Chapter 1

Relations and Functions

Exercise 1.2

Q. 1

Show that the function f: $R^* \rightarrow R^*$ defined by $f(x) = \frac{1}{2}$ is one-one and onto, where R^* is the set of all non-zero real numbers. Is the result true, if the domain R^* is replaced by N with co-domain being same as R^* ?

Answer:

It is given that f: $\mathbb{R}^* \to \mathbb{R}^*$ defined by $f(x) = \frac{1}{2}$

check for one-one:

For a function to be one-one, if f(x) = f(y) then x = y. f(x) = f(y)

$$=\frac{1}{x}=\frac{1}{y}$$

 \Rightarrow Therefore, f is one – one.

We can see that $y \in R$, there exists $x = \frac{1}{y} \in R$, such that

$$= f(x) = \frac{1}{\left(\frac{1}{y}\right)} = y$$

 \Rightarrow f is onto.

Therefore, function f is one-one and onto.

Now, let us consider g: $N \rightarrow R^*$ defined by

 $=g(x)=\frac{1}{x}$

Then, we get

 $\frac{1}{x_1} = \frac{1}{x_2}$

 $\Rightarrow x_1 = x_2$

 \Rightarrow g is one-one.

It can be observed that g is not onto as for $1.2 \in \mathbb{R}$ there does not exist any x in N such that

$$= g(x) = \frac{1}{1.2}$$

Therefore, function g is one -one but not onto.

Q. 2 A

Check the infectivity and surjectivity of the following functions:

f: N
$$\rightarrow$$
 N given by f (x) = x²

Answer:

It is given that f: N \rightarrow N given by f (x) = x²

We can see that for x, $y \in N$,

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{y})$$

 $\Rightarrow x^2 = y^2$

$$\Rightarrow$$
 x = y

 \Rightarrow f is injective.

Now, let $2 \in N$. But, we can see that there does not exists any x in N such that

 $f(x) = x^2 = 2$

 \Rightarrow f is not surjective.

Therefore, function f is injective but not surjective

Q. 2 B

Check the injectivity and surjectivity of the following functions:

f: $Z \rightarrow Z$ given by f (x) = x2

Answer:

It is given that f: $Z \rightarrow Z$ given by f (x) = x²

We can see that f(-1) = f(1) = 1, but $-1 \neq 1$

 \Rightarrow f is not injective.

Now, let $-2 \in Z$. But, we can see that there does not exists any x in Z such that

$$f(x) = x^2 = -2$$

 \Rightarrow f is not surjective.

Therefore, function f is neither injective nor surjective.

Q. 2 C

Check the injectivity and surjectivity of the following functions:

f: R \rightarrow R given by f (x) = x²

Answer:

It is given that f: $R \rightarrow R$ given by $f(x) = x^2$

We can see that f(-1) = f(1) = 1, but $-1 \neq 1$

 \Rightarrow f is not injective.

Now, let $-2 \in \mathbb{R}$. But, we can see that there does not exists any x in R such that

 $f(x) = x^2 = -2$

 \Rightarrow f is not surjective.

Therefore, function f is neither injective nor surjective.

Q. 2 D

Check the injectivity and surjectivity of the following functions:

f: N \rightarrow N given by f (x) = x³

Answer:

It is given that f: N \rightarrow N given by f (x) = x³

We can see that for x, $y \in N$,

$$f(x) = f(y)$$

$$\Rightarrow x^{3} = y^{3}$$

$$\Rightarrow x = y$$

 \Rightarrow f is injective.

Now, let $2 \in N$. But, we can see that there does not exists any x in N such that

 $f(x) = x^3 = 2$

 \Rightarrow f is not surjective.

Therefore, function f is injective but not surjective.

Q. 2 E

Check the injectivity and surjectivity of the following functions:

f: Z \rightarrow Z given by f (x) = x³

Answer:

It is given that f: $Z \rightarrow Z$ given by f (x) = x³

We can see that for x, $y \in N$,

$$f(x) = f(y)$$

$$\Rightarrow x^3 = y^3$$

 $\Rightarrow x = y$

 \Rightarrow f is injective.

Now, let $2 \in Z$. But, we can see that there does not exists any x in Z such that

 $f(x) = x^3 = 2$

 \Rightarrow f is not surjective.

Therefore, function f is injective but not surjective.

Q. 3

Prove that the Greatest Integer Function f: $R \rightarrow R$, given by f (x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

Answer:

It is given f: $R \rightarrow R$, given by f(x) = [x]We can see that f(1.2) = [1.2] = 1f(1.9) = [1.9] = 1 $\Rightarrow f(1.2) = f(1.9)$, but $1.2 \neq 1.9$. $\Rightarrow f$ is not one- one. Now, let us consider $0.6 \in R$. We know that f(x) = [x] is always an integer. \Rightarrow there does not exist any element $x \in R$ such that f(x) = 0.6

 \Rightarrow f is not onto.

Therefore, the greatest integer function is neither one-one nor onto.

Q. 4

Show that the Modulus Function f: $R \rightarrow R$, given by f(x) = |x|, is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is -x, if x is negative.

Answer:

It is given that f:
$$R \rightarrow R$$
, given by $f(x) = |x|$

```
We can see that f(-1) = |-1| = 1, f(1) = |1| = 1
```

$$\Rightarrow f(-1) = f(1), \text{ but } -1 \neq 1.$$

 \Rightarrow f is not one-one.

Now, we consider $-1 \in \mathbb{R}$.

We know that f(x) = |x| is always positive

Therefore, there doesn't exist any element x in domain R such that f(x) = |x| = -1

 \Rightarrow f is not onto.

Therefore, modulus function is neither one-one nor onto.

Q. 5

Show that the Signum Function f: $R \rightarrow R$, given by

$$f(x) = \begin{cases} 1, & if \ x > 0 \\ 0, & if \ x = 0 \\ -1, & if \ x < 0 \end{cases}$$

is neither one-one nor onto.

Answer:

It is given that f: $R \rightarrow R$, given by

$$f(x) = \begin{cases} 1, & if \ x > 0 \\ 0, & if \ x = 0 \\ -1, & if \ x < 0 \end{cases}$$

We can have observed that $f(1) = f(2) = but 1 \neq 2$.

Thus, f is not one – one.

Now, as f (x) takes only 3 values (1, 0, -1) for the element -2 in codomain R, there exists any x in domain R such that f(x) = -2

Thus, f is not onto.

Therefore, the Signum function is neither one-one nor onto.

Q. 6

Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one.

Answer:

It is given that $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$

f: A \rightarrow B is defined as f = {(1, 4), (2, 5), (3, 6)}

Therefore, f(1) = 4, f(2) = 5, f(3) = 6We can see that the images of distinct elements of A under f are distinct.

Therefore, function f is one- one.

Q. 7 A

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

f: R \rightarrow R defined by f (x) = 3 - 4x

Answer:

It is given that f: $R \rightarrow R$ defined by f (x) = 3 - 4x

Let $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$

 \Rightarrow 3 - 4x₁ = 3 - 4x₂

 \Rightarrow -4x₁ = -4x₂

 $\Rightarrow x_1 = x_2$

 \Rightarrow f is one- one

For any real number (y) in R, there exist $\frac{3-y}{4}$ in R such that

$$f\left(\frac{3-y}{4}\right) = 3 - 4\left(\frac{3-y}{4}\right)$$

 \Rightarrow f is onto.

Therefore, function f is bijective.

Q. 7 B

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

f: R \rightarrow R defined by f (x) = 1 + x₂

Answer:

It is given that f: $R \rightarrow R$ defined by $f(x) = 1 + x_2$

Let $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$

$$= 1 + x_1^2 = 1 + x_2^2$$

$$=x_1^2 = x_1^2$$

 $= \mathbf{x}_1 = \mathbf{\pm} \mathbf{x}_2$

Now, f(1) = f(-1) = 2

$$\Rightarrow$$
 f (x1) = f (x2) which does means that x1 = x2

$$\Rightarrow$$
 f is not one – one

Now consider an element -2 in co- domain R.

We can see that $f(x) = 1 + x_2$ is always positive.

 \Rightarrow there does not exist any x in domain R such that f(x) = -2

 \Rightarrow F is not onto.

Therefore, function f is neither one-one nor onto.

Q. 8 Let A and B be sets. Show that f: $A \times B \rightarrow B \times A$ such that f (a, b) = (b, a) is bijective function.

Answer:

It is given that f: $A \times B \rightarrow B \times A$ is defined as f (a, b) = (b, a)

Now let us consider (a_1, b_1) , $(a_2, b_2) \in A \times B$

Such that $f(a_1, b_1) = f(a_2, b_2)$

 $\Rightarrow (\mathbf{b}_1, \mathbf{a}_1) = (\mathbf{b}_2, \mathbf{a}_2)$

 \Rightarrow b₁ = b₂ and a₁ = a₂

$$\Rightarrow (\mathbf{a}_1, \mathbf{b}_1) = (\mathbf{a}_2, \mathbf{b}_2)$$

 \Rightarrow f is one-one.

Now, let $(b, a) \in B \times A$ be any element.

Then, there exists $(a, b) \in A \times B$ such that f(a, b) = (b, a)

 \Rightarrow f is onto.

Therefore, f is bijective.

Q. 9

Let $f: N \to N$ be defined by

$$f(n) = \begin{cases} \frac{n+1}{2}, & if \ n \ is \ odd \\ for \ all \ n \ \in N \\ \frac{n}{2}, & if \ n \ is \ even \end{cases}$$

State whether the function f is bijective. Justify your answer.

Answer:

It is given that

f: $N \rightarrow N$ be defined by

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ f \text{ or all } n \in N \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

We can have observed that:

$$f(1) = \frac{1+1}{2} = 1$$
 and $f(2) = \frac{2}{2} = 1$ (by using the definition of f)
Thus, $f(1) = f(2)$, where $1 \neq 2$.

Therefore, f is not one-one.

Now, let us consider a natural number (n) in co domain N.

Case I: When n is odd.

Then, n = 2r + 1 for some $r \in N$.

 \Rightarrow there exist $4r + 1 \in \mathbb{N}$ such that $f(4r+1) = \frac{4r+1+1}{2} = 2r + 1$

Case II: When n is even.

Then, n = 2r for some $r \in N$.

 \Rightarrow there exist $4r \in N$ such that $f(4r) = \frac{4r}{2} = 2r$

Therefore, f is onto.

 \Rightarrow Function f is not one-one but it is onto.

Thus, Function f is not bijective function.

Q. 10

Let A = R - {3} and B = R - {1}. Consider the function f: A \rightarrow B defined by f (x) = $\left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer. Answer: It is given that $A = R - \{3\}$ and $B = R - \{1\}$ f: $A \rightarrow B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$ Now, let x, y \in A such that f(x) = f(y) $\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$ $\Rightarrow (x - 2) (y - 3) = (y - 2) (x - 3)$ \Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x +6 \Rightarrow -3x - 2y = -3y - 2x $\Rightarrow x = y$ \Rightarrow f is one -one. Let $y \in B = R - \{1\}$ Then, $y \neq 1$. The function f is onto if there exist $x \in A$ such that f(x) = yNow, f(x) = y

 $\frac{x-2}{x-3} = y$ $\Rightarrow x - 2 = xy - 3y$ $\Rightarrow x(1-y) = -3y + 2$ $\Rightarrow x = \frac{2-3y}{1-y} \in A$ $\Rightarrow y \in B, \text{ there exists } \frac{2-3y}{1-y} \in A \text{ such that}$ $\Rightarrow \left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right)}{\left(\frac{2-3y}{1-y}\right)} = \frac{2-3y-3+2y}{2-3y-3+3y} = \frac{-y}{-1}$ \Rightarrow f is onto.

Therefore, function f is one- one and onto.

Q. 11

Let f: R \rightarrow R be defined as $f(x) = x^4$. Choose the correct answer.

A. f is one-one onto

B. f is many-one onto

C. f is one-one but not onto

D. f is neither one-one nor onto.

Answer:

f: $R \rightarrow R$ be defined as $f(x) = x^4$.

```
Let x, y \in R such that f(x) = f(y)
```

 $\Rightarrow x^4 = y^4$

 $\Rightarrow x = y$

Therefore, $f(x_1) = f(x_2)$ which does not implies $x_1 = x_2$.

For instance, f(1) = f(-1) = 1

Therefore, f is not one-one.

Now, an element 2 in co-domain R.

We can see that there does not exist any x in domain R such that

f(x) = 2

Therefore, f is not onto.

Therefore, function f is neither one-one nor onto.

Q. 12

Let f: $R \rightarrow R$ be defined as f (x) = 3x. Choose the correct answer.

A. f is one-one onto

B. f is many-one onto

C. f is one-one but not onto

D. f is neither one-one nor onto.

Answer:

It is given that f: $R \rightarrow R$ be defined as f (x) = 3x.

Let x, y \in R such that f(x) = f(y).

 $\Rightarrow 3x = 3y$

$$\Rightarrow$$
 x = y

 \Rightarrow f is one-one.

Also, for any real number (y) in co-domain R, there exists $\frac{y}{3}$ in R such that

$$f\left(\frac{y}{3}\right) = 3\left(\frac{y}{3}\right)$$

Therefore, f is onto.

Therefore, function f is one-one and onto.