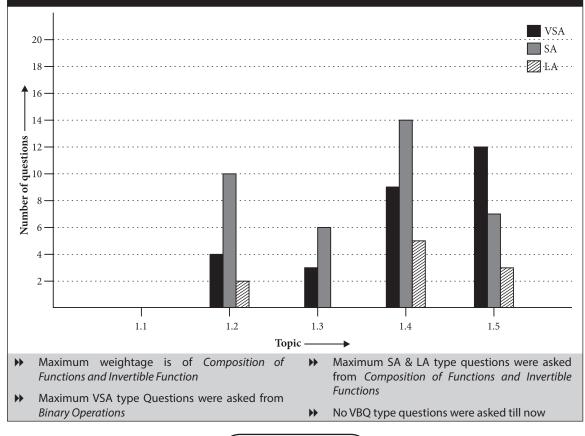
01

Relations and Functions

- 1.1 Introduction
- 1.2 Types of Relations
- 1.3 Types of Functions

- 1.4 Composition of Functions and Invertible Function
- 1.5 Binary Operations

Topicwise Analysis of Last 10 Years' CBSE Board Questions



QUICK RECAP

RELATION

Empty Relation

- A relation R from a set A to a set B is a subset of $A \times B$. So, we say $R \subseteq A \times B$. A relation from a set A to itself is called a relation in A.
- ► If no element of *A* is related to any element of *A*. Then relation *R* in *A* is called an empty relation *i.e.*, $R = \phi \subset A \times A$.

CBSE Chapterwise-Topicwise Mathematics

Universal Relation

- ▶ If each element of *A* is related to every element of *A*, then relation *R* in *A* is called universal relation *i.e.*, $R = A \times A$.
- A relation *R* in a set *A* is called
 - (i) reflexive, if $(a, a) \in R$, for all $a \in A$
 - (ii) symmetric, if $(a, b) \in R \Rightarrow (b, a) \in R$, for all $a, b \in A$
 - (iii) transitive, if $(a, b) \in R$ and $(b, c) \in R \Longrightarrow (a, c) \in R$, for all $a, b, c \in A$
- ► A relation *R* in a set *A* is called an **equivalence relation**, if it is reflexive, symmetric and transitive.
- In a relation R in a set A, the set of all elements related to any element a ∈ A is denoted by [a] i.e., [a] = {x ∈ A : (x, a) ∈ R}

Here, [a] is called an equivalence class of $a \in A$.

FUNCTION

- A relation *f* from a set *A* to a set *B* is called a function if
 - (i) for each $a \in A$, there exists some $b \in B$ such that $(a, b) \in f$ *i.e.*, f(a) = b
 - (ii) $(a, b) \in f$ and $(a, c) \in f \Longrightarrow b = c$
- A function $f: A \to B$ is called
 - (i) one-one or injective function, if distinct elements of *A* have distinct images *i.e.*, for *a*, *b* ∈ *A*, *f*(*a*) = *f*(*b*) ⇒ *a* = *b*
 - (ii) **onto or surjective function**, if for every element $b \in B$, there exists some $a \in A$ such that f(a) = b.
- A function $f: A \rightarrow B$ is called **bijective function**, if it is both one-one and onto function.

Composition of Functions

▶ Let $f: A \to B$ and $g: B \to C$ be any two functions, then the function $gof: A \to C$ defined as gof(x) = g(f(x)), for all $x \in A$, is called the composition of *f* and *g*.

Invertible Functions

- A function $f: A \to B$ is said to be invertible, if there exists a function $g: B \to A$ such that $gof = I_A$ and $fog = I_B$. Here, g is called the inverse of f.
- Also, *f* is an invertible function iff it is a bijective function.

BINARY OPERATIONS

- A function * on a set A *i.e.*, $*: A \times A \rightarrow A$ is called a binary operation *i.e.*, $a, b \in A \Rightarrow a * b \in A$
 - A binary operation \star on a set A is
 - (i) commutative, if a * b = b * a, for all $a, b \in A$
 - (ii) associative, if (a * b) * c = a * (b * c), for all $a, b, c \in A$
 - (iii) distributive over another binary operation 'o', if $a * (b \ o \ c) = (a * b) \ o \ (a * c)$, for all $a, b, c \in A$.

Identity element

An element e ∈ A is the identity element for binary operation * : A × A → A, if a * e = a = e * a, for all a ∈ A.

Invertible element

An element a ∈ A is the invertible element for binary operation * : A × A → A, if there exists a unique element b ∈ A such that a * b = e = b * a. Here, b is called the inverse of a.

2

Previous Years' CBSE Board Questions

1.2 Types of Relations

VSA (1 mark)

- 1. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, write the range of R. (AI 2014)
- 2. Let $R = \{(a, a^3) : a \text{ is a prime number less than 5}\}$ be a relation. Find the range of *R*.

(Foreign 2014)

- 3. Let *R* be the equivalence relation in the set $A = \{0, 1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : 2 \text{ divides } (a b)\}$. Write the equivalence class [0]. (Delhi 2014 C)
- 4. State the reason for the relation R in the set {1, 2, 3} given by $R = \{(1, 2), (2, 1)\}$ not to be transitive. (*Delhi 2011*)

SA (4 marks)

- 5. Let $A = \{1, 2, 3, ..., 9\}$ and R be the relation in $A \times A$ defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2, 5)]. (Delhi 2014)
- 6. Let *R* be a relation defined on the set of natural numbers *N* as follow : $R = \{(x, y) \mid x \in N, y \in N \text{ and } 2x + y = 24\}$ Find the domain and range of the relation *R*. Also, find if *R* is an equivalence relation or not. (*Delhi 2014 C*)
- 7. Show that the relation *S* in the set R of real numbers defined as $S = \{(a, b) : a, b \in \mathbb{R} \text{ and } a \le b^3\}$ is neither reflexive, nor symmetric, nor transitive. (*Delhi 2010*)
- 8. Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b) : a, b \in Z and (a b) is divisible by 5\}$. Prove that R is an equivalence relation. (Delhi 2010)
- 9. Show that the relation *S* in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $S = \{(a, b) : a, b \in Z, |a - b| \text{ is divisible by 4}\}$ is an equivalence relation. Find the set of all elements related to 1. (AI 2010)

- **10.** Show that the relation *R* defined by (a, b) R(c, d) $\Rightarrow a + d = b + c$ on the set $N \times N$ is an equivalence relation. (AI 2010, 2008)
- 11. Let $f: X \to Y$ be a function, define a relation R on X given by $R = \{(a, b) : f(a) = f(b)\}$. Show that R is an equivalence relation on X.

(AI 2010 C)

- **12.** Prove that the relation *R* in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a b| \text{ is even}\}$, is an equivalence relation. (*Delhi 2009*)
- **13.** Check whether the relation *R* defined in the set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b) : b = a + 1\}$ is reflexive, symmetric or transitive. (*AI 2007*)

LA (6 marks)

- 14. Let *N* denote the set of all natural numbers and *R* be the relation on $N \times N$ defined by (a, b) R(c, d) if ad(b + c) = bc(a + d). Show that *R* is an equivalence relation. (*Delhi 2015*)
- **15.** Show that the relation *R* in the set $A = \{1,2,3,4,5\}$ given by $R\{(a, b) : |a b| \text{ is divisible by } 2\}$ is an equivalence relation. Write all the equivalence classes of *R*. (AI 2015 C)

1.3 Types of Functions

VSA (1 mark)

- **16.** Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from *A* to *B*, state whether *f* is one-one or not. (*AI 2011*)
- 17. What is the range of the function $f(x) = \frac{|x-1|}{(x-1)}$? (Delhi 2010)
- **18.** State whether the function $f: N \rightarrow N$ given by f(x) = 5x is injective, surjective or both. (AI 2008 C)

SA (4 marks)

19. Show that $f: N \to N$, given by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \\ & \text{is both one-one and onto.} \end{cases}$ (AI 2012)

CBSE Chapterwise-Topicwise Mathematics

20. Let
$$f: N \to N$$
 be defined by

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$
for all $n \in N$

Find whether the function f is bijective. (*Delhi 2012 C, AI 2009*)

- **21.** If $f : R \to R$ be the function defined by $f(x) = 4x^3 + 7$, show that *f* is a bijection. (Delhi 2011 C)
- 22. Show that the function $f: W \to W$ defined by $f(n) = \begin{cases} n+1, \text{ if } n \text{ is even} \\ n-1, \text{ if } n \text{ is odd} \\ \text{ is a bijective function.} \end{cases}$ (AI 2011 C)
- **23.** Show that the function $f : R \to R$ given by f(x) = ax + b, where $a, b \in R, a \neq 0$ is a bijective function. (*Delhi 2010 C*)

1.4 Composition of Functions and Invertible Function

VSA (1 mark)

- **24.** Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down *gof*. (AI 2014 C)
- **25.** If $f : R \to R$ defined as $f(x) = \frac{2x-7}{4}$ is an invertible function, write $f^{-1}(x)$. (*Delhi 2012 C, 2008 C*)
- **26.** If $f: R \to R$ is defined by $f(x) = (3 x^3)^{1/3}$, then find *fof*(*x*). (AI 2010)
- 27. If $f: R \to R$ is defined by f(x) = 3x + 2, find f(f(x)). (Delhi 2010 C)
- **28.** If the function $f: R \to R$, defined by f(x) = 3x 4, is invertible, find f^{-1} . (AI 2010C)
- **29.** If $f : R \to R$ defined by $f(x) = \frac{3x+5}{2}$ is an invertible function, find f^{-1} . (AI 2009 C)
- **30.** If f(x) = x + 7 and g(x) = x 7, $x \in R$, find (*fog*) (7). (*Delhi 2008*)

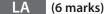
31. If
$$f: R \to R$$
 is defined by
 $f(x) = x^2 - 3x + 2$, find $f(f(x))$. (AI 2007)

SA (4 marks)

- 32. If the function $f : R \to R$ be given by f(x)= $x^2 + 2$ and $g : R \to R$ be given by $g(x) = \frac{x}{x-1}, x \neq 1$, find fog and gof and hence find fog (2) and gof (-3). (AI 2014)
- **33.** Let $f: W \to W$, be defined as f(x) = x 1, if x is odd and f(x) = x + 1, if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers. (*Foreign 2014*)
- 34. Let $A = R \{3\}$, $B = R \{1\}$. Let $f : A \to B$ be defined by $f(x) = \left(\frac{x-2}{x-3}\right)$, for all $x \in A$. Then show that *f* is bijective. Hence find $f^{-1}(x)$. (*Delhi 2014 C, 2012*)
- **35.** Let $f, g : R \to R$ be two functions defined as f(x) = |x| + x and g(x) = |x| x, for all $x \in R$. Then find *fog* and *gof*. (AI 2014 C)
- **36.** Show that the function f in $A = R \left\{\frac{2}{3}\right\}$ defined as $f(x) = \frac{4x+3}{6x-4}$ is one-one and onto. Hence find f^{-1} . (*Delhi 2013*)
- **37.** Consider $f: R_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that *f* is invertible with the inverse f^{-1} of *f* given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers. (AI 2013)
- **38.** Let $A = R \{2\}$ and $B = R \{1\}$. If $f: A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, show that *f* is one-one and onto. Hence find f^{-1} . (*Delhi 2013 C*)
- **39.** Let $A = R \{3\}$ and $B = R \{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is *f* one-one and onto ? Justify your answer. (AI 2012C)
- **40.** Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $gof = fog = I_R$. (AI 2011)

- 41. If the function $f: R \to R$ is given by $f(x) = \frac{x+3}{2}$ and $g: R \to R$ is given by g(x) = 2x - 3. Find (i) fog and (ii) gof. Is $f^{-1} = g$? (*Delhi 2009 C*)
- 42. If $f : R \to R$ and $g : R \to R$ are defined respectively as $f(x) = x^2 + 3x + 1$ and g(x) = 2x - 3. Find (a) fog (b) gof. (AI 2009 C, 2008)
- **43.** If *f* be a greatest integer function and *g* be an absolute value function, find the value of

$$(fog)\left(\frac{-3}{2}\right) + (gof)\left(\frac{4}{3}\right).$$
 (Delhi 2007)



- **44.** Let $f : N \to N$ be a function defined as $f(x) = 9x^2 + 6x 5$. Show that $f : N \to S$, where *S* is the range of *f*, is invertible. Find the inverse of *f* and hence find $f^{-1}(43)$ and $f^{-1}(163)$.
 - (Delhi 2016)
- **45.** If $f, g : R \to R$ be two functions defined as f(x) = |x| + x and g(x) = |x| x, $\forall x \in R$. Then find *fog* and *gof*. Hence find *fog* (-3), *fog* (5), and *gof* (-2). (Foreign 2016)
- 46. Consider $f: R_+ \to [-9, \infty]$ given by $f(x) = 5x^2 + 6x - 9$. Prove that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{54+5y}-3}{5}\right)$. (AI 2015)
- **47.** Let $f : N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, where *S* is the range of *f*, is invertible. Also find the inverse of *f*. (*Foreign 2015, AI 2013 C*)

1.5 Binary Operations

VSA (1 mark)

- **48.** Let * be a binary operation on the set of all non-zero real numbers, given by $a * b = \frac{ab}{5}$ for all $a, b \in R - \{0\}$. Find the value of x, given that 2 * (x * 5) = 10. (*Delhi 2014*)
- **49.** Let $*: R \times R \rightarrow R$, given by $(a, b) \rightarrow a + 4b^2$ is a binary operation. Compute (-5) * (2 * 0). (AI 2014 C)

- **50.** Let * be a binary operation on *N* given by a * b = L.C.M.(a, b) for all $a, b \in N$. Find 5 * 7. (*Delhi 2012*)
- **51.** The binary operation $* : R \times R \rightarrow R$, is defined as a * b = 2a + b. Find (2 * 3) * 4. (AI 2012)
- **52.** If the binary operation * on the set of integers *Z*, is defined by $a * b = a + 3b^2$, then find the value of 8 * 3. (*AI 2012 C*)
- **53.** Let * be a binary operation defined on the set of integers by a * b = 2a + b - 3. Find 3 * 4. (*Delhi 2011 C, AI 2008*)
- 54. Let * be a binary operation defined by a * b = 3a + 4b - 2. Find 4 * 5. (AI 2011 C, Foreign 2008)
- **55.** If the binary operation * on the set of integers *Z* is defined by $a * b = a + 3b^2$, then find the value 2 * 4. (*Delhi 2009*)
- **56.** Let * be a binary operation on *N* given by $a * b = \text{H.C.F.}(a, b); a, b \in N$. Write the value of 22 * 4. (AI 2009)
- 57. Let * be a binary operation on set Q of rational numbers defined as $a * b = \frac{ab}{5}$, write the identity for *, if any. (Delhi 2009 C)

SA (4 marks)

- 58. Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b − ab, for all a, b ∈ S.
 Prove that
 - (i) * is a binary operation on S.
 - (ii) * is commutative as well as associative.

(Delhi 2014 C)

- **59.** Consider the binary operations $* : R \times R \rightarrow R$ and $o : R \times R \rightarrow R$ defined as a * b = |a - b| and $a \circ b = a$ for all, $a, b \in R$. Show that '*' is commutative but not associative, 'o' is associative but not commutative. (*AI 2012*)
- 60. Consider the binary operation * on the set {1, 2, 3, 4, 5} defined by a * b = min (a, b). Write the operation table of the operation *.

(Delhi 2011)

61. A binary operation * on the set {0, 1, 2, 3, 4, 5} is defined as :

 $a \star b = \begin{cases} a+b \quad , & \text{if} \quad a+b < 6 \\ a+b-6 \, , & \text{if} \quad a+b \ge 6 \end{cases}$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6 - a being the inverse of a. (AI 2011)

- 62. Let * be a binary operation on *Q* defined by $a * b = \frac{3ab}{5}$. Show that * is commutative as well as associative. Also, find its identity element, if it exists. (*Delhi 2010*)
- **63.** Let * be a binary operation on the set of rational numbers given as $a * b = (2a b)^2$, $a, b \in Q$. Find 3 * 5 and 5 * 3. Is 3 * 5 = 5 * 3 ? (Delhi 2008 C)

64. Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find the value of 20 * 16. Is * (i) commutative, (ii) associative ?

(AI 2008 C)

LA (6 marks)

- **65.** Show that the binary operation * on $A = R \{-1\}$ defined as a * b = a + b + ab for all $a, b \in A$ is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible. (AI 2016, 2015)
- **66.** Let $A = R \times R$ and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Find the identity element for * on A. (*Delhi 2015 C*)

Detailed Solutions

6.

1. Here, $R = \{(x, y) : x + 2y = 8\}$, where $x, y \in N$. For *x* = 1, 3, 5, ... x + 2y = 8 has no solution in *N*. For x = 2, we have $2 + 2y = 8 \Longrightarrow y = 3$ For x = 4, we have $4 + 2y = 8 \Longrightarrow y = 2$ For x = 6, we have $6 + 2y = 8 \Longrightarrow y = 1$ For *x* = 8, 10, ... x + 2y = 8 has no solution in *N*. \therefore Range of $R = \{y : (x, y) \in R\} = \{1, 2, 3\}$ Given relation is 2. $R = \{(a, a^3) : a \text{ is a prime number less than 5}\}.$ $R = \{(2, 8), (3, 27)\}$ *.*.. So, the range of *R* is {8, 27}. 3. Here, $R = \{(a, b) \in A \times A : 2 \text{ divides } (a - b)\}$ This is the given equivalence relation, where $A = \{0, 1, 2, 3, 4, 5\}$ *.*.. $[0] = \{0, 2, 4\}.$ For transitivity of a relation, 4. If $(a, b) \in R$ and $(b, c) \in R \Longrightarrow (a, c) \in R$ We have, $R = \{(1, 2), (2, 1)\}$ $(1, 2) \in R$ and $(2, 1) \in R$ but $(1, 1) \notin R$ \therefore *R* is not transitive. 5. Given $A = \{1, 2, 3, 4, ..., 9\} \subset N$, the set of natural numbers. To show : *R* is an equivalence relation. (i) Reflexivity : Let (*a*, *b*) be an arbitrary element of $A \times A$. Then, we have $(a, b) \in A \times A \Rightarrow a, b \in A$ a+b=b+a \Rightarrow (by commutativity of addition on $A \subset N$) \Rightarrow (a, b) R (a, b) Thus, (a, b) R (a, b) for all $(a, b) \in A \times A$ So, *R* is reflexive. (ii) Symmetry: Let (a, b), $(c, d) \in A \times A$ such that $(a, b) R (c, d) \Longrightarrow a + d = b + c \Longrightarrow b + c = a + d$ $\Rightarrow c + b = d + a$ (by commutativity of addition on $A \subset N$) $\Rightarrow (c, d) R (a, b).$ Thus, (*a*, *b*) *R* (*c*, *d*) \Rightarrow (*c*, *d*) *R* (*a*, *b*) for all (*a*, *b*), (*c*, *d*) \in *A* × *A*. So, *R* is symmetric. (iii) Transitivity: Let (a, b), (c, d), $(e, f) \in A \times A$ such that (*a*, *b*) *R* (*c*, *d*) and (*c*, *d*) *R* (*e*, *f*) Now, $(a, b) R (c, d) \Rightarrow a + d = b + c$...(i) and $(c, d) R (e, f) \Longrightarrow c + f = d + e$...(ii) Adding (i) and (ii), we get (a + d) + (c + f) = (b + c) + (d + e) \Rightarrow $a + f = b + e \Rightarrow (a, b) R (e, f)$

Thus, (a, b) R (c, d) and $(c, d) R (e, f) \Rightarrow (a, b) R (e, f)$. So, *R* is transitive.

 \therefore *R* is an equivalence relation.

Equivalence class for [(2, 5)] is {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8) (6, 9).

Here, $R = \{(x, y) \mid x \in N, y \in N \text{ and } 2x + y = 24\}$ Domain of $R = \{1, 2, 3, 4, ..., 11\}$ Range of $R = \{2, 4, 6, 8, 10, 12, ..., 22\}$ *R* is not reflexive as if $(2, 2) \in R$ $\Rightarrow 2 \times 2 + 2 = 6 \neq 24$ In fact *R* is neither symmetric nor transitive. *R* is not an equivalence relation. \Rightarrow We have $S = \{(a, b) : a \le b^3\}$ where $a, b \in \mathbb{R}$. 7. (i) Reflexive : We observe that, $\frac{1}{2} \le \left(\frac{1}{2}\right)^3$ is not true. $\left(\frac{1}{2}, \frac{1}{2}\right) \notin S$. So, *S* is not reflexive. ÷ (ii) Symmetric : We observe that $1 \le 3^3$ but $3 \le 1^3$ *i.e.*, $(1, 3) \in S$ but $(3, 1) \notin S$. So, S is not symmetric. (iii) Transitive : We observe that, $10 \le 3^3$ and $3 \le 2^3$ but $10 \leq 2^3$ *i.e.*, $(10, 3) \in S$ and $(3, 2) \in S$ but $(10, 2) \notin S$ So, *S* is not transitive. \therefore S is neither reflexive, nor symmetric, nor transitive. We have $R = \{(a, b) : (a - b) \text{ is divisible by 5} \}$ 8. (i) Reflexive : For any $a \in Z$, a - a = 0, which is a multiple of 5.

 \Rightarrow $(a, a) \in R$

Hence, *R* is reflexive.

(ii) Symmetric : For any $a, b \in Z$, let $(a, b) \in R$

(a - b) is a multiple of 5. \Rightarrow

 $(a-b) = 5m, m \in Z \Longrightarrow (b-a) = -5m$ \Rightarrow

 $(a, b) \in R \Longrightarrow (b, a) \in R$

Hence, *R* is symmetric.

(iii) Transitive : For any $a, b, c, \in Z$, let $(a, b) \in R$ and $(b, c) \in R$

 \Rightarrow (a - b) = 5m and (b - c) = 5n; $m, n \in \mathbb{Z}$

 \Rightarrow $a-b+b-c=5m+5n; m, n \in \mathbb{Z}$

- \Rightarrow $a c = 5(m + n); m, n \in \mathbb{Z}$
- \therefore *a c* is a multiple of 5.
- *i.e.*, $(a, b) \in R$ and $(b, c) \in R \Longrightarrow (a, c) \in R$

Hence, *R* is transitive.

 \therefore *R* is an equivalence relation.

9. We have, $A = \{x \in Z : 0 \le x \le 12\}$ $\therefore A = \{0, 1, 2, 3, ..., 12\}$ and $S = \{(a, b) : |a - b| \text{ is a multiple of } 4\}$ (i) Reflexive : For any $a \in A$, |a - a| = 0 is a multiple of 4. Thus, $(a, a) \in S$ \therefore S is reflexive. (ii) Symmetric : For any $a, b \in A$, Let $(a, b) \in S$ \Rightarrow |a - b| is a multiple of 4 \Rightarrow |b - a| is a multiple of $4 \Rightarrow (b, a) \in S$ *i.e.*, $(a, b) \in S \implies (b, a) \in S$ \therefore S is symmetric. (iii) Transitive : For any $a, b, c \in A$, Let $(a, b) \in S$ and $(b, c) \in S$ \Rightarrow |a - b| is a multiple of 4 and |b - c| is a multiple of 4 \Rightarrow $a - b = \pm 4k_1$ and $b - c = \pm 4k_2$; $k_1, k_2 \in N$ \Rightarrow $(a-b) + (b-c) = \pm 4 (k_1 + k_2); k_1, k_2 \in N$ \Rightarrow $a-c=\pm 4 (k_1+k_2); k_1, k_2 \in N$ \Rightarrow |a - c| is a multiple of $4 \Rightarrow (a, c) \in S$ \therefore S is transitive. Hence, *S* is an equivalence relation. The set of elements related to 1 is $\{5, 9\}$. **10.** *Refer to answer 5.* 11. We have, $f: X \to Y$ is a function $R = \{(a, b) : f(a) = f(b)\}$ (i) Reflexivity : For any $a \in X$, we have $f(a) = f(a) \Longrightarrow (a, a) \in R \Longrightarrow R$ is reflexive. (ii) Symmetric : For any $a, b \in X$, Let $(a, b) \in R \implies f(a) = f(b)$ $\Rightarrow f(b) = f(a) \Rightarrow (b, a) \in R$ So, *R* is symmetric. (iii) Transitive : For any $a, b, c \in X$, Let $(a, b) \in R$ and $(b, c) \in R$ \Rightarrow f(a) = f(b) and f(b) = f(c) $\Rightarrow f(a) = f(c) \Rightarrow (a, c) \in R$ So, *R* is transitive. Hence, *R* is an equivalence relation on *X*. 12. We have $A = \{1, 2, 3, 4, 5\}$ $R = \{(a, b) : |a - b| \text{ is even}\}; a, b \in A$ (i) Reflexive : For any $a \in A$, We have |a - a| = 0, which is even. \Rightarrow $(a, a) \in R \forall a \in A$ So, *R* is reflexive. (ii) Symmetric : For any $a, b \in A$, Let $(a, b) \in R \Rightarrow |a - b|$ is even $\Rightarrow |b - a|$ is even \Rightarrow (b, a) \in R. So, *R* is symmetric.

(iii) Transitive : For any *a*, *b*, $c \in A$. Let $(a, b) \in R$ and $(b, c) \in R$

 \Rightarrow |a - b| is even and |b - c| is even \Rightarrow $a - b = \pm 2k_1$ and $b - c = \pm 2k_2$, for $k_1, k_2 \in N$ $\Rightarrow (a-b) + (b-c) = \pm (2k_1 + 2k_2); k_1, k_2 \in N$ \Rightarrow $a-c=\pm 2(k_1+k_2); k_1, k_2 \in N$ \Rightarrow |a - c| is even \Rightarrow $(a, c) \in R$ Thus, $(a, b) \in R$ and $(b, c) \in R \implies (a, c) \in R$ So, *R* is transitive. Hence, *R* is an equivalence relation. **13.** Here $R = \{(a, b) : b = a + 1\}$ $= \{(a, a + 1) : a, a + 1 \in \{1, 2, 3, 4, 5, 6\}\}$ $= \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$ (i) *R* is not reflexive as $(a, a) \notin R \forall a$. (ii) *R* is not symmetric as $(1, 2) \in R$ but $(2, 1) \notin R$. (iii) R is not transitive as $(1, 2) \in R$, $(2, 3) \in R$ but $(1, 3) \notin R$. 14. (i) Reflexivity : Let (a, b) be an arbitrary element of $N \times N$. Then, $(a, b) \in N \times N$ $\Rightarrow ab(b+a) = ba(a+b)$ [by commutativity of addition and multiplication on N] \Rightarrow (*a*, *b*) *R* (*a*, *b*) So, *R* is reflexive on $N \times N$. (ii) Symmetry: Let $(a, b), (c, d) \in N \times N$ be such that (a, b) R (c, d). $\Rightarrow ad(b+c) = bc(a+d) \Rightarrow cb(d+a) = da(c+b)$ [by commutativity of addition and multiplication on N] Thus, $(a, b) \ R \ (c, d) \Rightarrow (c, d) \ R \ (a, b)$ for all $(a, b), (c, d) \in N \times N.$ So, *R* is symmetric on $N \times N$. (iii) Transitivity : Let $(a, b), (c, d), (e, f) \in N \times N$ be such that (*a*, *b*) *R* (*c*, *d*) and (*c*, *d*) *R* (*e*, *f*). Then, $(a, b) R (c, d) \Rightarrow ad(b + c) = bc(a + d)$ $\Rightarrow \frac{b+c}{bc} = \frac{a+d}{ad} \Rightarrow \frac{1}{b} + \frac{1}{c} = \frac{1}{a} + \frac{1}{d}$...(i) and $(c, d) R(e, f) \Rightarrow cf(d + e) = de(c + f)$ $\Rightarrow \frac{d+e}{de} = \frac{c+f}{cf} \Rightarrow \frac{1}{d} + \frac{1}{e} = \frac{1}{c} + \frac{1}{f}$...(ii) Adding (i) and (ii), we get

$$\begin{pmatrix} \frac{1}{b} + \frac{1}{c} \end{pmatrix} + \begin{pmatrix} \frac{1}{d} + \frac{1}{e} \end{pmatrix} = \begin{pmatrix} \frac{1}{a} + \frac{1}{d} \end{pmatrix} + \begin{pmatrix} \frac{1}{c} + \frac{1}{f} \end{pmatrix}$$

$$\Rightarrow \frac{1}{b} + \frac{1}{e} = \frac{1}{a} + \frac{1}{f} \Rightarrow \frac{b+e}{be} = \frac{a+f}{af}$$

 $\Rightarrow af(b+e) = be(a+f) \Rightarrow (a, b) R (e, f)$

So, *R* is transitive on $N \times N$.

Hence, R is an equivalence relation.

15. *Refer to answer* 9. Further *R* has only two equivalence classes, namely $[1] = [3] = [5] = \{1, 3, 5\}$ and $[2] = [4] = \{2, 4\}$.

16.
$$A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$$
 and

 $f = \{(1, 4), (2, 5), (3, 6)\}$

We have, f(1) = 4, f(2) = 5 and f(3) = 6. Distinct elements of *A* have distinct images in *B*. Hence, *f* is a one-one function.

17. We have,
$$|x-1| = \begin{cases} x-1, & x \ge 1\\ 1-x, & x < 1 \end{cases}$$

∴ $f(x) = \frac{|x-1|}{(x-1)} = \begin{cases} 1, & x \ge 1\\ -1, & x < 1 \end{cases}$
∴ Range $(f) = \{-1, 1\}$

18. We have, f(x) = 5xFor $x_1, x_2 \in N$. Let $f(x_1) = f(x_2) \Rightarrow 5x_1 = 5x_2 \Rightarrow x_1 = x_2$

$$\therefore$$
 The function is one-one.

Now, f(x) is not onto. Since, for $2 \in N$ (co-domain), there does not exist any $x \in N$ (domain) such that f(x) = 5x = 2

 \therefore f(x) is injective but not surjective.

19. Here,
$$f: N \to N$$
 s.t.
$$f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$$

Let $x, y \in N$ s.t. f(x) = f(y)We shall show that x = y

(i) If x and y both are even

$$f(x) = f(y) \Rightarrow x - 1 = y - 1 \Rightarrow x = y$$

(ii) If x and y both are odd

(ii) If
$$x = f(y) \Rightarrow x + 1 = y + 1 \Rightarrow x = y$$

(iii) If x is odd and y is even

$$f(x) = f(y) \Longrightarrow x + 1 = y - 1$$

$$\Rightarrow y - x = 2$$

R.H.S. is even but L.H.S. is odd.

 \Rightarrow Equation (1) in *N* is not possible.

 \Rightarrow (iii) does not arise.

(iv) If x is even and y is odd, does not arise.

In any case, $f(x) = f(y) \Longrightarrow x = y$

⇒ *f* is one-one For any $y \in N$ (co-domain), *y* can be even or odd When *y* is odd, y + 1 is even, so f(y + 1) = (y + 1) - 1 = y

When y is even, y - 1 is odd, so

f(y-1) = (y-1) + 1 = y

$$\Rightarrow f: N \to N \text{ is onto.}$$

Hence, f is both one-one and onto.

20. (i) Injectivity: Here,
$$f(1) = \frac{1+1}{2} = 1, f(2) = \frac{2}{2} = 1$$
,

$$f(3) = \frac{3+1}{2} = 2, f(4) = \frac{4}{2} = 2$$

Thus, $f(2k-1) = \frac{(2k-1)+1}{2} = k$ and $f(2k) = \frac{2k}{2} = k$
 $\Rightarrow f(2k-1) = f(2k)$, where $k \in N$
But, $2k - 1 \neq 2k$, $\Rightarrow f$ is not one-one.
Hence, f is not bijective.

21. Here,
$$f(x) = 4x^3 + 7$$

Let $x_1, x_2 \in R$ s.t.
 $f(x_1) = f(x_2)$
 $\Rightarrow 4x_1^3 + 7 = 4x_2^3 + 7$
 $\Rightarrow 4x_1^3 = 4x_2^3 \Rightarrow x_1^3 = x_2^3$
 $\Rightarrow x_1^3 - x_2^3 = 0$
 $\Rightarrow (x_1 - x_2) (x_1^2 + x_1x_2 + x_2^2) = 0$
 $\Rightarrow x_1 - x_2 = 0$
 $[\because x_1^2 + x_1x_2 + x_2^2 = 0 \text{ has no real roots}]$
 $\Rightarrow x_1 = x_2$
 $\therefore f: R \to R \text{ is one-one.}$
Again $\forall x \in R$ (co-domain) we find $x \in R$ (domain)

Again $\forall y \in R$ (co-domain), we find $x \in R$ (domain) s.t. f(x) = y $\Leftrightarrow 4x^3 + 7 = y \Leftrightarrow 4x^3 = y - 7$

$$\Rightarrow 4x^{2} + 7 = y \Leftrightarrow 4x^{2} = y - 7$$
$$\Rightarrow x^{3} = \frac{y - 7}{4} \Leftrightarrow x = \sqrt[3]{\frac{y - 7}{4}} \in R$$

(:: $x^3 = \alpha, \alpha \in R$ has always one real root)

Hence, *f* is onto So, $f: R \rightarrow R$ is a bijection.

- **22.** *Refer to answer 19.*
- **23.** We have f(x) = ax + b where $a, b \in R$ and $a \neq 0$

(i) Injectivity : Let
$$x_1, x_2 \in R$$
 such that $f(x_1) = f(x_2)$

$$\Rightarrow ax_1 + b = ax_2 + b \Rightarrow x_1 = x_2$$

 \therefore f(x) is one-one.

...(1)

(ii) Surjectivity : Let $y \in R$ (co-domain) such that f(x) = y

$$\Rightarrow y = ax + b \Rightarrow x = \frac{y - b}{a} \in R \qquad (\because a \neq 0)$$
$$\therefore \quad f\left(\frac{y - b}{a}\right) = a\left(\frac{y - b}{a}\right) + b = y$$
$$\therefore \quad f(x) \text{ is onto}$$

 \therefore f(x) is onto.

Hence, f is injective and surjective. So, f(x) is bijective.

24. Here, $f = \{(1,2), (3, 5), (4, 1)\}$

$$\iff f(1) = 2; f(3) = 5; f(4) = 1 \qquad \dots(1)$$

$$g = \{(1, 3), (2, 3), (5, 1)\}$$

$$\Leftrightarrow g(1) = 3; g(2) = 3, g(5) = 1$$
 ...(2)

Now, *gof* : $\{1, 3, 4\} \rightarrow \{1, 3\}$ Using (1) and (2), we get (gof)(1) = g(f(1)) = g(2) = 3(gof)(3) = g(f(3)) = g(5) = 1(gof) (4) = g(f(4)) = g(1) = 3 \therefore gof = {(1, 3), (3, 1), (4, 3)}. 25. Let $y = f(x) = \frac{2x-7}{4}$ $\Rightarrow 4y = 2x - 7 \Rightarrow x = \frac{4y + 7}{2}$ As y = f(x) is an invertible function, so $x = f^{-1}(y)$ i.e., $f^{-1}(y) = \frac{4y+7}{2}$ $\Rightarrow f^{-1}: R \to R \text{ s.t. } f^{-1}(x) = \frac{4x+7}{2}, \forall x \in R.$ **26.** $f: R \to R$ and $f(x) = (3 - x^3)^{1/3}$:. $fof(x) = f(f(x)) = f[3 - x^3)^{1/3}$ $= [3 - {(3 - x^3)^{1/3}}]^{1/3}$ $= [3 - (3 - x^3)]^{1/3} = (3 - 3 + x^3)^{1/3} = x$ 27. We have, f(x) = 3x + 2 $\therefore \quad f(f(x)) = f(3x+2) = 3(3x+2) + 2 = 9x + 8$ **28.** We have, f(x) = 3x - 4Let $f(x) = y \Longrightarrow x = f^{-1}(y)$ $\therefore y = 3x - 4 \implies x = \frac{y + 4}{2}$ $\Rightarrow f^{-1}(y) = \frac{y+4}{2} \Rightarrow f^{-1}(x) = \frac{x+4}{3}$ **29.** We have, $f(x) = \frac{3x+5}{x}$ Let $f(x) = y \Rightarrow x = f^{-1}(y)^2$ $\therefore \quad y = \frac{3x+5}{2} \implies x = \frac{2y-5}{3}$ $\Rightarrow f^{-1}(y) = \frac{2y-5}{2}$ $\Rightarrow f^{-1}(x) = \frac{2x-5}{2}$ **30.** f(x) = x + 7 and g(x) = x - 7So, fog(x) = f(g(x)) = f(x-7) = x - 7 + 7 = x $\Rightarrow fog(x) = x$:. fog(7) = 731. $f(f(x)) = f(x^2 - 3x + 2)$ $= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$ $= x^4 + 9x^2 + 4 - 6x^3 - 12x + 4x^2 - 3x^2 + 9x - 6 + 2$

$$= x^4 - 6x^3 + 10x^2 - 3x.$$

32. Here $f: R \rightarrow R$ s.t. $f(x) = x^2 + 2$ and $g: R \to R$ s.t. $g(x) = \frac{x}{x-1}, x \neq 1$ Now *fog* : $R \rightarrow R$ s.t. $(fog)(x) = f(g(x)) = f\left(\frac{x}{x-1}\right) = \left(\frac{x}{x-1}\right)^2 + 2, x \neq 1$ \Rightarrow $(fog)(2) = \left(\frac{2}{2-1}\right)^2 + 2 = 6$ Also, *gof* : $R \rightarrow R$ s.t. $(gof)(x) = g(f(x)) = g(x^{2} + 2) = \frac{x^{2} + 2}{x^{2} + 1}$ $(gof)(-3) = \frac{(-3)^2 + 2}{(-3)^2 + 1} = \frac{11}{10}$ 33. Refer to answer 19, since *f* is bijective function. So, it is invertible. Now, let $x, y \in W$ such that f(x) = y \Rightarrow x + 1 = y, if x is even and x - 1 = y, if x is odd. $\Rightarrow \quad x = \begin{cases} y - 1, \text{ if } y \text{ is odd} \\ y + 1, \text{ if } y \text{ is even} \end{cases}$ $\Rightarrow f^{-1}(y) = \begin{cases} y - 1, \text{ if } y \text{ is odd} \\ y + 1, \text{ if } y \text{ is even} \end{cases}$ Hence, $f^{-1}(x) = \begin{cases} x - 1, \text{ if } x \text{ is odd} \\ x + 1, \text{ if } x \text{ is even} \end{cases}$ **34.** $A = R - \{3\}; B = R - \{1\}$ and $f: A \rightarrow B$ defined as $f(x) = \frac{x-2}{x-3} \,\forall \, x \in A.$ Here, *f* is defined $\forall x \in A$, as $3 \notin A$. Also, $f(x) \neq 1$ $[\because f(x) = 1 \Leftrightarrow \frac{x-2}{x-3} = 1 \Leftrightarrow x-2 = x-3$ \Leftrightarrow – 2 = – 3, which is absurd] Let $x_1, x_2 \in A$ be such that $f(x_1) = f(x_2)$ $\Rightarrow \quad \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$ \Rightarrow $(x_1 - 2) (x_2 - 3) = (x_1 - 3) (x_2 - 2)$ $\Rightarrow \quad x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 2x_1 - 3x_2 + 6$ \Rightarrow $-3x_1 - 2x_2 = -2x_1 - 3x_2 \Rightarrow x_1 = x_2$

 $\therefore f \text{ is a one-one function.}$ Let $y \in B = R - \{1\} \Longrightarrow y \neq 1.$ We want to solve y = f(x) for some $x \in A$

 $\Leftrightarrow \quad y = \frac{x-2}{x-3} \quad \Leftrightarrow \quad xy - 3y = x - 2$

$$\Rightarrow x(y-1) = -2 + 3y
\Rightarrow x = \frac{3y-2}{y-1} \in A \text{ (as } y \neq 1)
\therefore f \text{ is onto also.}
\Rightarrow f: A \rightarrow B \text{ is a bijective function.}
Now, $f^{-1}(y) = x = \frac{3y-2}{y-1} \Leftrightarrow f^{-1}(x) = \frac{3x-2}{x-1}$
35. Here, $f, g: R \rightarrow R$ s.t.
 $f(x) = |x| + x = \begin{cases} 2x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$
and $g(x) = |x| - x = \begin{cases} 0 & \text{if } x \ge 0 \\ -2x & \text{if } x < 0 \end{cases}$

$$\therefore (fog)(x) = f(g(x)) = \begin{cases} f(0) & \text{if } x \ge 0 \\ f(-2x) & \text{if } x < 0 \end{cases}$$

$$= \begin{cases} 0 & \text{if } x \ge 0 \\ 2(-2x) & \text{if } x < 0 \end{cases} = \begin{cases} 0 & \text{if } x \ge 0 \\ -4x & \text{if } x < 0 \end{cases}$$
and $(gof)(x) = g(f(x))$

$$= \begin{cases} g(2x) & \text{if } x \ge 0 \\ g(0) & \text{if } x < 0 \end{cases} = \begin{cases} 0 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases} = 0 \forall x \in R.$$
36. Here, $f(x) = \frac{4x+3}{6x-4} \text{ where } x \in A = R - \left\{\frac{2}{3}\right\}.$
(i) Let $f(x_1) = f(x_2) (\forall x_1, x_2 \in A)$

$$\Rightarrow \frac{4x_1+3}{6x_1-4} = \frac{4x_2+3}{6x_2-4}$$

$$\Rightarrow (4x_1+3) (6x_2-4) = (6x_1-4) (4x_2+3)$$

$$\Rightarrow 24x_1x_2 - 16x_1 + 18x_2 - 12 = 24x_1x_2 + 18x_1 - 16x_2 - 12$$

$$\Rightarrow -34x_1 = -34x_2 \Rightarrow x_1 = x_2$$

$$\therefore f \text{ is one-one.}$$
(ii) For $y \in A = R - \left\{\frac{2}{3}\right\}.$
Let $f(x) = y$

$$\Leftrightarrow \frac{4x+3}{6x-4} = y \Leftrightarrow (6x-4)y = 4x+3$$

$$\Leftrightarrow x = \frac{4y+3}{6y-4} \in A \left(\text{ as } y \neq \frac{2}{3} \right)$$

$$\Leftrightarrow f \text{ is onto and } f(x) = y \Leftrightarrow x = f^{-1}(y)$$

$$\Leftrightarrow f^{-1}(y) = \frac{4y+3}{6y-4} \forall y \in A \Leftrightarrow f^{-1}(x) = \frac{4x+3}{6x-4} \forall x \in A$$$$

37. $f: R_+ \rightarrow [4, \infty)$ given by $f(x) = x^2 + 4$ (i) Let $x_1, x_2 \in R_+$ s.t. $f(x_1) = f(x_2)$ $\Rightarrow x_1^2 + 4 = x_2^2 + 4 \Rightarrow x_1^2 = x_2^2$ $\Rightarrow x_1 = x_2$ ($\because x_1, x_2 \in R_+$) $\Rightarrow f$ is one-one

(ii) $y = f(x) \forall y \in [4, \infty), y \ge 4$ $\Rightarrow x^2 + 4 = y \Rightarrow x = \sqrt{y - 4}$ Now, x is defined if $y-4 \ge 0 \Longrightarrow \sqrt{y-4} \in R_+$ and $f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = (y-4) + 4 = y$ \Rightarrow f is onto. \therefore *f* is one-one and onto. \Rightarrow *f* is invertible and *f*⁻¹ exists. $f^{-1}(y) = \sqrt{y-4}$. **38.** Here, $f: A \to B$ is given by $f(x) = \frac{x-1}{x-2}$, where $A = R - \{2\}$ and $B = R - \{1\}$ Let $f(x_1) = f(x_2)$, where $x_1, x_2, \in A$ (*i.e.*, $x_1 \neq 2, x_2 \neq 2$) $\Rightarrow \quad \frac{x_1 - 1}{x_1 - 2} = \frac{x_2 - 1}{x_2 - 2}$ \Rightarrow $(x_1 - 1) (x_2 - 2) = (x_1 - 2) (x_2 - 1)$ $\Rightarrow x_1x_2 - 2x_1 - x_2 + 2 = x_1x_2 - x_1 - 2x_2 + 2$ $\implies -2x_1 - x_2 = -x_1 - 2x_2$ $\Rightarrow x_1 = x_2 \Rightarrow f \text{ is one-one.}$ Next, let $y \in B = R - \{1\}$ *i.e.*, $y \in R$ and $y \neq 1$ Now, $\frac{x-1}{x-2} = y \Leftrightarrow (x-2)y = x-1$ $\Leftrightarrow xy - 2y = x - 1 \Leftrightarrow x(y-1) = 2y - 1$ $\Leftrightarrow \quad x = \frac{2y - 1}{y - 1}$...(i) $\therefore \quad f(x) = y \text{ when } x = \frac{2y-1}{y-1} \in A \text{ (as } y \neq 1)$ Hence, *f* is onto. Thus, *f* is one–one and onto. From (i), $f^{-1}: B \rightarrow A$ is given by $x = f^{-1}(y)$ *i.e.*, $f^{-1}(y) = \frac{2y-1}{y-1}$. **39.** Refer to answer 34. **40.** Let $y \in R$ (co-domain) be arbitrary. By definition, y = 10x + 7 for $x \in R$ $\Rightarrow x = \frac{y-7}{10}$ So, we define, $g: R \to R$ by $g(y) = \frac{y-7}{10}$ Now, $(gof)(x) = g(f(x)) = g(10x+7) = \frac{(10x+7)-7}{10} = x$ and (f

$$(fog)(y) = f(g(y)) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y$$

Thus, $gof = fog = I_R$.

41. (i)
$$fog(x) = f(g(x)) = \frac{2x-3+3}{2} = \frac{2x}{2} = x$$

(ii) $gof(x) = g(f(x)) = 2\left(\frac{x+3}{2}\right) - 3$
 $= x+3-3=x$.
So, $fog = gof = I_R$. Hence, $f^{-1} = g$.
42. (a) $fog(x) = f(g(x)) = (2x-3)^2 + 3(2x-3) + 1$
 $= 4x^2 - 12x + 9 + 6x - 9 + 1 = 4x^2 - 6x + 1$
(b) $gof(x) = g(f(x)) = 2(x^2 + 3x + 1) - 3$
 $= 2x^2 + 6x + 2 - 3 = 2x^2 + 6x - 1$
43. Here $f(x) = [x]$ and $g(x) = |x|$
 $fog(x) = f(g(x)) = f(|x|) = [|x|]$
 $\therefore (fog)\left(\frac{-3}{2}\right) = \left[\left|\frac{-3}{2}\right|\right] = \left[\frac{3}{2}\right] = 1$
 $gof(x) = g(f(x)) = g([x]) = |[x]|$
 $\therefore (fog)\left(\frac{-3}{2}\right) + (gof)\left(\frac{4}{3}\right) = 1 + 1 = 2$.
44. Let $f: N \to S$, $f(x) = 9x^2 + 6x - 5$
Consider, $f(x_1) = f(x_2)$
 $\Rightarrow 9x_1^2 + 6x_1 - 5 = 9x_2^2 + 6x_2 - 5$
 $\Rightarrow 9(x_1^2 - x_2^2) + 6(x_1 - x_2) = 0$
 $\Rightarrow (x_1 - x_2)[9x_1 + 9x_2 + 6] = 0$
 $\Rightarrow x_1 = x_2$ [$\because x_1, x_2 \in N$]
 $\Rightarrow f$ is one-one.
Since, f is one-one and onto.
So, f is invertible.
Let $y \in S$ be arbitrary number.
Consider, $y = f(x) \Rightarrow x = f^{-1}(y)$
 $\Rightarrow y = 9x^2 + 6x - 5 \Rightarrow y = (3x + 1)^2 + 6$
 $\Rightarrow \sqrt{y+6} = 3x+1 \Rightarrow x = \frac{\sqrt{y+6} - 1}{3}$
Also, $f^{-1}(y) = \frac{\sqrt{y+6} - 1}{3}$ or $f^{-1}(x) = \frac{\sqrt{x+6} - 1}{3}$
Now, $f^{-1}(43) = \frac{\sqrt{49} - 1}{3} = \frac{7 - 1}{3} = 2$
and $f^{-1}(163) = \frac{\sqrt{169} - 1}{3} = \frac{13 - 1}{3} = 4$
45. Refer to answer 34,
We get $fog(x) = \begin{cases} 0, x \ge 0 \\ -4x, x < 0 \end{cases}$

and
$$gof(x) = \forall x \in R$$

Now, $fog(-3) = -4(-3) = 12$
and $fog(5) = 0$, $gof(-2) = 0$
46. Here $f: R_+ \rightarrow [-9, \infty]$ as
 $f(x) = 5x^2 + 6x - 9$
First we shall show that f is one-one.
Let $f(x) = f(y)$, for $x, y \in R_+$
 $\Rightarrow 5x^2 + 6x - 9 = 5y^2 + 6y - 9$
 $\Rightarrow 5(x^2 - y^2) + 6(x - y) = 0$
 $\Rightarrow (x - y) [5(x + y) + 6] = 0$
 $\Rightarrow x = y$ [\because for $x, y \in R_+, 5(x + y) + 6 \neq 0$]
 $\Rightarrow f$ is one-one.
Let $y \in [-9, \infty [$ be such that $f(x) = y$
 $\Leftrightarrow 5x^2 + 6x - 9 = y \Rightarrow 5x^2 + 6x - (9 + y) = 0$
 $\Rightarrow x = \frac{-6 \pm \sqrt{6^2 + 4 \cdot 5(9 + y)}}{2 \cdot 5} = \frac{-6 \pm \sqrt{216 + 20y}}{10}$
 $= \frac{-3 \pm \sqrt{54 + 5y}}{5}$
Taking only +ve sign (as for -ve sign, $x \notin R_+$)
We get $x = \frac{-3 \pm \sqrt{54 + 5y}}{5} \in R_+$ for which
 $f(x) = y$
 $\Rightarrow f$ is onto.
 $\Rightarrow f$ is both one-one and onto.

 \Rightarrow *f* is invertible and *f*⁻¹ is given by

$$f^{-1}(y) = x = \frac{-3 + \sqrt{54 + 5y}}{5}$$

47. Let
$$f: N \to S$$
, $f(x) = 4x^2 + 12x + 15$
Consider, $f(x_1) = f(x_2)$
⇒ $4x_1^2 + 12x_1 + 15 = 4x_2^2 + 12x_2 + 15$
⇒ $4(x_1^2 - x_2^2) + 12(x_1 - x_2) = 0$
⇒ $(x_1 - x_2) [4x_1 + 4x_2 + 12] = 0$
⇒ $x_1 = x_2$ [$\because x_1, x_2 \in N$]
∴ f is one-one
Since, S is the range of f .
∴ f is one-one and onto.
Therefore, f is invertible.
Let $y \in S$ be arbitrary number such that $f(x) = y$
⇒ $y = 4x^2 + 12x + 15$
⇒ $y = (2x + 3)^2 + 6$
⇒ $\sqrt{y - 6} = 2x + 3 \Rightarrow x = \frac{\sqrt{y - 6} - 3}{2}$
Also, $f(x) = y \Rightarrow x = f^{-1}(y)$
⇒ $f^{-1}(y) = \frac{\sqrt{y - 6} - 3}{2}$ or $f^{-1}(x) = \frac{\sqrt{x - 6} - 3}{2}$

48. We have, $2 * (x * 5) = 10 \implies 2 * \left(\frac{5x}{5}\right) = 10$ $\Rightarrow 2 * x = 10 \Rightarrow \frac{2x}{5} = 10 \Rightarrow x = 25$ **49.** Here $*: R \times R \rightarrow R$ is given by $a \star b = a + 4b^2.$ $(-5) * (2 * 0) = (-5) * (2 + 4 \cdot 0^2) = -5 * (2)$ $= -5 + 4 \cdot 2^2 = -5 + 16 = 11$ **50.** 5 * 7 = L.C.M.(5, 7) = 35.**51.** $*: R \times R \rightarrow R$ given by $a \star b = 2a + b$ $\therefore \quad (2 * 3) * 4 = (2 \times 2 + 3) * 4 = 2 \times 7 + 4 = 18.$ **52.** Here $a \star b = a + 3b^2 \forall a, b \in Z$ $\implies 8 * 3 = 8 + 3 \cdot 3^2 = 8 + 27 = 35.$ **53.** Here $a \star b = 2a + b - 3$ \therefore 3 * 4 = 2(3) + 4 - 3 = 7 54. Here a * b = 3a + 4b - 2 $\therefore 4 \times 5 = 3(4) + 4(5) - 2 = 12 + 20 - 2 = 30$ 55. Here $a * b = a + 3b^2$ \therefore 2 * 4 = 2 + 3(4)² = 2 + 3 × 16 = 50 **56.** Here a * b = H.C.F.(a, b)22 * 4 = H.C.F. (22, 4) = 2 ·•. **57.** Here $a * b = \frac{ab}{5}$. For identity, $a \star e = a = e \star a$ $\Rightarrow \frac{ae}{5} = a = \frac{ea}{5} \Rightarrow e = 5$ Identity element for \star is 5. *.*.. 58. We have, $S = Q - \{1\}$ $a \star b = a + b - ab \ \forall a, b \in S$ (i) As $a, b \in S \Longrightarrow a, b \in Q$ and $a \neq 1, b \neq 1, \dots(1)$ \therefore $a+b-ab \in Q$ We check : $a + b - ab \neq 1$ Suppose a + b - ab = 1 $\Rightarrow a+b-ab-1=0$ $\Rightarrow a-1+b(1-a)=0$ $\Rightarrow -(1-a) + b(1-a) = 0$ $\Rightarrow (1-a)(-1+b) = 0$ \Rightarrow Either 1 - a = 0 or -1 + b = 0 $\Rightarrow a = 1 \text{ or } b = 1$ This contradicts (1). \therefore $a + b - ab \neq 1$. \Rightarrow $a+b-ab \in Q - \{1\} = S$ \Rightarrow * is binary operation on *S*.

(ii) Let $a, b \in S$ $a * b = a + b - a \cdot b = b + a - b \cdot a = b * a * is commutative$ in S Let $a,b,c \in S$ Then $a \star (b \star c) = a \star (b + c - bc)$ = a + b + c - bc - a(b + c - bc)= a + b + c - ab - bc - ca + abc= a + b - ab + c - (a + b - ab) c= (a * b) * c \therefore * is associative **59.** $b \star a = |b - a| = |a - b|$ [: $|-x| = |x| \forall x \in R$] $= a \star b \ \forall a, b \in R$ \Rightarrow * is commutative on *R*. Also, for a = 2, b = 4, c = 5(a * b) * c = (2 * 4) * 5 = |2 - 4| * 5 $= 2 \times 5 = |2 - 5| = 3$ and a * (b * c) = 2 * (4 * 5) = 2 * |4 - 5|= 2 * 1 = |2 - 1| = 1. $\therefore \quad (a * b) * c \neq a * (b * c)$ \Rightarrow * is not associative on *R*. Also, $(a \circ b) \circ c = a \circ c = a$ and $a \circ (b \circ c) = a \circ b = a$ \Rightarrow (a o b) o c = a o (b o c) $\forall a, b, c \in R$ \Rightarrow o is associative on R. Also, for a = 3, b = 2*a o b* = 3 *o* 2 = 3 *b o a* = 2 *o* 3 = 2 \Rightarrow a o b \neq b o a \Rightarrow o is not commutative on R. **60.** Let $A = \{1, 2, 3, 4, 5\}$ $a \star b =$ minimum of a and b2 3 5 1 4 1 1 1 1 1 1 2 2 1 2 2 2 3 1 2 3 3 3 4 1 2 3 4 4 5 1 2 3 4 5 61.

*	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Identity : Let *e* be the identity element, then a * e = a = e * a

Now, a * 0 = a + 0 = a and 0 * a = 0 + a = a

Thus, a * 0 = a = 0 * a. Hence, 0 is the identity element of the operation.

Inverse : Since, each row or column contains the identity element *i.e.*, 0.

So, each element is invertible.

Now, $a \star (6 - a) = a + (6 - a) - 6 = 0$

and (6 - a) * a = (6 - a) + a - 6 = 0.

Hence, each element *a* of the set is invertible with inverse 6 - a.

62. Commutativity: $a * b = \frac{3ab}{5} = \frac{3ba}{5} = b * a$ \therefore * is commutative. Associativity : $(a * b) * c = \left(\frac{3ab}{5}\right) * c = \frac{9abc}{25}$ and $a \star (b \star c) = a \star \left(\frac{3bc}{5}\right) = \frac{9abc}{25}$ $\Rightarrow (a * b) * c = a * (b * c)$ \therefore * is associative. Identity : $a \star e = a = e \star a$, where *e* is the identity element. $\frac{3ae}{5} = a = \frac{3ea}{5} \Longrightarrow e = \frac{5}{3} \in Q$ $\therefore \frac{5}{2}$ is the identity element. 63. We have, $a \star b = (2a - b)^2$ $\therefore 3 \times 5 = (2 \times 3 - 5)^2 = (6 - 5)^2 = 1$ $5 \times 3 = (2 \times 5 - 3)^2 = (10 - 3)^2 = 49$ Thus, $3 \star 5 \neq 5 \star 3$ **64.** We have, a * b = L.C.M. of a and b 20 * 16 = L.C.M. of 20 and 16 = 80 *.*. (i) Commutativity : $a \star b = L.C.M.$ of a and b = L.C.M. of *b* and $a = b \star a$ $\Rightarrow a * b = b * a$ So, \star is commutative. (ii) Associativity : (a * b) * c= [L.C.M.(a, b)] * c= L.C.M. [L.C.M. (*a*, *b*), *c*] = L.C.M. (*a*, *b*, *c*) and a * (b * c) = a * [L.C.M. (b, c)]= L.C.M. [*a*, L.C.M. (*b*, *c*)] = L.C.M. (*a*, *b*, *c*) $\Rightarrow a * (b * c) = (a * b) * c$ So, * is associative. **65.** We have $a \star b = a + b + ab \forall a, b \in A$, where $A = R - \{-1\}$

Commutativity : Let $a, b \in R - \{-1\}$

We have, $a \star b = a + b + ab = b + a + ba = b \star a$ Hence, * is commutative. Associativity : Let *a*, *b*, $c \in R - \{-1\}$ We have, a * (b * c) = a * (b + c + bc)= a + (b + c + bc) + a (b + c + bc)= a + b + c + bc + ab + ac + abc= a + b + ab + c + (a + b + ab) c= (a + b + ab) * c = (a * b) * cHence, * is associative. Identity : Let $e \in A$ be the identity element. Then, $a \star e = a = e \star a$ a * e = a + e + ae = a and e * a = e + a + ea = a $\Rightarrow e(1+a) = 0 \Rightarrow e = 0 [\because a \neq -1]$ Hence, the identity element for \star is e = 0. Existence of inverse : Let $a \in R - \{-1\}$ and b be the inverse of *a*. Then, $a \star b = e = b \star a$ \Rightarrow a + b + ab = 0 = b + a + ba $\Rightarrow b = -\frac{a}{a+1}$ Since, $a \in R - \{-1\}$ $\therefore a \neq -1 \implies a+1 \neq 0 \implies b = \frac{-a}{a+1} \in \mathbb{R}$ Also, if $-\frac{a}{a+1} = -1$ \Rightarrow $-a = -a - 1 \Rightarrow -1 = 0$, which is not possible. Hence, $\frac{-a}{a+1} \in R - \{-1\}$ So, every element of $R - \{-1\}$ is invertible and the inverse of an element *a* is $\frac{-a}{a+1}$ **66.** Here $A = R \times R$ and \star on A is defined as

66. Here *A* = *R* × *R* and * on *A* is defined as (*a*, *b*) * (*c*, *d*) = (*a* + *c*, *b* + *d*) ∀(*a*, *b*), (*c*, *d*), ∈ *R* Now (*c*, *d*) * (*a*, *b*) = (*c* + *a*, *d* + *b*) = (*a* + *c*, *b* + *d*) = (*a*, *b*) * (*c*, *d*) ∀(*a*, *b*), (*c*, *d*) ∈ *A* ⇒ * is commutative on *A*. Again [(*a*, *b*) * (*c*, *d*)] * (*e*, *f*) = (*a* + *c*, *b* + *d*) * (*e*, *f*) = (*a* + *c* + *e*, *b* + *d* + *f*) = (*a* + (*c* + *e*), *b* + (*d* + *f*)) = (*a*, *b*) * (*c*, *d*) * (*e*, *f*)] ∀(*a*, *b*), (*c*, *d*), (*e*, *f*) ∈ *A* ⇒ * is associative on *A*. Also 0 ∈ *R* and (0, 0) ∈ *A*. ∴ ∀(*a*, *b*) ∈ *A*, (*a*, *b*) * (0, 0) = (*a* + 0, *b* + 0) = (*a*, *b*) and (0, 0) * (*a*, *b*) = (0 + *a*, 0 + *b*) = (*a*, *b*) ⇒ (0, 0) acts as an identity element in *A* w.r.t. *.