = 4, -4$$

Again, on differentiating w.r.t. x. we

$$(x^2 + 16)^2 (-2x) - (16 - x^2)$$

$$f''(x) = \frac{2(x^2 + 16)2x}{(x^2 + 16)^4}$$
At

$$x = 4, f''(x) < 0$$

f(x) is maximum at x = 4. and at x = -4, f''(x) > 0, f(x) is minimum.

:. Least value of

$$f(x) = \frac{-4}{16 + 16} = -\frac{1}{8}$$

15 Given, $f(x) = ax + \frac{b}{a}$

On differentiating w.r.t. x, we get $f'(x) = a - \frac{b}{v^2}$

$$f'(x) = a - \frac{b}{x^2}$$

For maxima or minima, put f'(x) = 0

$$\Rightarrow$$
 $x = \sqrt{\frac{b}{a}}$

Again, differentiating w.r.t. x, we get

$$f''(x) = \frac{2b}{x^3}$$

At
$$x = \sqrt{\frac{b}{a}}$$
, $f''(x) = \text{positive}$

$$\Rightarrow f(x)$$
 is minimum at $x = \sqrt{\frac{b}{a}}$.

 $\therefore f(x)$ has the least value at $x = \sqrt{b}$.

16
$$f(x) = \begin{cases} \frac{\tan x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

As
$$\frac{\tan x}{\cos x} > 1$$
, $\forall x \neq 0$

:. f(0+h) > f(0) and f(0-h) > f(0)

At x = 0, f(x) attains minima.

Now,
$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{\tan h}{h} - 1}{h} = \lim_{h \to 0} \frac{\tan h - h}{h^2}$$

[using L' Hospital's rule]

$$= \lim_{h \to 0} \frac{\sec^2 h - 1}{2h} [\because \tan^2 \theta = \sec^2 \theta - 1]$$

$$= \lim_{h \to 0} \frac{\tan^2 h}{2h^2} \cdot h = \frac{1}{2} \cdot 0 = 0$$

Therefore, Statement II is true.

Hence, both statements are true but Statement II is not the correct explanation of Statement I.

17 Given, $f(x) = \cos^2 x + \sin x, x \in [0, \pi]$ Now.

$$f'(x) = 2\cos x (-\sin x) + \cos x$$
$$= -2\sin x \cos x + \cos x$$

For maximum or minimum put f'(x) = 0

$$\Rightarrow$$
 $-2\sin x \cos x + \cos x = 0$

$$\Rightarrow \cos x (-2\sin x + 1) = 0$$

$$\Rightarrow \cos x = 0 \text{ or } \sin x = \frac{1}{2}$$

$$\Rightarrow$$
 $x = \frac{\pi}{6}, \frac{\pi}{2}$

For absolute maximum and absolute minimum, we have to evaluate

$$f(0), f\left(\frac{\pi}{6}\right), f\left(\frac{\pi}{2}\right), f(\pi)$$

At y = 0

$$f(0) = \cos^2 0 + \sin 0 = 1^2 + 0 = 1$$

At $x = \frac{\pi}{6}$, $f(\frac{\pi}{6}) = \cos^2(\frac{\pi}{6}) + \sin\frac{\pi}{6}$

$$= \left(\frac{\sqrt{3}}{2}\right)^2 + \frac{1}{2} = \frac{5}{4} = 1.25$$

At $x = \frac{\pi}{2}$

$$f\left(\frac{\pi}{2}\right) = \cos^2\left(\frac{\pi}{2}\right) + \sin\frac{\pi}{2} = 0^2 + 1 = 1$$

At $x = \pi$.

$$f(\pi) = \cos^2 \pi + \sin \pi = (-1)^2 + 0 = 1$$

Hence, the absolute maximum value of f is 1.25 occurring at $x = \frac{\pi}{6}$ and the

absolute minimum value of f is 1 occurring at x = 0, $\frac{\pi}{2}$ and π .

Note If close interval is given, to determine global maximum (minimum), check the value at all critical points as well as end points of a given interval.

18 :
$$f(x) = \frac{x}{4 + x + x^2}$$

On differentiating w.r.t. x, we get

$$f'(x) = \frac{4 + x + x^2 - x(1 + 2x)}{(4 + x + x^2)^2}$$

For maximum, put f'(x) = 0

$$\Rightarrow \frac{4 - x^2}{(4 + x + x^2)^2} = 0 \Rightarrow x = 2, -2$$

Both the values of x are not in the interval [-1, 1].

$$f(-1) = \frac{-1}{4-1+1} = \frac{-1}{4}$$

$$f(1) = \frac{1}{4+1+1} = \frac{1}{6}$$
 (maximum)

19 Given, $f(x) = x^2 \log x$

On differentiating w.r.t. x, we get

 $f'(x) = (2 \log x + 1) x$

For a maximum, put
$$f'(x) = 0$$

 \Rightarrow (2 log $x + 1$) $x = 0$

$$\Rightarrow \qquad x = e^{-1/2}, 0$$

$$0 < e^{-1/2} < 1$$

None of these critical points lies in the interval [1, e].

So, we only compute the value of f(x) at the end points 1 and e.

We have, f(1) = 0, $f(e) = e^2$

Hence, greatest value of $f(x) = e^2$

20 Let
$$f(x) = 1 + \frac{10}{3\left(x^2 + 3x + \frac{7}{3}\right)}$$

$$= 1 + \frac{10}{3\left[\left(x + \frac{3}{2}\right)^2 + \frac{1}{12}\right]}$$

So, the maximum value of f(x) at $x = -\frac{3}{1}$ is

$$f\left(-\frac{3}{2}\right) = 1 + \frac{10}{3\left(\frac{1}{12}\right)} = 1 + 40 = 41$$

21 Given, $f(x) = \sec x + \log \cos^2 x$

$$\Rightarrow f(x) = \sec x + 2 \log(\cos x)$$

 $f'(x) = \sec x \tan x - 2 \tan x$ $= \tan x (\sec x - 2)$

$$f'(x) = 0$$

 \Rightarrow tan x = 0 or sec $x = 2 \Rightarrow \cos x = \frac{1}{2}$

Therefore, possible values of x are x = 0, $x = \pi$ and $x = \frac{\pi}{2}$ or $x = \frac{5\pi}{2}$.

Again,
$$f''(x) = \sec^2 x (\sec x - 2)$$

$$+ \tan x (\sec x \tan x)$$

$$= \sec^3 x + \sec x \tan^2 x - 2 \sec^2 x$$

$$= \sec x \left(\sec^2 x + \tan^2 x - 2 \sec x \right)$$

$$\Rightarrow$$
 $f''(0) = 1(1 + 0 - 2) = -1 < 0$
Therefore, $x = 0$ is a point of maxima.

$$f''(\pi) = -1(1+0+2) = -3 < 0$$

Therefore, $x = \pi$ is a point of maxima.

$$f''\left(\frac{\pi}{3}\right) = 2(4+3-4) = 6 > 0$$

Therefore, $x = \frac{\pi}{3}$ is a point of minima.

$$f''\left(\frac{5\pi}{3}\right) = 2(4+3-4) = 6 > 0$$

Therefore, $x = \frac{5\pi}{3}$ is a point of minima.

Maximum value of y at x = 0 is 1 + 0 = 1.

Maximum value of y at $x = \pi$ is -1 + 0 = -1.

Minimum value of y at $x = \frac{\pi}{3}$ is

$$2 + 2 \log \frac{1}{2} = 2 (1 - \log 2).$$

Minimum value of y at $x = \frac{5\pi}{3}$ is

$$2 + 2 \log \frac{1}{2} = 2 (1 - \log 2).$$

22 Given, $f(x) = \sin 2x - x$

$$\Rightarrow f'(x) = 2\cos 2x - 1$$

Put
$$f'(x) = 0 \implies \cos 2x = \frac{1}{2}$$

$$\Rightarrow 2x = -\frac{\pi}{3} \text{ or } \frac{\pi}{3} \Rightarrow x = -\frac{\pi}{6} \text{ or } \frac{\pi}{6}$$

Now,
$$f\left(-\frac{\pi}{2}\right) = \sin(-\pi) + \frac{\pi}{2} = \frac{\pi}{2}$$

 $f\left(-\frac{\pi}{6}\right) = \sin\left(-\frac{2\pi}{6}\right) + \frac{\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{\pi}{6}$

$$f\left(\frac{\pi}{c}\right) = \sin\left(\frac{2\pi}{c}\right) - \frac{\pi}{c} = \frac{\sqrt{3}}{2} - \frac{\pi}{c}$$

and
$$f\left(\frac{\pi}{2}\right) = \sin(\pi) - \frac{\pi}{2} = -\frac{\pi}{2}$$

Clearly, $\frac{\pi}{2}$ is the greatest value and $-\frac{\pi}{2}$

Therefore, difference = $\frac{\pi}{2} + \frac{\pi}{2} = \pi$

23 Given, $y = x^{5/2}$

$$\therefore \frac{dy}{dx} = \frac{5}{2} x^{3/2}, \frac{d^2y}{dx^2} = \frac{15}{4} x^{1/2}$$

At
$$x = 0$$
, $\frac{dy}{dx} = 0$, $\frac{d^2 y}{dx^2} = 0$

and $\frac{d^3y}{dx^3}$ is not defined,

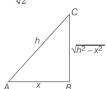
when
$$x = 0$$
, $y = 0$

 \therefore (0, 0) is a point of inflection.

24 Area of triangle, $\Delta = \frac{1}{2} x \sqrt{h^2 - x^2}$

$$\frac{d\Delta}{dx} = \frac{1}{2} \left[\sqrt{h^2 - x^2} + \frac{x(-2x)}{2\sqrt{h^2 - x^2}} \right] = 0$$

 $\Rightarrow x = \frac{h}{\sqrt{2}}$



$$\Rightarrow \frac{d^2\Delta}{dx^2} < 0 \text{ at } x = \frac{h}{\sqrt{2}}$$

$$\therefore \qquad \Delta = \frac{1}{2} \times \frac{h}{\sqrt{2}} \sqrt{h^2 - \frac{h^2}{2}} = \frac{h^2}{4}$$

25 Let the equation of drawn line be

$$\frac{x}{a} + \frac{y}{b} = 1$$
, where $a > 3$,

b > 4, as the line passes through (3, 4) and meets the positive direction of

We have,
$$\frac{3}{a} + \frac{4}{b} = 1 \Rightarrow b = \frac{4a}{(a-3)}$$

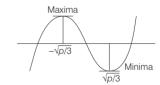
Now, area of $\triangle AOB$,

$$\Delta = \frac{1}{2}ab = \frac{2a^2}{(a-3)}$$

$$d\Delta = 2a(a-6)$$

Clearly, a = 6 is the point of minima for Δ . Thus, $\Delta_{\min} = \frac{2 \times 36}{3} = 24$ sq units

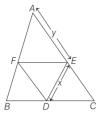
26 Let $f(x) = x^3 - px + q$



Then,
$$f'(x) = 3x^2 - p$$

Put $f'(x) = 0$
 $\Rightarrow \qquad x = \sqrt{\frac{p}{3}}, -\sqrt{\frac{p}{3}}$
Now, $f''(x) = 6x$
At $x = \sqrt{\frac{p}{3}}, f''(x) = 6\sqrt{\frac{p}{3}} > 0$ [minima]
and at $x = -\sqrt{\frac{p}{3}}, f''(x) < 0$ [maxima]

27 We have, AF || DE and AE || FD



Now, in $\triangle ABC$ and $\triangle EDC$.

 $\angle DEC = \angle BAC$, $\angle ACB$ is common.

$$\Rightarrow \qquad \Delta ABC \cong \Delta EDC$$
Now, $\frac{b-y}{b} = \frac{x}{c} \Rightarrow x = \frac{c}{b}(b-y)$

Now, S =Area of parallelogram AFDE = 2 (area of ΔAEF)

$$\Rightarrow S = 2\left(\frac{1}{2}xy\sin A\right)$$
$$= \frac{c}{b}(b-y)y\sin A$$
$$\frac{dS}{dy} = \left(\frac{c}{b}\sin A\right)(b-2y)$$

Sign scheme of
$$\frac{dS}{dy}$$
, $\frac{dS}{dy}$

Hence, S is maximum when $y = \frac{b}{a}$

$$\therefore S_{\max} = \frac{c}{b} \left(\frac{b}{2}\right) \times \frac{b}{2} \sin A$$
$$= \frac{1}{2} \left(\frac{1}{2} bc \sin A\right) = \frac{1}{2} (\text{area of } \Delta ABC)$$

28 We have,

$$\frac{dy}{dt} = 6t^2 - 30t + 24 = 6(t - 1)(t - 4)$$
and $\frac{dx}{dt} = 6t - 18 = 6(t - 3)$

and
$$\frac{dx}{dt} = 6t - 18 = 6(t - 3)$$

Thus, $\frac{dy}{dx} = \frac{(t - 1)(t - 4)}{(t - 3)}$

which indicates that t = 1, 3 and 4 are the critical points of y = f(x).

Now,
$$\frac{d^2 y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right) \cdot \frac{dt}{dx}$$
$$= \frac{t^2 - 6t + 11}{(t - 3)^2} \times \frac{1}{6(t - 3)}$$

At
$$(t = 1)$$
, $\frac{d^2y}{dr^2} < 0$

 $\Rightarrow t = 1$ is a point of local maxima.

At
$$(t = 4)$$
, $\frac{d^2y}{dx^2} > 0$

 $\Rightarrow t = 4$ is a point of local minima.

At (t = 3), $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ are not defined

 $\frac{d^2y}{dx^2}$ is unknown in the vicinity of t=3,

thus t = 3 is a point of neither maxima nor minima

Finally, maximum and minimum values of expression y = f(x) are 46 and -6, respectively.

29 Let α and β be the roots of the equation

$$x^{2} - (a-2)x - a + 1 = 0$$
Then, $\alpha + \beta = a - 2, \alpha\beta = -a + 1$
Let $z = \alpha^{2} + \beta^{2}$

$$= (\alpha + \beta)^{2} - 2\alpha\beta$$

$$= (a-2)^{2} + 2(a-1)$$

$$= a^{2} - 2a + 2$$

$$\Rightarrow dz = 2a - 2$$

Put $\frac{dz}{da} = 0$, then

$$da \Rightarrow a = 1$$

$$\therefore \frac{d^2z}{da^2} = 2 > 0$$

So, z has minima at a = 1.

So, $\alpha^2 + \beta^2$ has least value for $\alpha = 1$. This is because we have only one stationary value at which we have minima.

Hence, a = 1.

30 Any tangent to the ellipse is

$$\frac{x}{4}\cos t + \frac{y}{3}\sin t = 1$$
, where the point of contact is $(4\cos t, 3\sin t)$

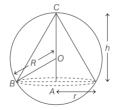
contact is $(4\cos t, 3\sin t)$ or $\frac{x}{4\sec t} + \frac{y}{3\csc t} = 1$,

It means the axes Q (4sec t, 0) and

 \therefore The distance of the line segment QR is $QR^2 = D = 16 \sec^2 t + 9 \csc^2 t$

So, the minimum value of *D* is $(4 + 3)^2$ or QR = 7.

31 Let S be the curved surface area of a



$$OA = AC - OC = h - R$$
In $\triangle OAB$, $R^2 = r^2 + (h - R)^2$

$$\Rightarrow r = \sqrt{2Rh - h^2}$$

$$\therefore S = \pi rl = \pi (\sqrt{2Rh - h^2})(\sqrt{h^2 + r^2})$$

$$= (\pi \sqrt{2Rh - h^2})(\sqrt{2Rh})$$

Let $S^2 = P$

$$\therefore P = \pi^2 2R(2Rh^2 - h^3)$$

Since, S is maximum, if P is maximum,

hen
$$\frac{dP}{dh} = 2\pi^2 R (4Rh - 3h^2) = 0$$

$$h = 0, \frac{4R}{2}$$

Again, on differentiating $\frac{dP}{dP}$, we get

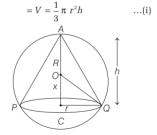
$$\frac{d^{2}P}{dh^{2}} = 2 \pi^{2}R(4R - 6h)$$

$$\frac{d^{2}P}{dh^{2}} < 0 \text{ at } h = \frac{4R}{3}$$

32 Let OC = x. CO = r

Now, OA = R [given] Height of the cone = h = x + R

.. Volume of the cone



Also, in right angled $\triangle OCQ$,

$$OC^{2} + CQ^{2} = OQ^{2}$$

$$\Rightarrow \qquad x^{2} + r^{2} = R^{2}$$

$$\Rightarrow \qquad r^{2} = R^{2} - x^{2} \qquad \dots (ii)$$

From Eqs. (i) and (ii),

$$V = \frac{1}{3}\pi (R^2 - x^2)(x + R)$$
 ...(iii)

[:: h = x + R]On differentiating Eq. (iii) w.r.t. x, we

get
$$\frac{dV}{dx} = \frac{1}{3}\pi[(R^2 - x^2) - 2x(x+R)]$$

$$\Rightarrow \frac{dV}{dx} = \frac{\pi}{3}(R^2 - x^2 - 2x^2 - 2xR)$$

$$\Rightarrow \frac{dV}{dx} = \frac{\pi}{3} (R^2 - x^2 - 2x^2 - 2xR)$$

$$\Rightarrow \frac{d}{dx} = \frac{\pi}{3} (R^2 - x^2 - 2xR - 3x^2)$$

$$\Rightarrow \frac{dV}{dx} = \frac{\pi}{3} (R^2 - 2xR - 3x^2)$$

$$\frac{dx}{dx} = \frac{3}{3}(R - 3x)(R + x) \qquad \dots (iv)$$

For maxima, put
$$\frac{dV}{dx} = 0$$

$$\Rightarrow \frac{\pi}{3}(R - 3x)(R + x) = 0$$

$$\Rightarrow x = \frac{R}{3} \text{ or } x = -R \Rightarrow x = \frac{R}{3}$$

[since, x cannot be negative]

On differentiating Eq. (iv) w.r.t. x, we get

$$\frac{d^2V}{dx^2} = \frac{\pi}{3}[(-3)(R+x) + (R-3x)]$$

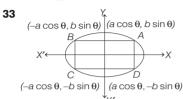
$$= \frac{\pi}{3}(-2R-6x) = -\frac{\pi}{3}(2R+6x)$$
At $x = \frac{R}{3}$, $\frac{d^2V}{dx^2} = \frac{-\pi}{3}\left(2R + \frac{6R}{3}\right)$

$$= -\frac{4\pi}{3}R < 0$$

So, *V* has a local maxima at x = R/3. Now, on substituting the value of x in Eq. (iii), we get

$$V = \frac{\pi}{3} \left(R^2 - \frac{R^2}{9} \right) \left(R + \frac{R}{3} \right)$$
$$= \frac{\pi}{3} \cdot \frac{8R^2}{9} \cdot \frac{4R}{3} = \frac{8}{27} \left(\frac{4}{3} \pi R^3 \right)$$

 $\Rightarrow V = \frac{8}{27} \times \text{Volume of sphere}$



Area of rectangle ABCD $=(2a\cos\theta)(2b\sin\theta)=2ab\sin2\theta$ Hence, area of greatest rectangle is equal to 2ab when $\sin 2\theta = 1$.

34 Let
$$f(x) = x + \frac{1}{x}$$

 $f'(x) = 1 - \frac{1}{x^2}$

For maxima and minima, put f'(x) = 0 $\Rightarrow 1 - \frac{1}{x^2} = 0 \Rightarrow x = \pm 1$

Now,
$$f''(x) = \frac{2}{x^3}$$

x = 1, f''(x) = +ve[minima] and at x = -1, f''(x) = -ve[maxima] Thus, f(x) attains minimum value at x = 1.

35 Given that, $f(x) = (x+1)^{1/3} - (x-1)^{1/3}$ On differentiating w.r.t. x, we get

$$f'(x) = \frac{1}{3} \left[\frac{1}{(x+1)^{2/3}} - \frac{1}{(x-1)^{2/3}} \right]$$
$$= \frac{(x-1)^{2/3} - (x+1)^{2/3}}{3(x^2-1)^{2/3}}$$

Clearly, f'(x) does not exist at $x = \pm 1$. Now, put f'(x) = 0, then

$$(x-1)^{2/3} = (x+1)^{2/3} \Rightarrow x = 0$$

At x = 0

$$f(x) = (0+1)^{1/3} - (0-1)^{1/3} = 2$$

Hence, the greatest value of f(x) is 2.

36 :
$$y^2 = 8x$$
. But $y^2 = 4ax$
 $\Rightarrow 4a = 8 \Rightarrow a = 2$

Any point on parabola is $(at^2, 2at)$, i.e., $(2t^2, 4t)$.

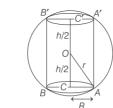
For its minimum distance from the circle means its distance from the centre (0, -6) of the circle.

Let
$$z = (2t^2)^2 + (4t + 6)^2$$

 $= 4(t^4 + 4t^2 + 12t + 9)$
 $\therefore \frac{dz}{dt} = 4(4t^3 + 8t + 12)$
 $\Rightarrow 16(t^3 + 2t + 3) = 0$
 $\Rightarrow (t+1)(t^2 - t + 3) = 0$
 $\Rightarrow t = -1$
 $\Rightarrow \frac{d^2z}{dt^2} = 16(3t^2 + 2) > 0$, hence minimum.

37 We know that, volume of cylinder. $V = \pi R^2 h$

So, point is (2, -4).



In
$$\triangle OCA$$
, $r^2 = \left(\frac{h}{2}\right)^2 + R^2$

$$\Rightarrow R^2 = r^2 - \frac{h^2}{4}$$

$$\therefore V = \pi \left(r^2 - \frac{h^2}{4}\right)h$$

$$\Rightarrow V = \pi r^2 h - \frac{\pi}{4}h^3 \dots (i)$$

On differentiating Eq. (i) both sides

w.r.t. h, we get
$$\frac{dV}{dh} = \pi r^2 - \frac{3\pi h^2}{4}$$

$$\Rightarrow \frac{d^2V}{dh^2} = \frac{-3\pi h}{2}$$

For maximum or minimum value of V,

$$\frac{dV}{dh} = 0 \Rightarrow \pi r^2 - \frac{3\pi h^2}{4} = 0$$

$$\Rightarrow h^2 = \frac{4r^2}{3} \Rightarrow h = \frac{2}{\sqrt{3}}r$$
Now, $\left(\frac{d^2V}{dh^2}\right)_{h=\frac{2r}{2}} = -\sqrt{3}\pi r < 0$

Thus, V is maximum when $h = \frac{2r}{\sqrt{3}}$, then

$$R^2 = r^2 - \frac{h^2}{4} = r^2 - \frac{1}{4} \left(\frac{2r}{\sqrt{3}} \right)^2 = \frac{2}{3} r^2$$

Max
$$V = \pi R^2 h = \frac{4\pi r^3}{3\sqrt{3}}$$

38 Let $f(x) = -x^3 + 3x^2 + 9x - 27$

The slope of this curve
$$f'(x) = -3x^2 + 6x + 9$$

 $g(x) = f'(x) = -3x^2 + 6x + 9$ Let On differentiating w.r.t. x, we get

$$g'(x) = -6x + 6$$

For maxima or minima put g'(x) = 0

Now, g''(x) = -6 < 0 and hence. at x = 1, g(x) (slope) will have maximum

$$\therefore [g(1)]_{\text{max}} = -3 \times 1 + 6(1) + 9 = 12$$

39 Given.

$$ab = 2a + 3b \implies (a - 3)b = 2a$$

 $\Rightarrow b = \frac{2a}{a - 3}$

Now, let
$$z = ab = \frac{2a^2}{a-3}$$

On differentiating w.r.t. x, we get $\frac{dz}{da} = \frac{2[(a-3)2a-a^2]}{(a-3)^2} = \frac{2[a^2-6a]}{(a-3)^2}$

For a minimum, put $\frac{dz}{da} = 0$

$$\Rightarrow a^2 - 6a = 0$$

$$\Rightarrow a = 0, 6$$
At $a = 6$, $\frac{d^2z}{da^2}$ = positive

At
$$a = 6$$
, $\frac{d^2}{da^2}$ = positive
When $a = 6$, $b = 4$

∴
$$(ab)_{\min} = 6 \times 4 = 24$$

40 : Perimeter of a sector = p

> Let AOB be the sector with radius r.

If angle of the sector be θ radians. then area of sector,

$$A = \frac{1}{2} r^2 \theta \qquad \dots (i)$$

and length of arc, $s = r\theta \implies \theta = \frac{s}{s}$

.. Perimeter of the sector

$$p = r + s + r = 2r + s$$
 ...(ii)

On substituting $\theta = \frac{s}{a}$ in Eq. (i), we get

$$A = \left(\frac{1}{2}r^2\right)\left(\frac{s}{r}\right) = \frac{1}{2}rs \Rightarrow s = \frac{2A}{r}$$

Now, on substituting the value of s in

$$p = 2r + \left(\frac{2A}{r}\right) \Rightarrow 2A = pr - 2r^2$$

On differentiating w.r.t. r, we get $2\frac{dA}{dr} = p - 4r$

$$2\frac{dA}{dr} = p - 4r$$

For the maximum area, put

$$\frac{dA}{dr} = 0$$
$$p - 4r = 0$$

$$\Rightarrow$$
 $r = \frac{I}{4}$

SESSION 2

1 Let radius vector is r.

$$\begin{array}{l} \therefore \ r^2 = x^2 + y^2 \\ \Rightarrow r^2 = \frac{\alpha^2 \ y^2}{y^2 - b^2} + \ y^2 \quad \left(\because \frac{\alpha^2}{x^2} + \frac{b^2}{y^2} = 1\right) \end{array}$$

For minimum value of r

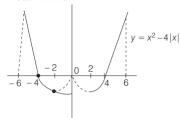
For infilimit value of
$$r$$
,
$$\frac{d(r^2)}{dy} = 0 \Rightarrow \frac{-2yb^2a^2}{(y^2 - b^2)^2} + 2y = 0$$

$$\Rightarrow y^2 = b(a+b)$$

$$\therefore x^2 = a(a+b)$$

$$\Rightarrow r^2 = (a+b)^2 \Rightarrow r = a+b$$

2 Bold line represents the graph of y = g(x), clearly g(x) has neither a point of local maxima nor a point of local minima.



3 Clearly, f(x) in increasing just before x = 3 and decreasing after x = 3. For x = 3 to be the point of local maxima.

$$f(3) \ge f(3 - 0)$$

$$\Rightarrow -15 \ge 12 - 27 + \log (a^2 - 3a + 3)$$

$$\Rightarrow 0 < a^2 - 3a + 3 \le 1 \Rightarrow 1 \le a \le 2$$

4 (Slope) $f'(x) = e^x \cos x + \sin x e^x$ $= e^x \sqrt{2} \sin (x + \pi/4)$ $f''(x) = \sqrt{2}e^x \{\sin (x + \pi/4) + \cos (x + \pi/4)\}$ $= 2e^x \cdot \sin (x + \pi/2)$

For maximum slope, put f''(x) = 0

$$\Rightarrow \sin(x + \pi/2) = 0$$

$$\Rightarrow \cos x = 0$$

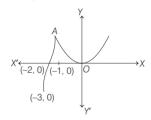
$$x = \pi/2, 3\pi/2$$

 $f'''(x) = 2e^{x} \cos(x + \pi/2)$

$$f^{\prime\prime\prime}(\pi/2) = 2e^x \cdot \cos \pi = -ve$$

Maximum slope is at $x = \pi/2$.

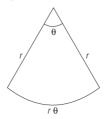
$$\mathbf{5} \ f'(x) = \begin{cases} 3(2+x)^2, & -3 < x \le -1 \\ \frac{2}{3}x^{-1/3}, & -1 < x < 2 \end{cases}$$



Clearly, f'(x) changes its sign at x = -1 from positive to negative and so f(x) has local maxima at x = -1.

Also, f'(0) does not exist but $f'(0^-) < 0$ and $f'(0^+) > 0$. It can only be inferred that f(x) has a possibility of a minimum at x = 0. Hence, it has one local maxima at x = -1 and one local minima at x = 0. So, total number of local maxima and local minima is 2.

6 Total length = $2r + r\theta = 20$



$$\Rightarrow \qquad \theta = \frac{20-2}{r}$$

Now, area of flower-bed,

$$A = \frac{1}{2}r^2\theta$$

$$\Rightarrow A = \frac{1}{2}r^2\left(\frac{20 - 2r}{r}\right)$$

$$\Rightarrow A = 10r - r^2$$

$$\Rightarrow A = 10r - r^{2}$$

$$\therefore \frac{dA}{dr} = 10 - 2r$$

For maxima or minima, put $\frac{dA}{dr} = 0$.

$$\Rightarrow$$
 10 - 2r = 0 \Rightarrow r = 5

$$\therefore A_{\text{max}} = \frac{1}{2} (5)^2 \left[\frac{20 - 2(5)}{5} \right]$$
$$= \frac{1}{2} \times 25 \times 2 = 25 \text{ sq m}$$

7 Let
$$c = av + \frac{b}{v}$$
 ...(i)

When v = 30 km/ h, then c = ₹ 75

:.
$$75 = 30 \ a + \frac{b}{30}$$
 ...(ii)

When v = 40 km/h, then c = 765

:.
$$65 = 40 a + \frac{b}{40}$$
 ...(iii)

On solving Eqs. (ii) and (iii), we get $a = \frac{1}{2}$ and b = 1800

On differentiating w.r.t. v in Eq. (i), $\frac{dc}{dv} = a - \frac{b}{v^2}$

For maximum or minimum c.3

$$\frac{dc}{dv} = 0 \implies v = \pm \sqrt{\frac{b}{a}}$$

$$\Rightarrow \frac{d^2c}{dv^2} = \frac{2b}{v^3} \text{ at } v = \sqrt{\frac{b}{a}}, \frac{dx}{dv^2} > 0$$

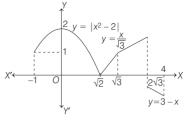
So, at $v = \sqrt{\frac{b}{a}}$ the speed is most

economical.

.. Most economical speed is

$$c = a\sqrt{\frac{b}{a}} + b\sqrt{\frac{a}{b}} = 2\sqrt{ab}$$
$$c = 2\sqrt{\frac{1}{2} \times 1800} = 2 \times 30$$
$$c = 60$$

$$\mathbf{8} \ f(x) = \begin{cases} \mid x^2 - 2 \mid, -1 \le x < \sqrt{3} \\ \frac{x}{\sqrt{3}}, \sqrt{3} \le x < 2\sqrt{3} \\ 3 - x, 2\sqrt{3} \le x \le 4 \end{cases}$$



From the above graph, Maximum occurs at x = 0 and minimum at x = 4.

$$\mathbf{9} \ f(x) = \begin{cases} \left| \ x^3 + x^2 + 3x + \sin x \ \right| \\ \left(3 + \sin \left(\frac{1}{x} \right) \right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Let
$$g(x) = x^3 + x^2 + 3x + \sin x$$

 $g'(x) = 3x^2 + 2x + 3 + \cos x$
 $= 3\left(x^2 + \frac{2x}{3} + 1\right) + \cos x$
 $= 3\left\{\left(x + \frac{1}{3}\right)^2 + \frac{8}{9}\right\} + \cos x > 0$

and
$$2 < 3 + \sin\left(\frac{1}{x}\right) < 4$$

Hence, minimum value of f(x) is 0 at x = 0.

Hence, number of points = 1

10 According to given information, we

Perimeter of square + Perimeter of circle = 2 units

$$\Rightarrow 4x + 2\pi r = 2$$

$$\Rightarrow r = \frac{1 - 2x}{\pi} \qquad ...(i)$$

Now, let *A* be the sum of the areas of the square and the circle. Then,

$$A = x^2 + \pi r^2$$

$$= x^2 + \pi \left(\frac{(1 - 2x)^2}{\pi^2}\right)$$

$$\Rightarrow A(x) = x^2 + \frac{(1 - 2x)^2}{\pi^2}$$

Now, for minimum value of A(x),

$$\frac{dA}{dx} = 0$$

$$\Rightarrow 2x + \frac{2(1-2x)}{\pi} \cdot (-2) = 0$$

$$\Rightarrow x = \frac{2-4x}{\pi}$$

$$\Rightarrow \pi x + 4x = 2$$

$$\Rightarrow x = \frac{2}{\pi + 4} \qquad \dots(ii)$$

Now, from Eq. (i), we get

$$r = \frac{1 - 2 \cdot \frac{2}{\pi + 4}}{\pi}$$

$$= \frac{\pi + 4 - 4}{\pi(\pi + 4)} = \frac{1}{\pi + 4} \dots (iii)$$

From Eqs. (ii) and (iii), we get x = 2r

11 We have.

$$f(x) = x^2 + \frac{1}{x^2} \text{ and } g(x) = x - \frac{1}{x}$$

$$\Rightarrow h(x) = \frac{f(x)}{g(x)}$$

$$\therefore h(x) = \frac{x^2 + \frac{1}{x^2}}{x - \frac{1}{x}} = \frac{\left(x - \frac{1}{x}\right)^2 + 2}{x - \frac{1}{x}}$$

$$\Rightarrow h(x) = \left(x - \frac{1}{x}\right) + \frac{2}{x - \frac{1}{x}}$$

$$x - \frac{1}{x} > 0, \left(x - \frac{1}{x}\right) + \frac{2}{x - \frac{1}{x}} \in [2\sqrt{2}, \infty)$$

$$x - \frac{1}{x} < 0,$$

 \therefore Local minimum value is $2\sqrt{2}$.

 $\left(x - \frac{1}{x}\right) + \frac{2}{x - \frac{1}{x}} \in (-\infty, 2\sqrt{2}]$

12 Consider the function

$$f(x) = \frac{x^2}{(x^3 + 200)}$$
$$f'(x) = x \frac{(400 - x^3)}{(x^3 + 200)^2} = 0$$

when
$$x = (400)^{1/3}$$
, $(\because x \neq 0)$
 $x = (400)^{1/3} - h \Rightarrow f'(x) > 0$
 $x = (400)^{1/3} + h \Rightarrow f'(x) < 0$

 $\therefore f(x)$ has maxima at $x = (400)^{1/3}$

Since, $7 < (400)^{1/3} < 8$, either a_7 or a_9 is the greatest term of the sequence.

$$a_7 = \frac{16}{54}$$
and
$$a_8 = \frac{8}{89}$$

and
$$\frac{49}{543} > \frac{8}{89}$$

$$\Rightarrow a_7 = \frac{49}{543} \text{ is the greatest term.}$$

13
$$f(x) = x^3 - 3(7 - a)x^2 - 3(9 - a^2)x + 2$$

 $f'(x) = 3x^2 - 6(7 - a)x - 3(9 - a^2)$
For real root $D \ge 0$,
 $\Rightarrow 49 + a^2 - 14a + 9 - a^2 \ge 0$
 $\Rightarrow a \le \frac{58}{-3}$

For local minimum

$$f''(x) = 6x - 6(7 - a) > 0$$

$$\Rightarrow 7 - x$$

has x must be negative

$$\Rightarrow 7 - a < 0$$

$$\Rightarrow a > 7$$

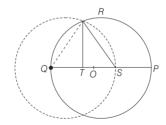
Thus constradictory, i.e., for real roots $a \le \frac{58}{14}$ and for negative point of local

minimum a > 7

No possible values of a.

14 From the given figure coordinate of *O* is

The equation of circle centre at Q with variable radius r is



$$(x+1)^2 + v^2 = r^2$$
 ...(i)

This circle meets the line segment QP at S, where QS = r

It meets the circle
$$x^2+y^2=1$$
 at ...(ii)
$$R\left(\frac{r^2-2}{2},\frac{r}{2}\sqrt{4-r^2}\right)$$

[on solving Eqs. (i) and (ii)

$$A = \text{Area of } \Delta QSR$$

$$= \frac{1}{2} \times QS \times RT$$

$$= \frac{1}{2} r \left(\frac{r}{2} \cdot \sqrt{4 - r^2}\right)$$

[since, RT is the y-coordinate of R] $=\frac{1}{4}[r^2\sqrt{4-r^2}]$

$$\therefore \frac{dA}{dr} = \frac{1}{4} \left\{ 2r \sqrt{4 - r^2} + \frac{r^2 (-r)}{\sqrt{4 - r^2}} \right\}$$
$$= \frac{\{2r (4 - r^2) - r^3\}}{4\sqrt{4 - r^2}}$$

$$= \frac{8r - 3 r^3}{4 \sqrt{4 - r^2}}$$

$$\frac{dA}{dr} = 0, \text{ when } r (8 - 3 r^2) = 0 \text{ giving}$$

$$r = \sqrt{\frac{8}{3}}$$

$$4\sqrt{4 - r^2} (8 - 9r^2)$$

$$- (8r - 3 r^3) \frac{(-4r)}{\sqrt{4 - r^2}}$$

$$\Rightarrow \frac{d^2A}{dr^2} = \frac{16 (4 - r^2)}{16 (4 - r^2)}$$
When $r = \sqrt{\frac{8}{5}}, \text{ then } \frac{d^2A}{t^2} < 0$

Hence, A is maximum when $r = \sqrt{\frac{8}{3}}$

Then, maximum area $=\frac{8}{4\times 3}\sqrt{4-\frac{8}{3}}=\frac{4\sqrt{3}}{9}$ sq unit

15 Given

When

$$P(x) = x^4 + ax^3 + bx^2 + cx + d$$

 $\Rightarrow P'(x) = 4x^3 + 3ax^2 + 2bx + c$
Since, $x = 0$ is a solution for $P'(x) = 0$, then

$$c = 0$$

..
$$P(x) = x^4 + ax^3 + bx^2 + d$$
 ...(i)
Also, we have $P(-1) < P(1)$

$$\Rightarrow 1 - a + b + d < 1 + a + b + d$$
$$\Rightarrow a > 0$$

Since, P'(x) = 0, only when x = 0 and P(x) is differentiable in (-1, 1), we should have the maximum and minimum at the points x = -1, 0 and 1.

Also, we have P(-1) < P(1)

 \therefore Maximum of $P(x) = \text{Max } \{P(0), P(1)\}$ and minimum of P(x) = Min $\{P (-1), P(0)\}$

In the interval [0, 1].

$$P'(x) = 4x^3 + 3ax^2 + 2bx$$

= $x (4x^2 + 3ax + 2b)$

Since, P'(x) has only one root x = 0, then $4x^2 + 3ax + 2b = 0$ has no real

$$\therefore (3a)^2 - 32b < 0$$

$$\Rightarrow \frac{9a^2}{32} < b$$

Thus, we have a > 0 and b > 0.

$$P'(x) = 4x^3 + 3ax^2 + 2bx > 0,$$

\(\forall \text{ } x \in (0, 1)

Hence, P(x) is increasing in [0, 1].

 \therefore Maximum of P(x) = P(1)

Similarly, P(x) is decreasing in [-1, 0]. Therefore, minimum P(x) does not occur at x = -1.