DPP No. 15

SYLLABUS: UNIT & DIMENSIONS & MEASUREMENT ERROR AND EXPERIMENTS

1.	Which of the following sets can't enter into the list of fundamental quantities in any system of units?						
	(A) length, mass and	velocity	(B) length, time and velocity				
	(C) mass, time and velocity		(D) length, time and mass				
2.	A dimensionless qua	ntity					
	(A) never has a unit	(B) always has a unit	(C) may have a unit	(D) does not exist			
3.	Which pair of following	ng quantities has dimer	nsions different from ea	ach other.			
	(A) Impulse and linea	ar momentum	(B) Plank's constant	and angular momentum			
	(C) Moment of inertia	and moment of force	(D) Young's modulus and pressure				
4.	The velocity of water waves may depend on their wavelength λ , the density of water ρ and the						
	acceleration due to	gravity g. The method	d of dimensions gives	the relation between these			
	quantities as						
	(A) $v^2 = k\lambda^{-1} g^{-1} \rho^{-1}$	(B) $v^2 = k g \lambda$	(C) $v^2 = k g \lambda \rho$	(D) $v^2 = k \lambda^3 g^{-1} \rho^{-1}$			
	where k is a dimensionless constant						
5.	The value of G = 6.6	$7 \times 10^{-11} \text{ N m}^2 (\text{kg})^{-2} . \text{ I}$	ts numerical value in 0	CGS system will be :			
	(A) 6.67×10^{-8}	(B) 6.67×10^{-6}	(C) 6.67	(D) 6.67×10^{-5}			
6.	Force applied by water stream depends on density of water (ρ), velocity of the stream (v) and						
	cross-sectional area of the stream (A). The expression of the force can be						
	(Α) ρΑν	(B) $\rho A v^2$	(C) $\rho^2 A v$	(D) $\rho A^2 v$			
7.	If unit of length and time is doubled, the numerical value of 'g' (acceleration due to gravity) wil						
	be:						
	(A) doubled	(B) halved	(C) four times	(D) remain same			
8.	Force F is given in te	rms of time t and dista	nce x by				
	F = A sin C t + B cos D x						
	Then the dimensions of $\frac{A}{B}$ and $\frac{C}{D}$ are given by						
	(A) MLT^{-2} , $M^0L^0T^{-1}$	(B) MLT^{-2} , $M^0L^{-1}T^0$	(C) $M^0L^0T^0$, $M^0L^1T^{-1}$	(D) $M^0L^1T^{-1}$, $M^0L^0T^0$			
9.	What are the dimensions of electrical resistance?						
	(A) $ML^2 T^{-2} A^2$	(B) $ML^2 T^{-3} A^{-2}$	(C) $ML^2 T^{-3} A^2$	(D) $ML^2 T^{-2}A^{-2}$			

	(A) 410	(B) 40	(C) 640	(D) 16				
19.	If speed (V), accelerat	ion (A) and force (F) a	re considered as funda	mental units, the dimension of				
	Young's modulus will be	oung's modulus will be :						
	(A) $V^{-4}A^2F$	(B) $V^{-2}A^2F^{-2}$	(C) $V^{-4}A^{-2}F$	(D) $V^{-2}A^2F^2$				
20.	Let ℓ , r, c and v represent inductance, resistance, capacitance and voltage, respectively. The dimension							
	of $\frac{\ell}{\text{rcv}}$ in SI units will be	of $\frac{\ell}{rcv}$ in SI units will be :						
	(A) [LT ²]	(B) [LA ⁻²]	(C) [LTA]	(D) $[A^{-1}]$				
21.	Amount of solar energy received on the earth's surface per unit area per unit time is defined							
	solar constant. Dimension of solar constant is							
	(A) ML^2T^{-2}	(B) MLT ⁻²	(C) $M^2L^0T^{-1}$	(D) ML^0T^{-3}				
22.	The workdone by a gas molecule in an isolated system is given by, $W = \alpha \beta^2 e^{-\frac{x^2}{\alpha k T}}$, where x is							
	the displacement, k is the Boltzmann constant and T is the temperature, α and β are							
	constants. Then the							
	(A) $[M L^2 T^{-2}]$	(B) [M L T ⁻²]	(C) $[M^2 L T^2]$	(D) [M ⁰ L T ⁰]				

The density of a material in SI units is 128 kgm⁻³. In certain units in which the units of length is 25 cm

and the unit of mass is 50 g, the numerical value of density of the material is :

18.

ANSWER KEY									
1.	(B)	2.	(C)	3.	(C)	4.	(B)	5.	(A)
6.	(B)	7.	(A)	8.	(C)	9.	(B)	10.	(C)
11.	(A)	12.	(ABC)	13.	(ABD)	14.	(ABC)	15.	(D)
16.	(B)	17.	(B)	18.	(B)	19.	(A)	20.	(D)
21.	(D)	22.	(B)						