SOME IMPORTANT CARBOHYDRATES

1. <u>Sucrose</u> $(C_{12}H_{22}O_{11}) : \rightarrow A$ dimer of α -D-Glucose & β -D-Fructose. It is white, crystalline & sweet substance soluble in water obtained from the sugar cane. When heated above its melting point. It forms a brown substance known as caramel.

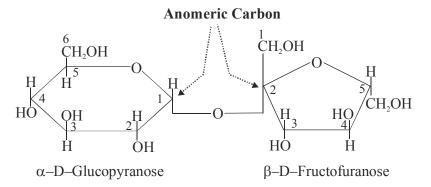
It's aqueous solution is dextrorotatory $[\infty]_D = +66.5^{\circ}$

$$CH_{12}H_{22}O_{11} + H_{2}O \xrightarrow{H^{+}} C_{6}H_{12}O + C_{6}H_{12}O + C_{6}H_{12}O$$

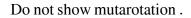
$$D-Glucose D-Fructose$$

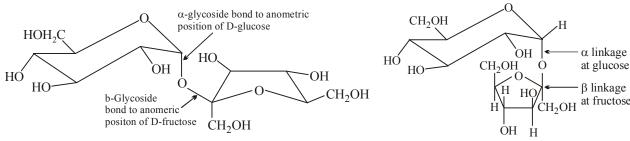
$$\alpha [D] = -52.7^{\circ} [\beta]_{D} = -92.7^{\circ}$$

$$Dextro Isomer Laevo Rotatary$$


$$\downarrow$$

$$Mixture is laevorotatory -20^{\circ}$$


• Thus hydrolysis of sucrose brings about a change in the sign of rotation, from dextro (+) to leavo (-) & such a change is known as inversion of sugar and the mixture obtained on acidic hydrolysis is known as *invert sugar*.


- The inversion of cane-sugar may also be done by the enzyme invertase which is found in yeast.
- Sucrose is non-reducing sugar because it has stable acetal linkage & in aq. solution it does not give free carbonyl group and so it does not reduces Tollen's & Fehling's solution.

• This indicates that neither the aldehyde group of glucose nor the ketonic group of fructose is free in sucrose.

Structure of sucrose $(\alpha-D-glucopyranosyl-\beta-D-fructofuranoside)$

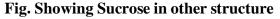
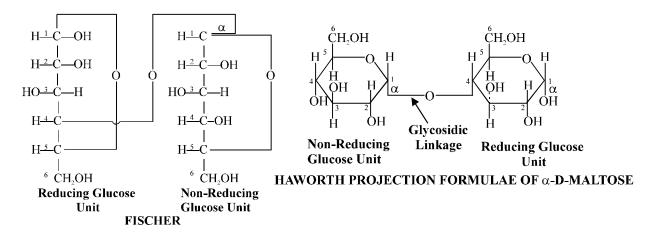


Fig. Showing Sucrose in other structure

2. <u>Maltose :</u>

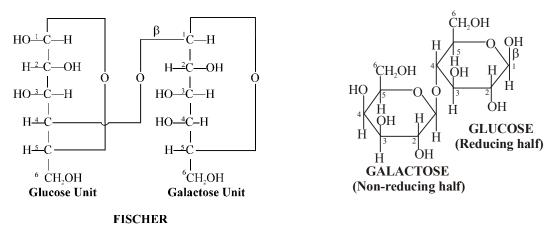

• It is dimer of α-D-Glucose

It is obtained by partial hydrolysis of starch by the enzyme diastase present in malt i.e., sprouted barely seeds.

 $2 (C_6H_{10}O_5)_n + n H_2O \xrightarrow{\text{Diastase}} n C_{12}H_{22}O_{11}$ Starch Maltose

- Hydrolysis of one mole of maltose yields two moles of D-glucose.
- Maltose is a reducing sugar since it forms an osazone, undergoes mutarotation and also reduces Tollen's reagents and Fehling's solutions, Methylation studies have revealed that
- (i) Both glucose units are present in the pyranose form.
- (ii) C_1 of one glucose unit is linked to C_4 of the other

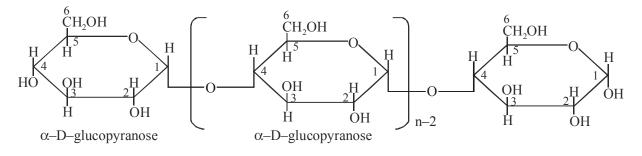
Further since maltose is hydrolysed by the enzyme maltose which specifically hydrolyses α -glycosidic linkage, therefore, the non-reducing glucose unit in maltose must be present in the α -form. In other words, $C_1 - \alpha$ of non-reducing glucose unit is attached to C_4 of the reducing glucose unit as shown in the figure on next page.


3. <u>Lactose</u> (Milk sugar) $C_{12}H_{22}O_{11}$

Lactose occurs in milk and that is why it is called milk sugar.

Lactose on hydrolysis with dilute acid or by enzyme lactase, yields an equimolar mixture of Dglucose and D-galactose. It is a reducing sugar it forms an osazone, undergoes mutarotation and also reduces Tollen's or Fehling's solution. Methylation studies have revealed that

- (i) both glucose and galactose are present in the pyranose form.
- (ii) glucose is the reducing half while β -galactose is the non-reducing half.
- (iii) C_1 of galactose unit is connected to C_4 of glucose unit.


Further since emulsin, as, enzyme which specifically hydrolyses β -glycosidic linkages also hydrolyses lactose, therefore, galactose must be present in the β -form. In other words, in lactose, $C_1 - \beta$ of galactose is attached to C_4 of glucose as shown in figure.

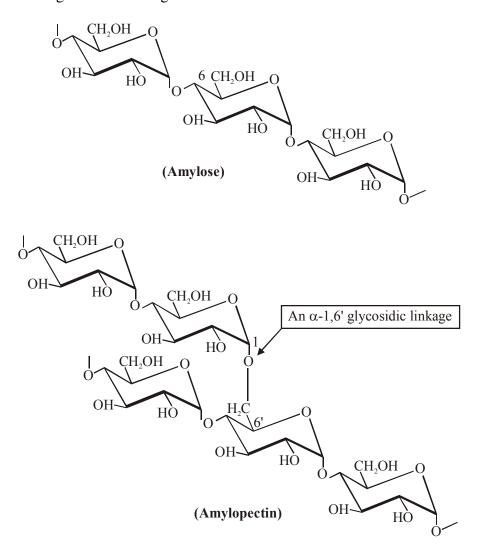
4. <u>Starch</u> Amylum, $(C_6H_{10}O_5)_n$

Occurrence : The value of n (100 - 3000) generally hewever it may varies from source to source. It is the chief food reserve material or storage polysaccharide of plants and is found mainly in seeds, roots tubers wheat, maize, rice, potatoes, barley, bananas and sorghum are the main sources of starch. Starch occurs in the form of granules, which vary in shape and size depending upon their plant source.

Occurs in all green plants. Starch consists of two fractions, one being known as (amylose), which gives blue colour with iodine. This blue colour is believed to be due to the formation of an inclusion complex. An aqueous solution of α -amylose slowly forms a precipitate, since α -amylose has a strong tendency to 'revert' to the insoluble state in solution. Amylopectin is insoluble in water and is stable towards both hydrolysis to maltose by the enzyme diastase and to D(+)-glucose by dilute acids (amylopectin gives about 50 percent of maltose).

Structure of Starch (α –D–glucoamylose)

 α -amylose consists of an unbranched chain, with a molecular weight varying between 10,000(n \approx 60) and 10,00,000(n \approx 6,000), The value of n depends on the source and treatment of α -amylose.


Properties : (i) Starch is a white amorphous powder sparingly soluble in water. Its aqueous solution gives a blue colour with iodine solution due to the formation of an inclusion complex. The blue pears on cooling. (ii) On hydrolysis with dilute mineral acids or enzymes, starch beaks down first to smaller molecules (n > n'), then to maltose and finally to D-glucose.

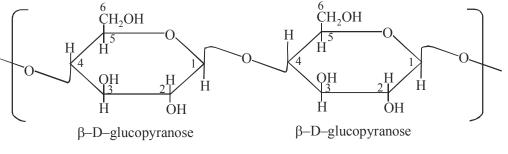
 $(C_{6}H_{10}O_{5})n \xrightarrow{H^{+}/H_{2}O} (C_{6}H_{10}O_{5})_{n'} \xrightarrow{H^{+}/H_{2}O} C_{12}H_{22}O_{11} \xrightarrow{H^{+}/H_{2}O} C_{6}H_{12}O_{6}$ Starch Maltose D-Glucose
(iii) Starch is a non-reducing saccharide. It neither reduces Tollen's reagent or Fehling's solution

(iii) Starch is a non-reducing saccharide. It neither reduces Tollen's reagent or Fehling's solution nor forms an osazone. This suggests that all hemiacetal OH groups of glucose units at C_1 are not free but are involved in glycosidic linkages.

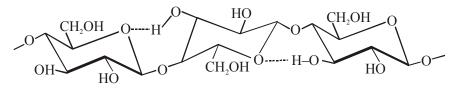
Composition : Starch is not a single compound but is a mixture of two components–a water soluble component called amylose (10-20%) and a water insoluble component called amylopectin (80-90%). Both amylose and amylopectin are polymers of α -D-glucose.

Structure of amylose : Amylose is water soluble and gives blue colour with iodine solution. It may have 100-3000 glucose units, i.e., its molecular mass can vary from 10,000 to 500,000. It is a linear polymer of α -D-glucose in which C₁ of one glucose unit is attached to C₄ of the other through α -glycosidic linkage as shown in figure.

Pectins

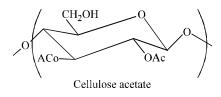

Pectins are found in plant and fruit juices. Their characteristic property is the ability of their solutions to gelate, i.e. form jellies. They have a high molecular weight and are polygalacturonic acid (linked 1,4) with the carboxyl groups partially esterified with methanol.

<u>Glycogen</u> $(C_6H_{10}O_5)_n$:


Glycogen is found in nearly all animals cells, occurring mainly in liver. It is the reserve carbohydrate of animals and so is often known as 'animal starch'. It has also been isolated from plant sources. Glycogen is a white powder, soluble in water, the solution giving a purplish-red colour with iodine. On hydrolysis with dilute acid, glycogen gives D(+)-glucose. The molecular weight of glycogen has been given as 10,00,000 to 50,00,000 and glycogen contains highly branched chains. Glycogen has a structure similar to amylopectin, except that it has more cross-linking.

5. <u>Cellulose:</u>

Cellulose is colourless, solid which is insoluble in water & organic solvents. But it is soluble in ammonical cupric hydroxide (Schweizer's reagent) or in conc. HCl cellulose is a regular polymer of d-glucopyranose residues connected by β -1,4 glycosidic linkages. It is straight chain polymer.



(Structure of Cellulose)

Some points about cellulose :

- 1. General empirical formula $(C_6H_{10}O_5)$
- 2. Cellulose + H₂O $\xrightarrow{H^+}$ 96% of crystalline D-glucose
- 3. No. of monomer units in cellulose are 1000 1500 in one molecule.
- 4. Cellulose doesn't show mutarotation (like starch)
- 5. It is non reducing sugar because there is no hemiacetal linkage.
- Acetylation, nitration & methylation of cellulose give trisubstituted cellulose which suggest that only three – OH groups are free.

TEST OF CARBOHYDRATES

1. Molish Test 2. Barfoed Test

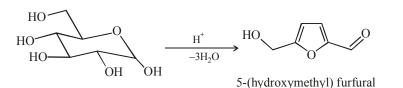
5. Osazone Test 6.Benedict Test

3. Salivanoff's Test.

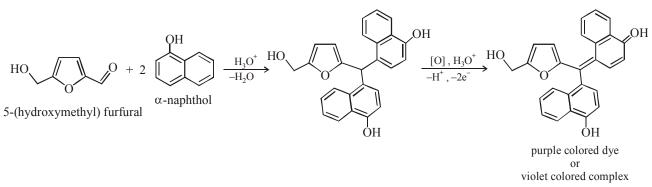
7. Fehling Test

4. Bial's Test

8. Tollen's Test


9. Iodine Test

1. Molish Test


Molish test is the general test for the identification of all carbohydrates (Monosaccharides, Disaccharides and Poly saccharides) and Glycoprotein, Sulphuric acid is added to hydrolyzes the all glycosidic linkage to yield monosaccharides, which on dehydration form furfural or its derivative in presence of acid.which condened with α -naphthol to give a violet colored complex.

Oligosaccharide or poly saccharides $+ H_{0}SO_{4}$

 $\xrightarrow{H_3O^+(Hydrolysis)}$ Monosaccharides

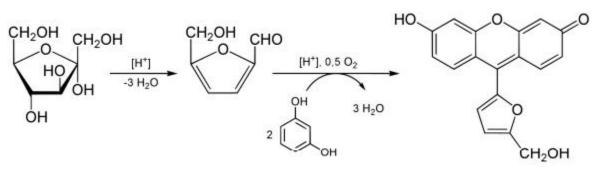
D-glucose (monosaccharide)

2. Barfoed Test

This test is used to differentiate reducing monosaccharide from a disaccharide sugar It is done in mild acidic medium.

 $RCHO + 2Cu^{2+} + 2H_2O \longrightarrow RCOOH + Cu_2O ppt + 4H^+$

It is based on the reduction of <u>copper(II) acetate</u> to <u>copper(I) oxide</u> (Cu_2O), which forms a brick-red precipitate.


Reducing monosaccharides react with Barfoed's reagent much faster than disaccharides and produce red precipitate of copper (I) oxide within three minutes.

Disaccharide sugars as they are weaker reducing agents, react at a slower rate, so they do not form red precipitate even for ten minutes.

3. Selivanoff's Test

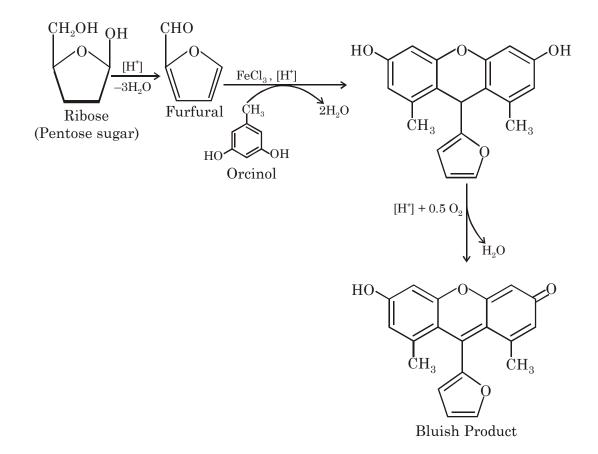
It is test of Ketose sugar (eg Fructose), it is used to differentiate Ketose sugar from aldose sugar.

This test relies on the principle that keto hexose are more rapidly dehydrated than aldoses to form 5-Hydroxy methyl furfural when heated in acidic medium, which on condensation with resorcinol, a cherry red (or Brown red) colored complex is formed rapidly indicating a positive test.

Fructose

Resorcinol

Cherry red ppt


4. Bial's Test

Bial's test is positive for Pentoses

This test is used to differentiate Pentose and Hexose sugar

The test reagent dehydrates pentoses to form furfural. Furfural further reacts with Bial's reagent (a solution of orcinol, HCl and ferric chloride). orcinol and the iron ion present in the test reagent to produce a bluish product .

Figure insert

Specifically Pentose sugar gives bluish colored complex.

All other colors indicate a negative result for pentoses.

Note: hexoses generally react to form green, red, or brown products.

5. Osazone Test

Reducing Sugars when heated with Phenyl Hydrazine, Characteristic yellow crystals of Osazone are formed with specific shape.

Glucose, Mannose & Fructose gives same Osazone crystals, like NEEDLE SHAPED.

Maltose gives Maltosazone crystals, like SUNFLOWER SHAPED.

Lactose gives lactosazone crystals,

like TIGHT BALL or POWDER PUFF SHAPED..

6. Benedict test

Carbohydrates which has Aldehyde functional group (Not Aromatic Aldehyde) or Having alpha hydroxy ketone gives positive Benedict Test

It is in mild Basic Medium.

 $\operatorname{CuSO}_4 \longrightarrow \operatorname{Cu}^{++} + \operatorname{SO}_4^{-2-}$

 $2Cu^{++}$ + Reducing Sugar $\longrightarrow Cu^{+}$

 $Cu^{+} \longrightarrow Cu_{2}O ppt$

Glucose (Blue Red Solution), Galactose (Orange Red Solution)

Maltose (Dark Brown with Brick Red Solution),,Fructose (Dark Brown with Brick Red Solution) Xylose (Brick Red solution)

7. Fehling's test

All reducing Carbohydrates give Positive Fehling's test with Fehling solution.Carbohydrates which has Aldehyde functional group (Not Aromatic Aldehyde) and alpha hydroxy carbonyl also gives positive Fehling's test (e.g. fuctose). While Ketones give negative fehling test. During this reaction the aldehyde group is oxidised to acid while the copper ions are reduced to red/brown precipitate of Cu_2O . This is a common test used to detect glucose in urine as positive indication of diabetes.

 $\mathrm{CuSO}_4 \longrightarrow \mathrm{Cu}^{++} + \mathrm{SO}_4^{-2-}$

 $2Cu^{++}$ + Reducing Sugar $\longrightarrow Cu_2O$ (Red / Brown ppt)

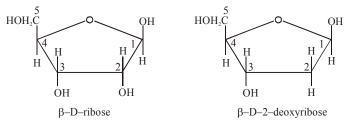
8. Tollen's test

This test is also given by reducing sugars. Carbohydrates reacts with Tollens reagent forms a silver mirror on the inner walls of the test tube. This confirms the presence of reducing sugars. Silver ions are reduced to metallic silver.

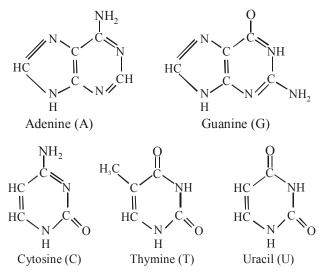
RCHO
$$\xrightarrow{(i) [Ag(NH_3)_2]OH}$$
 RCOOH + Ag (Silver mirror)

Note : Sucrose , poly sachharides also others non reducing sugar do not give Benedict test , Fehling test and Tollen's Test.

9. Iodine Test

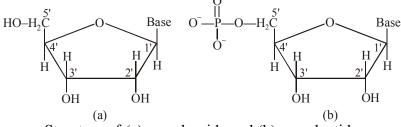

The iodine test is used to test for the presence of starch. Starch turns into an intense 'Deep blue' colour upon addition of aqueous solutions of the triodide anion.

NUCLEIC ACIDS

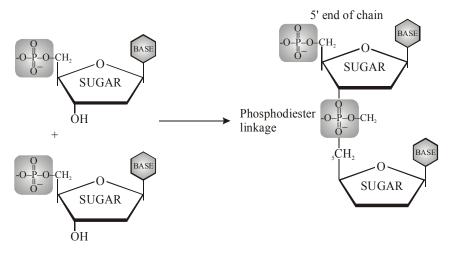

The particles in nucleus of the cell, responsible for heredity, are called chromosomes which are made up of proteins and another type of biomolecules called **nucleic acids**. These are mainly of two types, the **deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)**. Since nucleic acids are long chain polymers of **nucleotides**, so they are also called polynucleotides.

Chemical Composition of Nucleic Acids

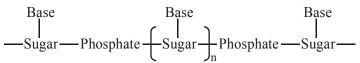
Complete hydrolysis of DNA (or RNA) yields a pentose sugar, phosphoric acid and nitrogen containing heterocyclic compounds (called bases). In DNA molecules, the sugar moiety is b-D-2-deoxyribose whereas in RNA molecule, it is b-D-ribose.



DNA contains four bases viz. adenine (A), guanine (G), cytosine (C) and thymine (T). RNA also contains four bases, the first three bases are same as in DNA but the fourth one is uracil (U).


Structure of Nucleic Acids

A unit formed by the attachment of a base to 1' position of sugar is of known as **nucleoside**. In nucleosides, the sugar carbons are numbered as 1', 2', 3', etc. in order to distinguish these from the bases. When nucleoside is linked to phosphoric acid at 5'-position of sugar moiety, we get a nucleotide


Structure of (a) a nucleoside and (b) a nucleotide

Nucleotides are joined together by phosphodiester linkage between 5' and 3' carbon atoms of the pentose sugar. The formation of a typical dinucleotide is shown in Fig.

Formation of dinucleotide

A simplified version of nucleic acid chain is as shown below.

Information regarding the sequence of nucleotides in the chain of a nucleic acid is called its primary structure. Nucleic acids have a secondary structure also. James Watson and Francis Crick gav, a double strand helix structure for DNA (Fig. 14.7). Two nucleic acid chains are wound about each other and held together by hydrogen bonds between pairs of bases. The two strands are complementary to each other because the hydrogen bonds are formed between specific pairs of bases. Adenine forms hydrogen bonds with thymine whereas cytosine forms hydrogen bonds with guanine.

In secondary structure of RNA, helices are present which are only single stranded. Sometimes they fold back on themselves to form a double helix structure. RNA molecules are of three types and they perform different functions. They are named as messenger RNA (m-RNA), ribosomal RNA (r-RNA) and transfer RNA (t-RNA).

Fig. : Double strand helix structure for DNA **Photosynthesis**

 $6CO_2 + 6H_2O \xrightarrow{\text{Sun light}} C_6H_{12}O_6 + 6CO_2$ * 3ATP are required to fix 1 mole of CO_2 . Therefore 18 ATP are required to fix 6 mole of CO_2 . **Cellular Respiration**

$$C_6H_{12}O_6 + 6O_2 \xrightarrow{\text{Enzymes}} 6CO_2 + 6H_2O + 38 \text{ ATP}$$

* 38 ATP are generated by complete oxidation of 1 mole of glucose. But net gain of ATP are 36, because 2 ATP are consumed when pyruvic acid enter in mitochondria.

* Complete oxidation takes place in two steps

Step - 1 : <u>Glycolysis or EMP or HMP (Completes in cytoplasm)</u>

$$C_6H_{12}O_6 \xrightarrow{\text{Enzymes}} 2 CH_3 - \overrightarrow{C} - \overrightarrow{C} - OH + 8 ATP$$

2NADP 2NADPH₂ Pyruvic acid

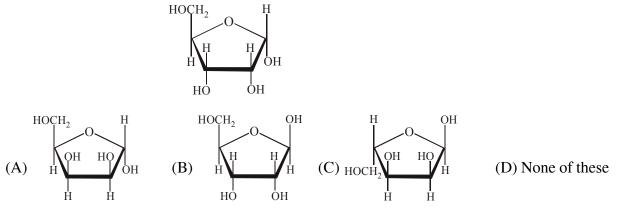
Step - 2 : <u>Kreb cycle (Completes in mitochondria)</u>

2
$$CH_3 - C - C - OH + 6O_2 \xrightarrow{\text{Enzymes}} 6CO_2 + 6H_2O + 30 \text{ ATP}$$

Pyruvic acid

VITAMINES

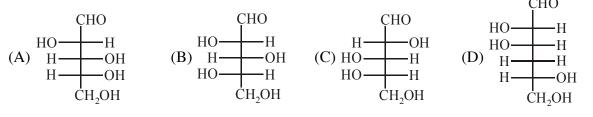
Table : Some important Vitamins, their Sources and their Deficiency Diseases

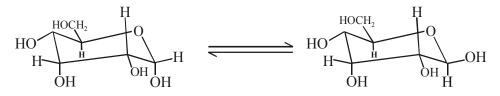

Sl. No.	Name of Vitamins	Sources	Deficiency diseases
1	Vitamin A	Fish liver oil, carrots, butter and milk	Xerophthamlia (hardening of cornea of eye) Night blindness
2	Vitamin B ₁ (Thiamine)	Yeast, milk, green vegetables and cereals	Beri beri (loss of appetite, retarded growth)
3	Vitamin B ₃ (Riboflavin)	Milk, eggwhite, liver, kidney	Cheilosis (fissuring at corners of mouth and lips), digestive disorders and burning sensation of the skin.
4	Vitamin B ₃ (Pyridoxine)	Yeast, milk, egg yolk, cereals and grams	Convulsions
5	Vitamin B ₁₂	Meat, fish, egg and curd	Pernicious anaemia (RBC deficient in haemoglobin)
6	Vitamin B ₅ (Ascorbic acid)	Citrus fruits, amla and green leafy vegetables	Scurvy (bleeding gums)
7	Vitamin D	Exposure to sunlight, fish and egg yolk	Rickets (bone deformities in children) and osteomalacia (soft bones and joint pain in adults)
8	Vitamin E	Vegatable oils like wheat germ oil, sunflower oil, etc.	Increased fragility of RBCs and muscular weakness
9	Vitamin K	Green leafy vegetables	Increased blood clotting time

NOTE : Vitamin-D , E , K , A are fat soluble vitamins. Vitamin-B , C are water soluble vitamins.

HO-CH, Ο. _0 H-HO НÓ ЮH Ascorbic acid (Vitamin-C)

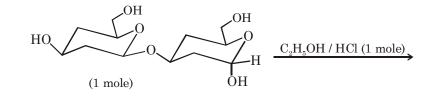
		EXER	CISE # O-I			
1	Iso-electric point of alanine is $(pH = 6)$. At which pH, maximum concentration of zwitter ion of					
	alanine will be present ?					
	(A) $pH > 6$	(B) pH < 6	(C) $pH = 6$	(D) pH = 7		
					BM0001	
2	At iso-electric point	t:				
	(A) Concentration	of cation is equal to cond	centration of anion			
	(B) Net charge is ze	ero				
	(C) Maximum cond	c. of di-pole ion (Zwitter	r ion) will be present			
	(D) All of the abov	e				
					BM0002	
3	Which of following	amino acid has lowest i	iso-electric point?			
	(A) Glycine	(B) Alanine	(C) Aspartic acid	(D) Lysine		
					BM0003	
4	$H - C \equiv C - H - H$	$_{2SO_4}$ \rightarrow (A) $\xrightarrow{(1) \text{ NH}_3 + \text{HCN}}_{(2) \text{ H}_3 O^+}$	\rightarrow (B); Product (B) of given by the product (B) of given	ven reaction is :		
	(A) Glycine	(B) Alanine	(C) Valine	(D) Leucine		
					BM0004	
5	Which amino acid o	loes not contain chiral c	entre ?			
	(A) Valine	(B) Leucine	(C) Glycine	(D) Iso-leucine		
					BM0005	
6	Which of the follow	ving is Sanger reagent ?				
	(A) 2,4-Di-nitro flu		(B) Phenyl isocyana	ine		
	(C) 2,4-Di-nitro ch		(D) 12,4-Di-nitro-ic			
					BM0006	
7	A D-carbohydrate i	s :				
	(A) Always dextrorotatory					
	(B) Always laevor	-				
	· · · •	ror of the corresponding	g L-carbohydrate			
	(D) None of these	- <u>r</u> c				
					BM0007	

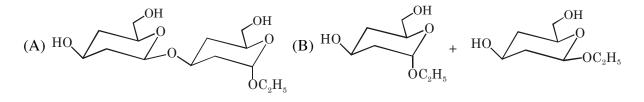

10 Which of the following represents the anomer of the compound shown ?

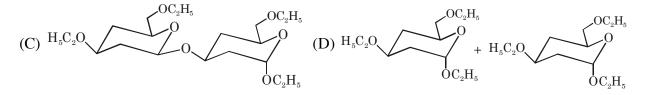

- **BM0010**
- 11 For the complex conversion of D-glucose into the corresponding osazone, the minimum number of equivalents of phenyl hydrzine required is :
 - (A) Two (B) Three (C) Four (D) Five

BM0011

12 Which of the following structure is L-arabinose ?

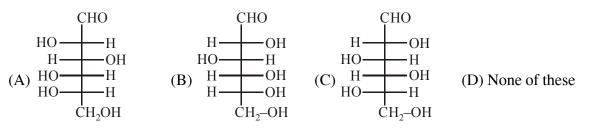

13 Which one of the statements concerning the equilibrium shown is true ?




- (A) The two structures are enantiomers of each other. They have equal but oppostie optical rotations and recemize slowly at room temperature
- (B) The two structures are enantiomers of each other. They racemize too rapidly at room temperature for their optical rotations to be measured
- (C) The two structures are diastereomers of each other. Their interconversion is called mutarotation
- (D) The two structures are diastereomers of each other. Their interconversion does not require breaking and making bonds, only a change in conformation

BM0013

14 Major product of following reaction is :

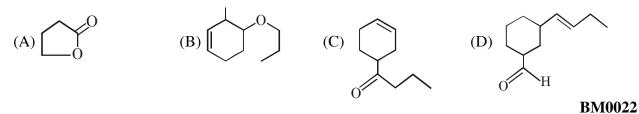


BM0014

15 What is the structure of L-glucose ?

16 What is the structure of L-glyceraldehyde ?

$H - C = O$ (A) $HO - CH_2 - OH$	(B) HO $-$ CH ₂ OH CH = O
(C) HO $+$ H H - C = O	(D) Both (A) and (B)


- HC OH HC - OH C - OH HO - H H - OH H - OH CH₂OH, the given is enol form of :
- (A) D-glucose (B) D-mannose (C) D-fructose (D) All of these
 BM0017
 18 D-glucose & D-fructose can be differentiated by :
 (A) Fehling solution (B) Tollen's reagent (C) Benedict test (D) Br₂ / H₂O
 BM0018
- **19** D-Glucose exist in x different forms. The value of x (stereoisomer) is :
 - (A) 2 (B) 3 (C) 4 (D) 5

BM0019

BM0016

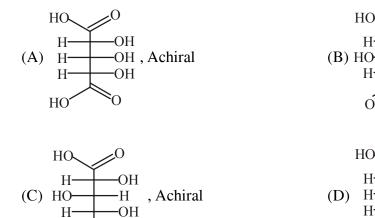
- 20 D-Mannose D-Glucose (A);
 Product (A) of above reaction is:
 (A) D-glucose (B) D-fructose (C) D-talose (D) D-idose
 BM0020
 21 Which of the following statement is not correct for maltose.
- Which of the following statement is not correct for maltose.(A) It is a disaccharide(B) It undergoes mutarotation
 - (C) It is a reducing sugar (D) It does not have hemiacetal group.

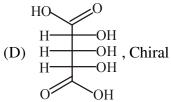
22 A compound which does not react with Brady's reagent but decolourise Br_2 / H_2O solution is :

- 23 Maltose is made up of to two sugars-(A) Glucose (C) Glucose & galactose
- (B) Fructose

HO

H


H


Ó

(D) Glucose & fructose

BM0023

24 D-Ribose when treated with dilute HNO₃ forms.

OH

·H

·ОН

OH

, Chiral

BM0024

25 Consider the given process

Ó

HO

CHO ĊНО HOH OH ·ОН Η HO--H HO ·H HO Η HO OH H ·ОН H ·ОН H-OH H₂O H₂O -OH H--OH H H OH ĊH₂OH ĊH₂OH ĊH₂OH (I) (II) (III)

and identify the incorrect statement.

- (A) Configuration at C-2 is lost on enolisation
- (B) I and III are epimers

(C) Proton transfer from water to C-1 converts ene diol to an aldose.

(D) D-glucose can isomerise to D-fructose through enol intermediate.

26	When methyl D-glucopyranoside is treated with HIO_4 its number of mole consumed per mole of the		mole of the		
	sugare is -				
	(A) 2	(B) 3	(C) 4	(D) 5	
					BM0026
27	lpha - amino acid when he	ated with NaOH/CaO	forms -		
	(A) α , β - unsaturated ad	cid	(B) α , β - unsaturated	amine	
	(C) Carboxylic acid		(D) Amine		
					BM0027
28	The configuration of the	e C-2 epimer of D-gluc	ose is-		
	(A) 2R, 3S, 4R, 5S		(B) 2S, 3S, 4R, 5R		
	(C) 2S, 3R, 4S, 5R		(D) 2R, 3S, 4R, 5R		
					BM0028
29	Mutarotation involve-				
	(A) Racemisation		(B) Diastereomerisati	on	
	(C) Optical resolution		(D) Conformational i	nversion	
					BM0029
30	Consider the reaction se	•			
	Glucose $\xrightarrow{\text{PhNHNH}_2}$ excess	$P \xrightarrow{H_3O^+} Q \xrightarrow{Zn} AcC$	$\rightarrow R$		
	The product R is -				
	(A) Arbinose	(B) Sorbitol	(C) Fructose	(D) Mannose	
					BM0030
31	The pH of the solution of	containing following z	witter ion species is $\stackrel{\Phi}{\mathbb{N}}_{\mathbb{N}}$	$H_3 \xrightarrow{\text{COO}^-} H$	
	(A) 4	(B) 5	(C) 7	(D) 9	

32 Peptide linkage is -

33 Same osazone derivative is obtained in case of D-glucose, D-Mannose and D-Fructose due to

- (A) The same configuration at C-5
- (B) The same constitution.
- (C) The same constitution at C-1 and C-2
- (D) The same constitution and acid configuration at C-3, C-4, C-5 and C-6 but different constitution and configuration at C-1 and C-2 which becomes identical by osazone formation.

BM0033

BM0032

34 D(-) -Erythrose
$$\xrightarrow{\text{NaBH}_4}$$
 (P)
D(-) -Threose $\xrightarrow{\text{NaBH}_4}$ (R)

Which of the following statement is correct about P and R?

- (A) Both are optically active (B) Both are optically inactive
- (C) P is optically inactive and R is optically active (D) Neither P nor R has asymmetric carbon.

BM0034

35 The monomer of nucleic acids are held together by
(A) Phosphodiester linkage
(B) Amide linkage
(D) Ester linkage

BM0035

- **36** Select the incorrect statement about Nylon 2-nylon-6.
 - (A) It is a copolymer
 - (B) It is biodegradable
 - (C) It is an alternating polyamide
 - (D) It is made up of $CH_3 CH COOH$ and $H_2N(CH_2)_5COOH$ NH₂

BM0036

37 The monomer that can undergo radical, cationic and anionic polymerisation with equal case-

(A)
$$Me-C=CH_2$$
 (B) $Ph-CH=CH_2$ (C) $CH_2=CH_2$ (D) $CH_2=CH-CN$
Me

38 Consider the reaction-

$$\bigcup_{(i) \text{ CHCl}_3 + \text{ NaOH}} (i) \xrightarrow{(i) \text{ CHCl}_3 + \text{ NaOH}} P(\text{Major}) + Q(\text{Minor})$$

Mixture of A and B can be best separated by -

(A) Steam distillation	(B) Vacuum distillation

(C) Fractional distillation (D) Crystallisation

BM0038

- **39** Which of the following statements are incorrect :
 - (A) Copolymer of 1,3-butandiene & acrylonitrile is Buna-S
 - (B) HDPE is obtained by Ziegler-Natta polymerisation
 - (C) Polymer dacron can be polyester fabric
 - (D) Phenol & formaldehyde resin is called novolac

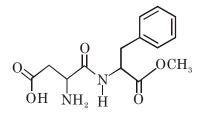
BM0039

- 40 A segment (X) of cellulose obtained on partial hydrolysis has molecular mass 1476 gm. On complete acidic hydrolysis, mass of the product obtained is 1620 gm. Find out the number of glycosidic linkage(s) present in segment (X) :
 - (A) 8 (B) 6 (C) 4 (D) 10

BM0040

41 When solidum extract is treated with FeCl₃ solution a blood red coloured is obtained due to the presence of -

(A)
$$\bigcirc$$
 - SO₃H
(B) NH₂- \bigcirc - SO₃H
(C) H₂N- \bigcirc -COOH
(D) - \bigcirc - H₂N


BM0041

- 42 The monomer that undergo radical polymerisation most easily is
 - (A) $CH_2=CH_2$ (B) $C_6H_5CH=CH_2$ (C) $CH_2=C \swarrow Me$ (D) $CH_3-CH=CH_2$

- 1 Carbohydrates may be :
 - (A) Sugars
 - (B) Starch
 - (C) Polyhydroxy aldehyde/ ketones
 - (D) Compounds that can be hydrolysed to sugar
- 2 Select the correct statement :
 - (A) Glycosides do not undergo mutarotation
 - (B) All OH groups of a cyclic monosaccharides are converted to ethers by treatment with base and an alkyl halide
 - (C) α -D glucose reacts with Ag₂O and excess CH₃I to form tetramethyl ether
 - (D) D-glucose upon treatment with warm HNO₃ forms D-glucaric acid

BM0044

3 "Aspartame" is roughly 100 times as sweet as cane sugar. On complete hydrolysis of aspartame, products obtained is/are :

(A)
$$PhCH_2-CH-NH_2$$
 (B) $H_2N-CH-CO_2H$ (C) CH_3OH (D) $CH_3-CH-NH_2$
 $\downarrow \\ CO_2H$ CH_2CO_2H CO_2H

BM0045

BM0046

- 4 Starch molecules are polymer with repeating glucose units. Select the correct statement(s).
 - (A) Glucose units are joined through α -glycosidic linkage
 - (B) The branches of amylopectin are linked to the chain with α -1,6'-glycosidic linkages
 - (C) The linear linkages of amylopectin are formed by α -1,6'-glycosidic bond
 - (D) Amylose has an unbranched skeleton of glucose molecules with α -1,4'-glycosidic linkages

5 Select the correct option.

- (A) Isoelectric point is the pH at which an amino acid exists primarily in its neutral form.
- (B) Isoelectric point is the average of pK_a values of α -COOH amino α NH_3^+ groups [valid only for neutral amino acid]
- (C) Glycine is characterised by two pK_a values
- (D) For neutral amino acid the concentration of zwitter ion is maximum at its isoelectric point

BM0047

52 JEE-Chemistry

SΖ	JEE-Chemistry	
6	Amino acids are synthesised from	•
-	(A) α -Halo acids by reaction with NH ₃	
	(B) Aldehydes by reaction with NH₃ and cyanide ion followed by hydrolysis	
	(C) Pyruvic acid is treated with NH_3 followed by addition of $H_2(Ni)$	
	(D) Alcohols by reaction with NH_3 and CN^- ion followed by hydroysis.	
	(D) Alcohols by feaction with $N\Pi_3$ and CN for for followed by hydroysis.	DN 400 40
-		BM0048
7	Which of the following carbohydrates developes blue colour on treatment with iodine so	olution ?
	(A) Glucose (B) Amylose (C) Starch (D) Fructose	
		BM0049
8	Select the correct statement	
	(A) High density polythene is a linear polymer.	
	(B) Low density polythene is a branched chain polymer.	
	(C) Chain growth polymers are also known as addition polymer.	
	(D) Step growth polymer is also known condensation polymer.	
		BM0050
9	Select the correct statement.	
	(A) Elastomers have the weakest intermolecular forces	
	(B) Buna-N is example of synthetic copolymer	
	(C) Some fibres have crystalline nature	
	(D) Thermoplastic polymers have stronger intermolecular forces than fibres	
		BM0051
10	Which of the following options are correct :	DIVIOUEI
10	which of the following options are confect.	
	Cl NO ₃	
	(A) (A)	
	(A) $(A) + AgNO_3 \rightarrow (A) + AgCl (A)$	
	· •	
	(B) Na extract of sample containing chlorobenzene $\xrightarrow{+ AgNO_3}$ white ppt. of AgCl	
	$+ AgNO_3$	
	(C) Na extract of sample containing chlorobenzene $\xrightarrow{+ AgNO_3}$ No ppt. of AgCl	
	Cl	
	(D) \longrightarrow + AgNO ₃ \longrightarrow No ppt. of AgCl	
	(D) $\left(\bigcup \right) + \text{AgNO}_3 \longrightarrow \text{No ppt. of AgCl}$	
	\sim	
		BM0052
	СНО	
11	$+ Ac_2O \xrightarrow{AcONa} (P)$	
11	$+ Ac_2O \xrightarrow{ACONd} (P)$	
	Before isolating (P) unreacted Ph–CHO is removed first. Select the correct statement.	
	(A) P is cinnamaldehyde (B) P is crotonic acid	
	•	
	(C) Removal is done by simple distillation (D) P is cinnamic acid.	RM0053

12	1 1		nscription on			
	RNA would be -					
	(A)UAACUGCGUA		. ,	JCUGCGL		
	(C) UAACTGCGUA	((D) TAA	ACTGCGT	A	BM0054
13	Select the correct statement	t among following				D1110034
	(A) Number of chiral atom		ess than	D-glucose		
	(B) D-glucose and D-fruct	-		-		
	(C) D-glucose and D-fruct					
	(D) D-glucose and D-fruct			-	Ph	
	() 8			2		BM0055
14						
				denine	(D) Guanine	
		,			(_)	BM0056
15	Correct statement					
	(A) Nylon-66 is example o	f addition polymer				
	(B) Alanin having pH 9 at isoelectric point					
(C) Fructose when reacts with fehling solution reddish brown ppt. formed			formed			
	(D) All of these	-				
						BM0057
16	Match the column :					
	Column I		Col	umn II		
	(A) Sucrose		(P)	Two acet	als	
	(B) Maltose		(Q)	No hemia	acetal	
	(C) Lactose		(R)	β–1,4'-gl	ycosidic bond	
	(D) Cellulose		(S)	One of th	e hydrolysis produ	ct is glucose
						BM0058
17	Match the column					
	Column I		Col	umn II		
	(Component of mixture)		(Re	agent)		
	(A) Crystalline $Na_2CO_3 +$		(P)	Fehling sol	ution	
	Sodium citrate + CuSC	$D_4(aq. sol.)$				
	(B) $CuSO_4$ + Rochelle Sal	t + NaOH(Aq. sol.)	(Q)	Nesseler's	Reagent	
	(C) $10\% \alpha$ - naphthol in al	cohol	(R)	Bennedict'	s solution	
	(D) $HgCl + KI + KOH$ (aq	l. sol.)	(S)	Molisch's H	Reagent	
						BM0059

EXERCISE # S-I

Assertion Reason

1

Statement 1 : Furanose ring, like pyranose rings are not planar.

Statement 2 : The most stable conformation of furanose is envelope form.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

BM0060

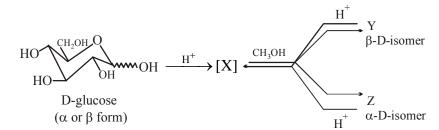
BM0061

BM0062

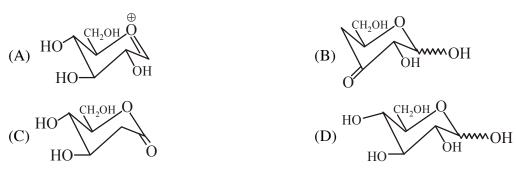
2 Statement 1 : Bromine water changes glucose to gluconic acid.

Statement 2 : Bromine water acts as oxidising agent.

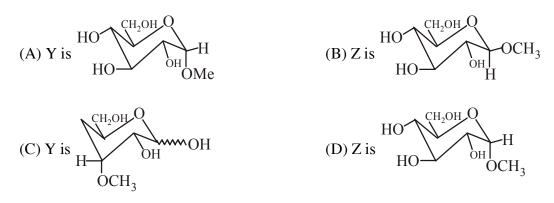
- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.


3 Statement 1 : All monosaccharide ketoses are reducing sugars.

Statement 2 : Monosaccharide ketose give positive Tollen's and Fehling's test.


- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

Comprehension (Q.4 to Q.6)


Consider the following reversible process for a reaction of D-glucose.

4 The structure of intermediate [X] is

5 Select the correct option.

BM0064

BM0065

6 Select the correct statement.

- (A) Y is more stable than Z due to H-bond (B) Y is less stable than Z due to anomeric effect.
- (C) Y is more stable than Z due to anomeric effect (D) Y is less stable than Z due to H-bond.

Comprehension (Q.7 to Q.9)

The monomer (G = Me or Cl) when treated with Zieglar - Natta catalyst undergo polymerisation in the manner given below -

$$n /$$
 Zieglar-Natta
Catalyst $/$

cis-poly-1,3-butadiene

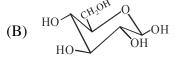
7 The Zieglar-Natta catalyst is (A) $TiCl_4$ (B) R_3Al (C) $R_3Al / TiCl_4$ (D) $R_3B/TiCl_4$

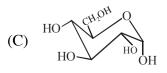
BM0066

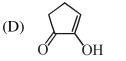
8 The polymer obtained when monomeric unit used is $CH_2=C-CH=CH_2$

(A) Neoprene (B) Stilbene (C) Styrene (D) Chloropicrin

BM0067


- 9 Which of the following statement is not true considering the process given above.
 - (A) The general class of polymer formed is known as homopolymer
 - (B) The polymer obtained is stereoregular
 - (C) Buna–N can be prepared using above process
 - (D) Synthetic rubber can be formed by above process using 1,3- butadiene.


Match the Column


10 Match the compounds given below existing in equilbrium mixture with their percentage given in the right hand side.

Column I

$\begin{array}{c} H \\ H \\ OH \\ HO \\ HO \\ H \\ OH \\ H \\ OH \\ CH_2OH \end{array}$

Column II

(P) 36 %

(Q) 63.8 %

(R) 99.9 %

(S) 0.2 %

BM0069

11 Match the column :

Column I

(Carbohydrate)

- (A) Starch
- (B) Sucrose
- (C) Lactose
- (D) Maltose

Column II

(Properties)

- (P) Mutarotation
- (Q) Non reducing sugar
- (R) β -glycosidic bond
- (S) α -glycosidic bond
- (T) Reducing sugar
- (U) Hemiacetal

12 Match the column : Column I

OH HO

MO M

ЮН

Column II

- (P) α -glycoside bonds
- (Q) Reducing sugar

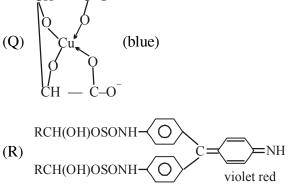
(R) Forms enediol intermediate

(S) β -glycoside bond

BM0071

Match the column
 Column I
 (Functional group)
 (A) Aldehydic

HO


(D) HO

(B) Phenolic

(C) Alcohol

(D) α -D-Glucopyranose

(Test used or complex formed during confirmatory test) (P) $[(C_6H_5O)_6Fe]^{-3}$ (violet)

- (S) $(ROH)_2Ce(NO_3)_4$ (Red)
- (T) Molisch's Test

Column II

14 Match the column :

Column I	Column II	
(A) Addition polymer	(P) Buna-S	
(B) Condensation polymer	(Q) Buna-N	
(C) Homopolymer	(R) Polythene	
(D) Copolymers	(S) Nylon 6,6	
		BM0073

15	Match the column		
	Presence of the element in	Complex formed in one	Colour of the complex
	Na - extract	of the test	
	(A) N	(P) Na ₄ [Fe(CN) ₅ NOS]	(W) Prussian Blue
	(B) S	(Q) Fe $(CNS)_3$	(X) Black
	(C) N and S together	(R) PbS	(Y) Violet
		$(S) \operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]$	(Z) Blood Red
			BM0074

<u>Subjective Type :</u>

16 The pKa values for the three acidic group P,Q,R are 4.3, 9.7 and 2.2 respectively

$$(R) (P) \\ HOOC-CH -CH_2-COOH \\ \bullet | \\ NH_3 \\ (Q)$$

Calculate the isoelectric point of the amino acid ?

	Calculate the isoelectric point of the animo acid?	BM0075
17	How will you separate?	
	(a) Ethane & Ethyne	
	(b) 1-Butyne & 2-Butyne	BM0076 BM0077
	(c) Phenol & Propanol	DIVIOU//
		BM0078
	(d) 2-Propanol & Propanone	
	(e) CH ₃ COOH & HCOOCH ₃	BM0079 BM0080
	(f) PhOH & PhCOOH	DIVIUUOU
		BM0081
	(g) $C_2H_4 \& C_2H_2$	
	(h) $EtNH_2 \& Me_2NH$	BM0082
	(i) EtOH & Et – O – Et	BM0083

18	Hov	w will you differentiate?	
	(a)	Propane & Propene	
	(b)	1,1-Dichloroethane & 1,2-Dichloroethane	BM0085
	(c)	Chloroethane & Chloroethene	BM0086
	(d)	Pure & Oxidized CHCl ₃	BM0087 BM0088
	(e)	p-chlorotoluene & benzylchloride	BM0089
	(f)	n-propylchloride & isopropylchloride	BM0090
	(g)	Methanol & ethanol	BM0091
	(h)	Isobutanol & tert-butanol	BM0092
	(i)	2-Pentanol & 3-pentanol	BM0093
	(j)	O-cresol & benzylalcohol	BM0094
	(k)	Ethanol & Propanol	BM0095
	(1)	Propanone & Ethanol	BM0096
		HCHO & PhCHO	BM0097
		Glucose & Fructose	BM0098
		HCOOH & CH ₃ COOH	BM0099
	-	HCOOH & HCHO	BM0100
	(4)	MeNH ₂ & Me ₂ NH	BM0101
	(r)	$\bigcup_{NH_2}^{CH_2NH_2} \& \bigcup_{NH_2}^{CH_3}$	

19 (a) What is the structure of nylon-6, made by alkaline polymerisation of caprolactum.

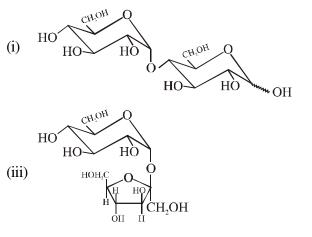
BM0103

(b) Suggest mechanism for the process. Is polymerisation of the chain reaction or step reaction type.

BM0103

20 Compound (A) $C_5H_{10}O_5$ give a tetra-acetate with Ac₂O & oxidation of A with Br₂/H₂O gives an acid $C_5H_{10}O_6$. Reduction of A with HI & Red P. Give 2-methyl butane. What is structure of 'A'

BM0104


- 21 (i) Sulphanilic acid although has acidic as well as basic group. It is soluble in alkali but insoluble in mineral acid. Explain.
 - (ii) Explain why sulphonic acid is not soluble in organic solvents.

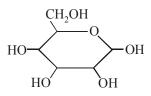
BM0105

22 Account for the fact that 2-amino ethanoic acid (glucine) exist as a dipolar ion as does p-aminobenzene sulphonic acid but p-amino benzoic acid does not.

BM0106

23 For given compound

- (a) Which glycosidic linkage is present
- (b) Name of the compound(d) Is it reducing sugar
- (c) Products obtained on hydrolysis


(e) Number of moles of HIO_4 consumed (f) Is mutarotation possible

(g) Number of moles of CH_3COCl consumed per mole of compound.

24 For given compound

(a) CHO	(b) CH ₂ OH
L CHOH	 C = 0
 CHOH	Г СНОН
СНОН	
	СНОН
CH ₂ OH	СНОН
	CH ₂ OH

- Number of possible isomers (i)
- (ii) Number of possible D-configuration isomers
- (iii) Number of possible L-configuration isomers
- Number of possible isomers of α -D-gluco pyronose configuration. 25

BM0109

BM0108

26 Calculate isoelectric point of following a	amino ació	l
---	------------	---

-0 	Calculate isocicettic point of following animo acid			
		pKa ₁	pKa ₂	рКа
		(a-COOH)	(a-COOH)	(side chain)
	(a) Glycine $\overset{\oplus}{\mathrm{NH}}_3 - \mathrm{CH}_2 - \mathrm{COOH}$	2.3	9.6	
	(b) Serine $CH_2 - CH - COOH$ $I \oplus I$ $OH \oplus NH_3$	2.2	9.2	_
	(c) Alanive $CH_3 - CH - COOH$	2.3	9.7	
	(d) Asparric acid HOOC – $CH_2 - CH - COOH$ MH_3	2.1	9.8	3.9
	(e) Lysine $\overset{\oplus}{\mathrm{NH}}_3$ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₋ COOH $\overset{H}{\overset{H}{\oplus}}_{\overset{\oplus}{\oplus}}_{\overset{H}{\oplus}}_{\overset{\oplus}{\to}}$	2.2	9.0	10.5

		EXERCI	SE # J-MAIN	
1.	Which of the following pairs give positive Tollen's test?			[J-Main-2004]
	(1) Glucose, sucros	e	(2) Glucose, fructo	ose
	(3) Hexanal, Aceto	phenone	(4) Fructose, sucro	ose
				BM0111
2.	Two forms of D – g	glucopyranose, are called	d.	[J-Main-2005]
	(1) Enantiomers	(2) Anomers	(3) Epimers	(4) Diastereomers
				BM0112
3.	When benzene sul	fonic acid and p-nitrop	phenol are treated w	with NaHCO ₃ , the gases released
	respectively are			[J-Main-2006]
	(1) SO ₂ , NO ₂	(2) SO ₂ , NO	(3) SO ₂ , CO ₂	(4) CO ₂ , CO ₂
				BM0113
4.	Statement-1 : Gluc	cose gives a reddish-brov	wn precipitate with Fe	hling's solution.
	because			[J-Main-2007]
	Statement-2 : Read	ction of glucose with Fel	nling's solution gives	CuO and gluconic acid.
	(1) Statement-1 is T	Frue, Statement-2 is True	e; Statement-2 is a corr	rect explanation for Statement-1.
(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanat				correct explanation for Statement-1.
	(3) Statement-1 is T	True, Statement-2 is False	е.	
	(4) Statement-1 is F	False, Statement-2 is True	e.	
				BM0114
5.	Which one of the following bases is not present in DNA ?			[J-Main-2014]
	(1) Cytosine	(2) Thymine	(3) Quinoline	(4) Adenine
				BM0115
6.	Which one is classi	fied as a condensation p	oolymer?	[J-Main- 2014]
	(1) Teflon	(2) Acrylonitrile	(3) Dacron	(4) Neoprene
				BM0116
7.	Which of the vitam	ins given below is wate	er soluble?	[J-Main- 2015]
	(1) Vitamin E	(2) Vitamin K	(3) Vitamin C	(4) Vitamin D
				BM0117
8.	Thiol group is pres	ent in :		[J-Main-2016]
	(1) Methionine	(2) Cytosine	(3) Cystine	(4) Cysteine
				BM0118

9. The distillation technique most suited for separating glycerol from spent-lye in the soap industry is

[J-Main-2016]

- (1) Distillation under reduced pressure
- (2) Simple distillation
- (3) Fractional distillation
- (4) Steam distillation

BM0119


10. Which of the following statements about low density polythene is FALSE ? [J-Main-2016]

- (1) It is used in the manufacture of buckets, dust-bins etc
- (2) Its synthesis requires high pressure
- (3) It is a poor conductor of electricity
- (4) Its synthesis requires dioxygen or a peroxide initiator as a catalyst.

BM0120

11. Which of the following compounds will behave as a reducing sugar in an aqueous KOH solution

[J-Main-2017]

- 12. The formation of which of the following polymers involves hydrolysis reaction ? [J-Main-2017]
 - (1) Nylon 6 (2) Bakelite (3) Nylon 6, 6 (4) Terylene

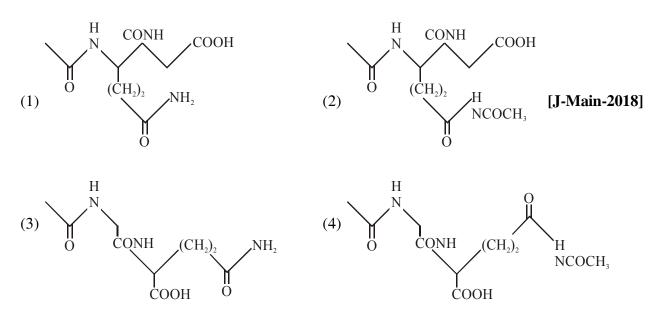
BM0122

[J-Main-2018]

(1) 1–Hexene (2) Hexanoic acid (3) 6-iodohexanal (4) n-Hexane

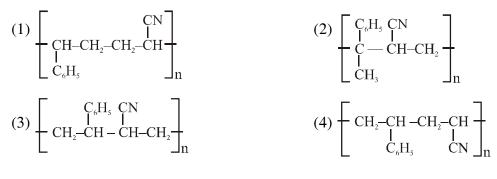
BM0123

[J-Main-2018]


14. Which of the following statement is not true :-

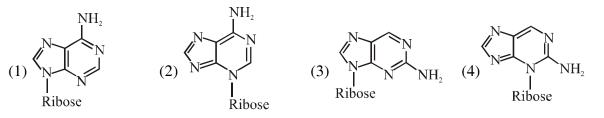
Glucose on prolonged heating with HI gives :

13.


- (1) Nylon 6 is an example of step-growth polymerisation
- (2) Chain growth polymerisation involves homopolymerisation only
- (3) Step growth polymerisation requires a bifunctional monomer
- (4) Chain growth polymerisation includes both homopolymerisation and copolymerisation

15. The dipeptide, Gln-Gly, on treatment with CH₃COCl₃ followed by aqueous work work up gives :-

BM0125


16. The copolymer formed by addition polymerization of styrene and acrylonitrile in the presence of peroxide is : [J-Main-2018]

BM0126

[J-Main-2018]

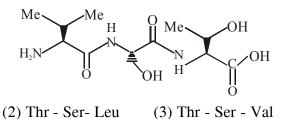
17. Which of the following is the correct structure of Adenosine ?

BM0127 [J-Main-2018]

- **18.** Among the following, the incorrect statement is:-
 - (1) Cellulose and amylose has 1, 4-glycosidic linkage.
 - (2) Lactose contains β -D-galactose and β -D-glucose.
 - (3) Maltose and lactose has 1, 4-glycosidic linkage.
 - (4) Sucrose and amylose has 1, 2-glycosidic linkage.

[J-Main-2018]

19. The correct match between items of List-I and List-II is :-

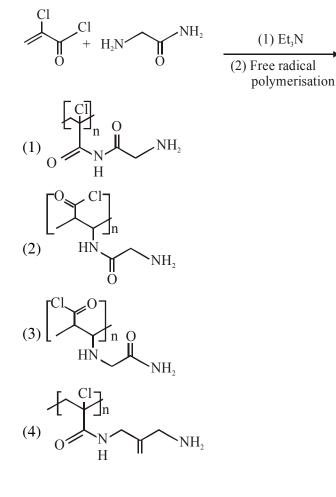

	Litst-I		List-II
(A)	Phenelzine	(P)	Pyrimidine
(B)	Chloroxylenol	(Q)	Furan
(C)	Uracil	(R)	Hydrazine
(D)	Ranitidine	(S)	Phenol

(1) (A)-(S), (B)-(R), (C)-(P), (D)-(Q) (3) (A)-(S), (B)-(R), (C)-(Q), (D)-(P)

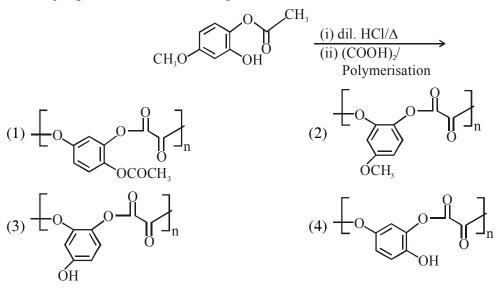
(2) (A)-(R), (B)-(S), (C)-(P), (D)-(Q)	
(4) (A)-(R), (B)-(S), (C)-(Q), (D)-(P)	

BM0129

20. The correct sequence of amino acids present in the tripeptide given below is : [J-Main-(Jan)-2019]


(4) Val - Ser - Thr

BM0130


Major product of the following reaction is : 21.

(1) Leu - Ser - Thr

[J-Main-(Jan)-2019]

22. The major product of the following reaction is:

Which of the following tests cannot be used for identifying amino acids ? 23. [J-Main-(Jan)-2019]

(1) Biuret test

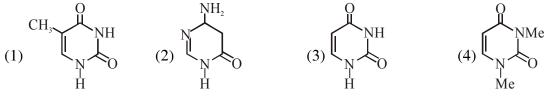
(2) Xanthoproteic test (3) Barfoed test

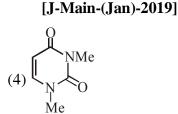
(4) Ninhydrin test

BM0133

BM0134

[J-Main-(Jan)-2019]


BM0132


- The homopolymer formed from 4-hydroxy-butanoic acid is :-24.
 - $(1) \begin{bmatrix} U \\ -C(CH_2)_3 O \end{bmatrix} (2) \begin{bmatrix} U \\ -OC(CH_2)_3 O \end{bmatrix} (3) \begin{bmatrix} U \\ -C(CH_2)_2 O \end{bmatrix} (4) \begin{bmatrix} U \\ -C(CH_2)_2 O \end{bmatrix}$
- 25. Among the following compound which one is found in RNA?

The polymer obtained from the following reactions is :

26.

BM0135

[J-Main-(Jan)-2019]

 $\sim NH_2 \xrightarrow{(i) NaNO_2/H_3O^+} \rightarrow (ii) Polymerisation \rightarrow$ HOOC'

BM0136

[J-Main-(Jan)-2019]

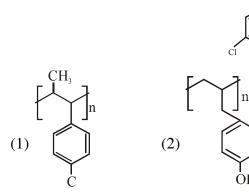
27.			
	H_{3}^{\oplus} - CH-COOH H_{N}^{\oplus} CH COOH		H ₃ N−CH−COO
	$h_3N-CH-COOH$	$H_{3}N-CH-COO \qquad $	NH NH
	(1) (2) (2)	$(3) \qquad \qquad$	$(4) \qquad \qquad$
	H N	Ň	N⊕ H
			BM0137
28.	The two monomers for the synthesis of Nylor	ne 6, 6 are :	[J-Main-(Jan)-2019]
	(1) HOOC(CH_2) ₆ COOH, $H_2N(CH_2)_6NH_2$	(2) $HOOC(CH_2)_4CO$	OH, $H_2N(CH_2)_4NH_2$
	(3) HOOC(CH ₂) ₆ COOH, $H_2N(CH_2)_4NH_2$	(4) HOOC(CH_2) ₄ CO	OH, $H_2N(CH_2)_6NH_2$
			BM0138
29.	Maltose on treatment with dilute HCI gives :		[J-Main-(April)-2019]
	(1) D-Galactose	(2) D-Glucose	
	(3) D-Glucose and D-Fructose	(4) D-Fructose	
			BM0139
30.	Fructose and glucose can be distinguished by :		[J-Main-(April)-2019]
	(1) Fehling's test (2) Barfoed's test	(3) Benedict's test	(4) Seliwanoff's test
			BM0140
31.	The peptide that gives positive ceric ammoniu	m nitrate and carbylam	
011			[J-Main-(April)-2019]
	(1) Lys-Asp (2) Ser-Lys	(3) Gln-Asp	(4) Asp-Gln
		(-) r	BM0141
32.	Which of the following statements is not true	about sucrose?	[J-Main-(April)-2019]
52.	(1) On hydrolysis, it produces glucose and fru		[J -Wam-(April)-2017]
	(2) The glycosidic linkage is present between		, of B-fructose
	(3) It is also named as invert sugar		
	(4) It is a non reducing sugar		
			BM0142
33.	Number of stereo centers present in linear and	cyclic structures of olu	
001	(1) 4 & 5	(2) 5 & 5	[J-Main-(April)-2019]
	(3) 4 & 4	(4) 5 & 4	
			BM0143
34.	Amylopectin is composed of :		[J-Main-(April)-2019]
	(1) α -D-glucose, C ₁ -C ₄ and C ₁ -C ₆ linkages		
	(2) α -D-glucose, C ₁ –C ₄ and C ₂ –C ₆ linkages		
	(3) β -D-glucose, C ₁ –C ₄ and C ₂ –C ₆ linkages		
	(4) β -D-Glucose, C_1 - C_4 and C_1 - C_6 linkages		
			DN 101 44

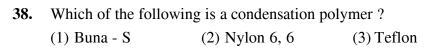
JEE-Chemistry 68

- 35. Which of the following statements is not true about RNA?
 - (1) It has always double stranded α -helix structure
 - (2) It usually does not replicate
 - (3) It is present in the nucleus of the cell
 - (4) It controls the synthesis of protein
- 36. Which of the following compounds is a constituent of the polymer

Cl

(3)

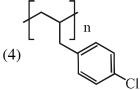

(1) KOH (alc.) (2) Free radical polymerisation

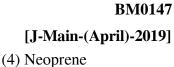

OH

(1) Formaldehyde

(2) Ammonia

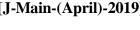
37. The major product of the following reaction is :


39. The correct name of the following polymer is:



		•	•	
	(1) Polyisoprene	(2) Polytert-butylene	(3) Polyisobutane	(4) Polyisobutylene
				BM0149
40.	Which of the followin	ig is a thermosetting pol	ymer?	[J-Main-(April)-2019]
	(1) Buna–N	(2) PVC	(3) Bakelite	(4) Nylon 6
				BM0150
41.	Which of the followin	g statements is correct-		[J-Main-(Jan)-2020]
	(1) Gluconic acid can	form cyclic (acetal/ herr	niacetal) structure	
	(2) Gluconic acid is a	ct of glucose		
	(3) Gluconic acid is o	btained by oxidation of	glucose with HNO ₃	

(4) Gluconic acid is a dicarboxylic acid


(4) N-Methyl urea

BM0148

[J-Main-(April)-2019]

[J-Main-(April)-2019]

[J-Main-(April)-2019]

BM0145

BM0146

[J-Main-(April)-2019]

[J-Main-(Jan)-2020]

- **42.** Match the following :
 - (i) Riboflavin (a) Beriberi
 - (ii) Thiamine (b) Scurvy
 - (iii) Pyridoxine (c) Cheilosis
 - (iv) Ascorbic acid (d) Convulsions
 - (1) (i)-(c), (ii)-(a), (iii)-(d), (iv)-(b)
 - (3) (i)-(d), (ii)-(b), (iii)-(a), (iv)-(c)
- (2) (i)-(c), (ii)-(d), (iii)-(a), (iv)-(b)
- (4) (i)-(a), (ii)-(d), (iii)-(c), (iv)-(b)

BM0152

[J-Main-(Jan)-2020]

- **43.** Two monomers in maltose are :
 - α-D-glucose and β-D-glucose
 α-D-glucose and α-D-glucose
- (2) α-D-glucose and α-D-Fructose(4) α-D-glucose and α-D-galactose

BM0153

44. A, B and C are three biomolecules. The results of the tests performed on them are given below:

[J-Main-(Jan)-2020]

	Molisch's Test	Barfoed Test	Biuret Test		
Α	Positive	Negative	Negative		
В	Positive	Positive	Negative		
С	Negative	Negative	Positive		

A, B and C are respectively :

- (1) A = Glucose, B = Fructose, C = Albumin
- (2) A = Lactose, B = Fructose, C = Alanine
- (3) A = Lactose, B = Glucose, C = Alanine
- (4) A = Lactose, B = Glucose, C = Albumin

EXERCISE # J-ADVANCED (OBJECTIVE)

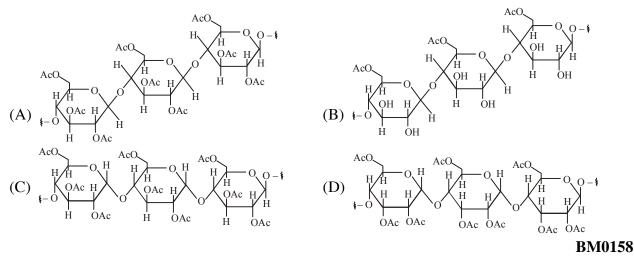
- 1. Statement-1: p-Hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid. because [**JEE 2007**]
 - Statement-2: o-Hydroxybenzoic acid has intramolecular hydrogen bonding.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is False, Statement-2 is True.
- 2. Match the chemical substances in Column I with type of polymers / type of bonds in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS. [JEE 2007]

Column I

- (A) Cellulose
- (B) Nylon-6, 6
- (C) Protein
- (D) Sucrose

Column II

- (P) Natural polymer
- (Q) Synthetic polymer
- (R) amide linkage
- (S) Glycoside linkage

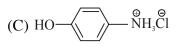

BM0156

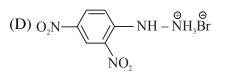
3. Match the compounds/ion in column I with their properties/ reaction in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS. [**JEE 2007**] Column I Column II

	001	
(A) C ₆ H ₅ CHO	(P)	gives precipitate with
		2,4-dinitrophenylhydrazine
(B) CH ₃ C≡CH	(Q)	gives precipitate with AgNO ₃
(C) CN-	(R)	is a nucleophile
(D) I ⁻	(S)	is involved in cyanohydrin formation
		BI

BM0157

4. Cellulose upon acetylation with excess acetic anhydride / H2SO4 (catalytic) gives cellulose triacetate whose structure is [**JEE 2008**]


5. Match the compounds in Column I with their characteristic test(s)/reaction(s) given in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.


[JEE 2008]

Column-I

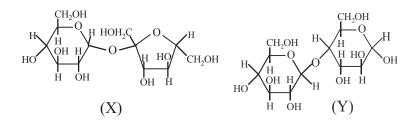
(A) $H_2N - \overset{\oplus}{NH_3Cl} \overset{\Theta}{O}$

Column II

(P) Sodium fusion extract of the compound gives Prussian blue colour with $FeSO_4$

(Q) Gives positive FeCl₃ test

(R) Gives white precipitate with AgNO₃


(S) Reacts with aldehydes to form the corresponding

Hydrazone derivative

BM0159

[**JEE 2009**]

6. The correct statement(s) about the following sugars X and Y is(are)

(A) X is a reducing sugar and Y is a non-reducing sugar

(B) X is a non-reducing sugar and Y is a reducing sugar

(C) The glucosidic linkages in X and Y are α and β , respectively.

(D) The glucosidic linkages in X and Y are β and α , respectively

BM0160

7. Among cellulose, poly(vinyl chloride), nylon and natural rubber, the polymer in which the intermolecular force of attraction is weakest is

 (A) Nylon
 (B) Poly (vinyl chloride)
 (C) Cellulose
 (D) Natural Rubber

The following carbohydrate is

(C) an α -furanose

9. The major product of the following reaction is

	٠O	II (amyulous)
(A) a hemiacetal		(B) an acetal
(C) an ether		(D) an ester

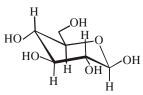
BM0163

BM0162

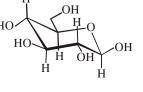
[JEE 2011]

10. Amongst the compounds given, the one that would form a brilliant coloured dye on treatment with NaNO₂ in dil. HCl followed by addition to an alkaline solution of β -naphthol is -

 $\boxed{\frac{\text{RCH}_{2}\text{OH}}{\text{H}^{\oplus}(1,1,1,1,1)}}$


[JEE 2011]

BM0164 The correct functional group X and the reagent/reaction conditions Y in the following scheme are 11. [JEE 2011]


X—(CH₂)₄—X $\xrightarrow[(ii)]{0}$ C – (CH₂)₄ – C $\xrightarrow[O]{0}$ Condensation polymer

- (A) $X = COOCH_3$, $Y = H_2 / Ni / heat$
- (B) $X = CONH_2$, $Y = H_2 / Ni / heat$
- (C) $X = CONH_2$, $Y = Br_2 / NaOH$
- (D) X = CN, $Y = H_2 / Ni / heat$

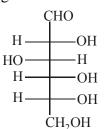
(B) an aldohexose (D) an α -pyranose

HO H	OH H	[

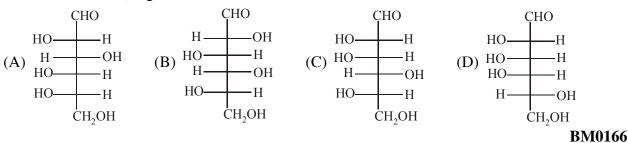
(A) $N(CH_3)_2$	
(C) NH ₂	

HCH₃

JEE-Chemistry 72


(A) a ketohexose

8.


[JEE 2011]

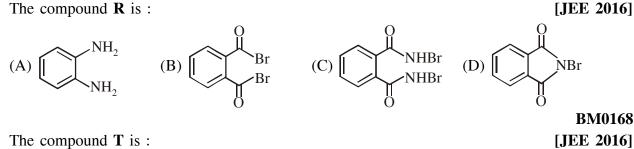
[IIT 2011]

12. The structure of D-(+)-glucose is

The structure of L(-)-glucose is


13. For 'invert sugar', the correct statement(s) is (are) : [**JEE 2016**] (Given : specific rotations of (+)-sucrose, (+)-maltose, L-(-)-glucose and L-(+)-fructose in aqueous solution are $+66^{\circ}$, $+140^{\circ}$, -52° and $+92^{\circ}$, respectively)

- (A) 'invert sugar' is prepared by acid catalyzed hydrolysis of maltose
- (B) 'invert sugar' is an equimolar mixture of D-(+) glucose and D-(-)-fructose
- (C) specific rotation of 'invert surgar' is -20°
- (D) on reaction with Br2 water, 'invert sugar' forms saccharic acid as one of the products


BM0167

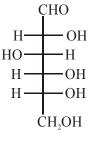
Comprehension : Q.No. 14 to 15

Treatment of compound **O** with KMnO₄ / H⁺ gave **P**, which on heating with ammonia gave **Q**. The compound Q on treatment with Br, / NaOH produced R. On strong heating, Q gave S, which on further treatmenet with ethyl 2-bromopropanoate in the presence of KOH following by acidification, gave a compound **T**.

14. The compound **R** is :

15.

(A) Glycine


(B) Alanine

(C) Valine

BM0169


(D) Serine

16. The Fischer presentation of D-glucose is given below.

D-glucose

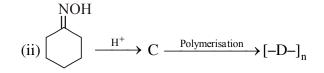
The correct structure(s) of β -L-glucopyranose is (are) :-

BM0170

17. Which of the following statement(s) is(are) true ?

[JEE 2019]

- (A) Oxidation of glucose with bromine water gives glutamic acid
- (B) The two six-membered cyclic hemiacetal forms of D-(+)-glucose ard called anomers
- (C) Hydrolysis of sucrose gives dextrorotatory glucose and laevorotatory fructose
- (D) Monosaccharides cannot be hydrolysed to give polyhydroxy aldehydes and ketones


BM0171

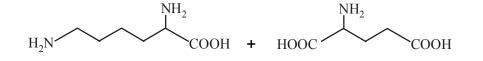
- **18.** Choose the correct option(s) from the following [JEE 2019]
 - (A) Natural rubber is polyisoprene containing trans alkene units
 - (B) Nylon-6 has amide linkages
 - (C) Cellulose has only α -D-glucose units that are joined by glycosidic linkages
 - (D) Teflon prepared by heating tetrafluoroethene in presence of a persulphate catalyst at high pressure

[**JEE 2000**]

EXERCISE # J-ADVANCED_(SUBJECTIVE)

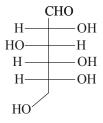
- **1.** Give the structures of the products in each of the following reactions.
 - (i) Sucrose $\xrightarrow{H^+} A + B$

BM0173


2. Aspartame, an artifical sweetener, is a peptide and has the following structure: [JEE 2001]

$$\begin{array}{c} CH_2 - C_6H_5 \\ \downarrow \\ H_2N - CH - CONH - CH - COOCH_3 \\ \downarrow \\ CH_2 - COOH \end{array}$$

- (i) Identify the four functional groups
- (ii) Write the zwitterionic structure
- (iii) Write the structures of the amino acids obtained from the hydrolysis of aspartame
- (iv) Which of the two amino acids is more hydrophobic?


BM0174

3. Following two amino acids lysine and glutamine form dipeptide linkage. What are two possible dipeptides?
[JEE 2003]

BM0175

- 4. The structure of D-Glucose is as follows-
 - (a) Draw the structure of L -Glucose
 - (b) Give the reaction of L Glucose with Tollens reagent.

BM0176

[JEE 2004]

76 JEE-Chemistry

- 5. Monomer A of a polymer on ozonolysis yields two moles of HCHO and one mole of CH₃COCHO.
 (a) Deduce the structure of A. [JEE 2005]
 - (b) Write the structure of "all cis" form of polymer of compound A.

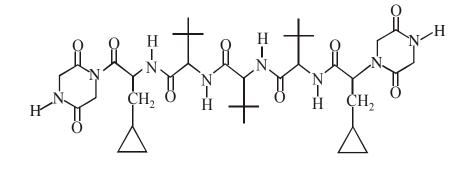
BM0177

A decapeptide (Mol. Wt. 796) on complete hydrolysis gives glycine (Mol. Wt. 75), alanine and phenylalanine. Glycine contributes 47.0% to the total weight of the hydrolysed products. The number of glycine units present in the decapeptide is [JEE 2011]

BM0178

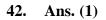
7. The substitutes \mathbf{R}_1 and \mathbf{R}_2 for nine peptides are listed in the table given below. How many of these peptides are positively charged at pH = 7.0 ? [JEE 2012]

	CH–CO–NH–CH–CO–I I R ₁ R ₂	NH–CH–COO H
Peptide	R ₁	R ₂
Ι	Н	Н
П	Н	CH ₃
ш	CH ₂ COOH	Н
IV	CH ₂ CONH ₂	$(CH_2)_4 NH_2$
V	CH ₂ CONH ₂	CH ₂ CONH ₂
VI	$(CH_2)_4 NH_2$	$(CH_2)_4 NH_2$
VII	CH ₂ COOH	CH ₂ CONH ₂
VIII	CH ₂ OH	$(CH_2)_4 NH_2$
IX	(CH ₂) ₄ NH ₂	CH ₃


8. When the following aldohexose exists in its d-configuration, the total number of stereoisomers in its pyranose form is - [JEE 2012]

```
CHO
|
CH<sub>2</sub>
|
CHOH
|
CHOH
|
CHOH
|
CHOH
```

BM0180


- 9. A tetrapeptide has -COOH group on alanine. This produces glycine (Gly), valine (Val), phenyl alanine (Phe) and alanine (Ala), on complete hydrolysis. For this tetrapeptide, the number of possible sequences (Primary structures) with -NH₂ group attached to a chiral center is [JEE 2013]
 BM0181
- 10. The total number of lone-pairs of electrons in melamine is :
 [JEE 2013]

 BM0182
- The total number of *distinct naturally occurring amino acids* obtained by complete acidic hydrolysis of the peptide shown below is : [JEE 2014]

	JEE Chemis	,		ANS	SWER M	(EY			
	EXERCISE # O-I								
1.	Ans. (C)	2.	Ans. (D)	3.	Ans. (C)	4.	Ans. (B)	5.	Ans. (C)
6.	Ans. (A)	7.	Ans. (C)	8.	Ans. (D)	9.	Ans. (C)	10.	Ans. (B)
11.	Ans. (B)	12.	Ans. (C)	13.	Ans. (C)	14.	Ans. (A)	15.	Ans. (A)
16.	Ans. (D)	17.	Ans. (D)	18.	Ans. (D)	19.	Ans. (B)	20.	Ans. (B)
21.	Ans. (D)	22.	Ans. (B)	23.	Ans. (A)	24.	Ans. (A)	25.	Ans. (C)
26.	Ans. (A)	27.	Ans. (D)	28.	Ans. (B)	29.	Ans. (B)	30.	Ans. (C)
31.	Ans. (C)	32.	Ans. (C)	33.	Ans. (D)	34.	Ans. (C)	35.	Ans. (A)
36.	Ans. (D)	37.	Ans. (B)	38.	Ans. (C)	39.	Ans. (A)	40.	Ans. (A)
41.	Ans. (B)	42.	Ans. (B)						
				EX	ERCISE # C)-II			
1.	Ans.(A,B,C,D) 2. Ans.(A,B,D)				3. Ans.(A,B,C)		4. Ans.(A,B,D)		5. Ans.(A,B,D)
6.	Ans.(A,B,C)		7. Ans.(B,	C)	8. Ans.(A,B,C,D)		9. Ans.(A,B,C)		10. Ans.(B,D)
11.	Ans. (D)		12. Ans.(A))	13. Ans.(D)		14. Ans.(B)		15. Ans.(C)
16.	Ans.(A) \rightarrow P	, Q, S	$S; (B) \rightarrow S;$	$(C) \rightarrow$	\mathbf{R} , \mathbf{S} ; (\mathbf{D}) →	Q,R, S			
17.	Ans.(A) \rightarrow R	; (B)	\rightarrow P; (C) –	→ S ; (I	$(\mathbf{D}) \rightarrow \mathbf{Q}$				
				EX	ERCISE # S	S-I			
<u>Asse</u>	ertion Reason								
1.	Ans. (A)	2.	Ans. (A)	3.	Ans. (A)	4.	Ans. (A)	5.	Ans. (D)
6.	Ans. (B)	7.	Ans. (C)	8.	Ans. (A)	9.	Ans. (C)		
<u>Mat</u>	<u>ch the Column</u>								
10.	Ans. (A) \rightarrow S	5;(B)	$\rightarrow Q$; (C) -	→ P ; ($\mathbf{D}) \rightarrow \mathbf{R}$				
11.	Ans. (A) \rightarrow (),S;	$(B) \rightarrow Q, R$	R, S ; (O	$C) \rightarrow P, R, T$, U (D)	\rightarrow P, S, T, U	J	
12.	Ans. (A) \rightarrow P	P, Q,]	$\mathbf{R};(\mathbf{B})\to\mathbf{P};$; (C) →	→ P,S; (D) →	• P, Q, I	R		
13.	Ans. (A) \rightarrow (), R ($\mathbf{B}) \rightarrow \mathbf{P}, (\mathbf{C})$	→S; (l	D) →T				
14.	Ans. (A)→P,	Q, R	; (B) \rightarrow S;	(C)→R	$A; (D) \rightarrow P, O$	Q, S			
15.	Ans. (A) \rightarrow S	5-W ($\mathbf{B}) \rightarrow \mathbf{P} \mathbf{-} \mathbf{Y}, \mathbf{R}$	-X (C)	→Q-Z				
<u>Subj</u>	iective Type :								
16.	Ans. (3.25)								

•								Bio	molecules	79
•]	EXER	CISE # J-	MAIN				
1.	Ans. (2)	2.	Ans. (2)	3.	Ans. (4)	4.	Ans. (3)	5.	Asn. (3)	
6.	Ans. (3)	7.	Ans. (3)	8.	Ans. (4)	9.	Ans. (1)	10.	Ans. (1)	
11.	Ans. (1)	12.	Ans. (1)	13.	Ans. (4)	14.	Ans. (2)	15.	Ans. (1)	
16.	Ans. (4)	17.	Ans. (1)	18.	Ans. (4)	19.	Ans. (2)	20.	Ans. (4)	
21.	Ans. (4)	22.	Ans.(2)	23.	Ans.(3)	24.	Ans. (1)	25.	Ans. (3)	
26.	Ans. (2)	27.	Ans.(1)	28.	Ans.(4)	29.	Ans.(2)	30.	Ans.(4)	
31.	Ans. (2)	32.	Ans. (2)	33.	Ans. (1)	34.	Ans.(1)	35.	Ans. (1)	
36.	Ans. (1)	37.	Ans. (1)	38.	Ans. (2)	39.	Ans. (4)	40.	Ans. (3)	
41.	Ans. (2)									
Sol.	TT									
	O=C /H			СООН						
	Н — ОН		Н-	-OF	I					
	НО —— Н		→ HO-	н						
	Н — ОН	В	$H - H_2O$	-OF	ł					
	Н — ОН		Н-	-OF	ł					
	_ _{OH}			_ _{OH}						
	D-glucose		C	dluconic	acid					

Sol. (i) Riboflavin \longrightarrow (c) Cheilosis

HNO₃

- (ii) Thiamine \longrightarrow (a) Beriberi
- (iii) Pyridoxin \longrightarrow (d) Convulsions
- (iv) Ascorbic acid \longrightarrow (b) Scurvy
- 43. Ans. (3)
- **Sol.** Two monomers in maltose are α -D-glucose & α -D-glucose.
- 44. Ans. (4)
- **Sol.** Alanine does not show Biuret test because Biuret test is used for deduction of peptide linkage & alanine is amino acid.

Albumine is protein so have paptide linkage so it gives positive Biuret test.

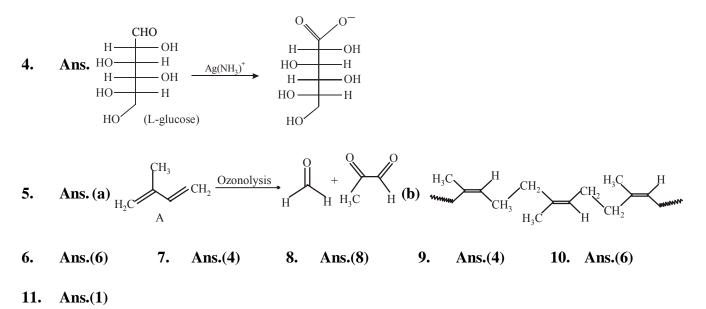
(non-reducing)

COOH

• нно**—**

> н н —

-OH


H — OH COOH Saccharic acid

— Н — ОН

Positive Barfoed test is shown by monosaccharide but not disaccharide. Positive Molisch's test is shown by glucose.

		E	XERCISE #	ŧ J-A	DVANCE	D_(OB	BJECTIVE	2)				
1.	Ans.(D)	2.	Ans.(A) \rightarrow H	P, S ;	$(\mathbf{B}) \to \mathbf{Q}, \mathbf{R}$	$(C) \rightarrow$	P, R ; (D) →	• S				
3.	Ans.(A) \rightarrow P	, S ; ($\mathbf{B}) \rightarrow \mathbf{Q}; (\mathbf{C})$	→Q,	R, S ; (D) –	→ Q, R		4.	Ans.(A)			
5.	Ans.(A) \rightarrow R	, S ; ($(B) \rightarrow P, Q; ($	C) →	P, Q, R ; (D	$P) \rightarrow P, S$	8	6.	Ans.(B,C)			
7.	Ans.(D)	8.	Ans.(B)	9.	Ans.(B)	10.	Ans.(C)	11.	Ans.(A,B,C,D)			
12.	Ans.(A)	13.	Ans.(B,C)	14.	Ans.(A)	15.	Ans.(B)	16.	Ans.(D)			
17.	Ans.(B,C,D)	18.	Ans.(B,D)									
		EX	XERCISE #	EXERCISE # J-ADVANCED (SUBJECTIVE)								

2. Ans. (i) Amine, carboxylic acid, Amide, Ester

