RACE #19		STC	ICHIOMETRY	CHEMISTRY		
Mixi	ing of solutions					
1.	20 mL of 0.2 MAl ₂	$(SO_4)_3$ is mixed with 30 ml	L of 0.6 M BaCl ₂ . Calcula	te the mass of $BaSO_4$ formed in solution.		
	$BaCl_2 + Al_2(SO_4)_3$	$\rightarrow BaSO_4 + AlCl_3$				
2.	300 ml of 3.0 M NaCl solution is added to 200 ml of 4.0 M $BaCl_2$ solution. The concentration of Cl ⁻ ions in th resulting solution is					
	(A) 7 M	(B) 6 M	(C) 5.5 M	(D) 5 M		
3.				so that in resulting solution the concentration		
	of positive ion is 40% lesser than concentration of negative ion. Assuming total volume of solution 1000 ml.					
	(A) 400 ml NaCl, 600 ml CaCl, (B) 600 ml NaCl, 400 ml CaCl,					
	(C) 800 ml NaCl, 200 ml CaCl ₂ (D) None of these					
1.	Assuming complete precipitation of AgCl, calculate the sum of the molar concentration of all the ions if 2 L of MAg_2SO_4 is mixed with 4 L of 1 M NaCl solution is					
	(A) 4 M	(B) 2 M	(C) 3 M	(D) 2.5M		
5.		volume of 0.40 M Ba(OH) the molarity of the OH ⁻ io	o 50.0 mL of 0.30 M NaOH solution to ge			
	(A) 33 mL	(B) 66 mL	(C) 133 mL	(D) 100 mL		
) .	How many grams of sodium dichromate, $Na_2Cr_2O_7$, should be added to a 50.0mL volumetric flask to prepare 0.025 N $Na_2Cr_2O_7$ when the flask is filled to the mark with water ?					
•	Calculate molarity	of NaOH in a solution mad	e by mixing 2 lit. of 1.5 M	NaOH, 3 lit. of 2M NaOH and 1 lit. wate		
8.	How would you prepare exactly 3.0 litre of 1.0 M NaOH by mixing proportions of stock solution of 2.50 M NaO and 0.40 M NaOH. No water is to be used. Find the ratio of the volume (v_1/v_2) .					
).	The concentration of H_2SO_4 in a solution which has a density 1.2 g /ml. and mass percent of H_2SO_4 is 9.8%, is					
	(A) 9.8 M	(B) 1.2 M	(C) 0.6 M	(D) 1.8 M		
0.	What volume of 0.250 MHNO_3 (nitric acid) reacts with 50mL of $0.150 \text{MNa}_2\text{CO}_3$ (sodium carbonate) in the followin reaction ?					
	$2\text{HNO}_3(\text{aq}) + \text{Na}_2\text{CO}_3(\text{aq}) \rightarrow 2\text{NaNO}_3(\text{aq}) + \text{H}_2\text{O}(l) + \text{CO}_2(\text{g})$					
1.	20 ml of $0.2 \text{ M Al}_2(\text{SO}_4)_3$ is mixed with 20 ml of 0.6 M BaCl_2 . Concentration of Al ³⁺ ion in the solution will be					
	(A) 0.2 M	(B) 10.3 M	(C) 0.1 M	(D) 0.25 M		
12.	5 g of K_2SO_4 was dissolved in water to prepare 250 mL of solution. What volume of this solution should be used s that 2.33 g of $BaSO_4$ may be precipitated from $BaCI_2$ solution.					
	$K_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2KCl$					
	(A) 87 mL	(B) 174 mL	(C) 8.7 mL	(D) 17.4 mL		
EUD	DIOMETRY					
3. $C_6H_5OH(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(l)$						
	Magnitude of volume change if 30 ml of C_6H_5OH (g) is burnt with excess amount of oxygen, is					
	(A) 30 ml	(B) 60 ml	(C) 20 ml	(D) 10 ml		
14.	. ,					
-70	10 ml of a compound containing 'N' and 'O' is mixed with 30 ml of H_2 to produce $H_2O(l)$ and 10 ml of $N_2(g)$. Molecular formula of compound if both reactants reacts completely, is					
	$(A) N_2 O$	(B) NO ₂	(C) N_2O_3	(D) N_2O_5		

15. When 20 ml of mixture of O₂ and O₃ is heated, the volume becomes 29 ml and disappears in alkaline pyragallol solution. What is the volume precent of O_2 in the original mixture? (A) 90% (B) 10% (C) 18% (D) 2%

A mixture of C₂H₂ and C₃H₈ occupied a certain volume at 80 mm Hg. The mixture was completely burnt to CO₂ and 16. $H_2O(l)$. When the pressure of CO_2 was found to be 230 mm Hg at the same temperature and volume, the fraction of C_2H_2 in mixture is (A) 0.125 (C) 0.87 (D) 0.25 (B) 0.5

17. 20 mL of a mixture of CO and H₂ were mixed with excess of O₂ and exploded & cooled. There was a volume contraction of 23 mL. All volume measurements corresponds to room temperature (27°C) and one atmospheric pressure. Determine the volume ratio $V_1 : V_2$ of CO and H_2 in the original mixture (B) 5 : 15 (C) 9:11 (A) 6.5 : 13.5 (D) 7 : 13

18. The % by volume of C_4H_{10} in a gaseous mixture of C_4H_{10} , CH_4 and CO is 40. When 200 ml of the mixture is burnt in excess of O₂. Find volume (in ml) of CO₂ produced.

(A) 220 (B) 340 (C) 440 (D) 560

COMPREHENSION

A 10 ml mixture of N₂, a alkane & O₂ undergo combustion in Eudiometry tube. There was contraction of 2 ml, when residual gases are passed through KOH. To the remaining mixture comprising of only one gas excess H₂ was added & after combustion the gas produced is absorbed by water, causing a reduction in volume of 8 ml.

19.	Gas produced after introduction of H_2 in the mixture ?						
	(A) H ₂ O	(B) CH ₄	$(C) CO_2$	(D) NH ₃			
20.	Volume of N_2 present in the mixture?						
	(A) 2 ml	(B) 4 ml	(C) 6 ml	(D) 8 ml			
21.	Volume of O ₂ remained after the first combustion?						
	(A) 4 ml	(B) 2 ml	(C) 0 ml	(D) 8 ml			
22.	Identify the hydrocarbon.						
	(A) CH ₄	(B) $C_2 H_6$	$(C) C_{3}H_{8}$	(D) $C_4 H_{10}$			

Answers

1. 2.79 2. (D) 3. (D) 4. **(B)** 5. (A) 6. 0.3275 7. 1.5 M 8. 0.34 9. 12. **(B)** (B) 10. 60 ml11. (A) (A) 13. 14. (C) **15.** (B) 16. (C) **17.** (D) 18. (C) **19.** 21. (\mathbf{C}) 22. (D) 20. **(B)** (A)