Mathematics

Chapterwise Practise Problems (CPP) for JEE (Main & Advanced)

Chapter - Quadratic Equation

Level-1

SECTION - A Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (1), (2), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

1. Let α and β be roots of the equation x²-px + r=0

and $\frac{\alpha}{2}$ and 2β be the roots of the equation x^2 –

qx + r = 0, then the value of r

(A)
$$\frac{2}{9}(p-q)(q-p)$$
 (B) $\frac{2}{9}(p-q)(2p-q)$

(C)
$$\frac{2}{9}(p-q)(2q-p)$$
 (D) $\frac{2}{9}(2p-q)(2q-p)$

2. α , β are roots of x² + (1 - 2²⁰¹³)x + 2²⁰¹²(2²⁰¹² - 1) - 2 = 0; then, $(\alpha - \beta)^{2014} =$

(A) $(2^{2012} - 1) \cdot 17$ (B) 3^{4018} (C) 3^{2014} (D) 2^{1007}

- 3. If α , β , γ are the roots of the equation $x^3 + 6x + 1=0$, then the value of $(\alpha+\beta)^{-1} + (\beta+\gamma)^{-1} + (\gamma+\alpha)^{-1}$ is
 - (A) 6 (B) -6 (C) 9 (D) -9
- 4. If p, q are the roots of $ax^2 bx + c = 0$ then the equation $(a + cy)^2 = b^2y$ in y has the roots
 - (A) $\frac{1}{p}$, $\frac{1}{q}$ (B) p^2 , q^2

(C)
$$\frac{p}{q}$$
, $\frac{q}{p}$ (D) $\frac{1}{p^2}$, $\frac{1}{q^2}$

SECTION - B Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (1), (2), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

- 5. The quadratic equation $x^2 2x \lambda = 0$, $\lambda \neq 0$
 - (A) Cannot have a real root for $\lambda \in (-\infty, -1)$
 - (B) Can have a rational root if $\lambda = n^2$; $n \in N$
 - (C) Cannot have an integral root if $n^2 1 < \lambda < n^2$ + 2n; n = 0, 1, 2, 3,
 - (D) Have equal roots for $\lambda = -1$.
- 6. Both the roots of the equation $x^2 6 kx + 2 2k$ + $9k^2 = 0$, are greater than 3; then k may be

(A)
$$k > \frac{11}{9}$$
 (B) $k = 2$

(C)
$$k = \frac{3}{2}$$
 (D) $k = \frac{5}{3}$

7. If abc < 0 and $y = ax^2 + bx + c$, then the graph of the quadratic curve is

- 8. Consider the equation $x^2 8ax + 16a^2 1 = 0$; which of the following(s) is/are true?
 - (A) If both roots of this equation are lying between

- 10 and 10 then
$$a \in \left(-\frac{11}{4}, \frac{11}{4}\right)$$

(B) If both roots of this equation are lying between

$$-10 \text{ and } 10 \text{ then } \boldsymbol{a} \in \left(-\frac{9}{4}, \frac{9}{4}\right)$$

- (C) The given equation has always real roots
- (D) If both the roots of this equation are positive

then $a \in \left(\frac{1}{4}, \infty\right)$

qr = 0, $x^2 + qx + pr = 0$ and $x^2 + rx + pq = 0$ has a common root, then product of the three common roots is

- (A) 2pqr (B) pqr
- (C) pqr (D) none of these
- If a,b,c ∈ R then for which of the following graphs of the quadratic polynomial y=ax²-2bx+c(a≠0); the product (abc) is negative

- 11. Which of the following are correct
 - (A) $x^4+2x^2-6x+2=0$ has exactly two real solution
 - (B) $x^5+5x+1=0$ has exactly one real solutions
 - (C) xⁿ+ax+b=0 where n is an even natural number has atmost two real solution a, b, $\in R$
 - (D) x³-3x+c=0, c>0 does not have two real solution for $c \in (0, 1)$
- 12. The following figure shows the graph of f(x) = ax² + bx - c. then which of the following alternative(s) is/ are correct ?

(A)
$$\frac{b}{c} < 0$$

- (B) a and b are of same sign
- (C) a and c are of opposite sign

(D) f(1) > 0

13. If f(x) and g(x) are two polynomials such that the polynomial $h(x) = xf(x^3) + x^2 g(x^6)$ is divisible by $x^2 + x + 1$, then which of the following options are correct

(A) $f(1) = g(1)$	(B) $f(1) = -g(1)$
(C) $f(1) = g(1) \neq 0$	(D) $f(1) + g(1) \neq 0$

14. If a < 0, then the value of x satisfying $x^2 - 2a |x-a|$ -3a²=0 is/are

(A)
$$a(1-\sqrt{2})$$
 (B) $a(1+\sqrt{2})$

(C) $a(-1-\sqrt{6})$ (D) $a(-1+\sqrt{6})$

SECTION-D

Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in **Column I** are labelled 1, 2, 3 and 4, while the statements in **Column II** are labelled p,q,r,s. Four options 1,2,3 and 4 are given below. Out of which, only one shows the right matching

15. Let α , β , γ be the roots of $x^3 + px + q = 0$, then value of

Column I						Column II
(A)	$\frac{1}{\beta}$ +		$\frac{1}{\gamma + \alpha}$	$\frac{1}{\alpha} + \frac{1}{\alpha + \beta}$	(p)	$\frac{p^2}{q^2}$
(B)	α4 -	⊦β ⁴	+ γ ⁴		(q)	$\frac{-\left(p^3+3q^2\right)}{q^3}$
(C)	c) $\alpha^{-3} + \beta^{-3} + \gamma^{-3}$			γ ⁻³	(r)	2 <i>p</i> ²
(D) $\alpha^{-2} + \beta^{-2} + \gamma^{-2}$			γ ⁻²	(s)	p/q	
Codes						
	Α	в	С	D		
(A)	s	q	r	р		
(B)	s	r	q	р		
(C)	р	q	r	S		
(D)	р	r	q	s		

16. Let $P(x) = 2x^2 - 12x + c \quad \forall x \in R$ where c is a real constant, then

Column - I Column - II

(A) If greatest value of p(x) for (P) 8

 $x \in [1, 2]$ is 1, then c equals

(B) If smallest value of P(x) for (Q) 11

 $x \in [1, 5]$ is -1, then c equals

(C) If the greatest value of P(x) for (R) 12

 $x \in [1, 4]$ is 2, then c equals

(S) 17

SECTION-E Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :

- 17. The number of quadratic equations $ax^2 + bx + c = 0$ having real roots and distinct coefficients $a, b, c \in \{2, 3, 6, 7\}$ is _____.
- 18. If α , β , γ are the roots of equation x³ + px² + qx -

r = 0, then the value of
$$\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}\right)$$
 is $\frac{q^2 + kpr}{r^2}$,
then k =

- 19. If a,b,c, are distinct real numbers & consider the expression $f(x) = a^2 \frac{(x-b)(x-c)}{(a-b)(a-c)} + b^2 \frac{(x-c)(x-a)}{(b-c)(b-a)}$ $+ c^2 \frac{(x-a)(x-b)}{(c-a)(c-b)}$, then $\lim_{x \to a} \frac{f(x)}{x^2} = ?$
- 20. Let P (x) be polynomial of degree 4 with leading coefficient 1. Give that P (1) = 1, P(2) = 3, P(3) = 5 and P(4) = 7. The value of P (5) will be k, then $\frac{k}{11}$ =
- 21. Let P(x) = x⁶ + ax⁵ + bx⁴ + cx³ + dx² + ex + f be a polynomial such that P (1) = 1 ; P (2) = 2 ; P(3) = 3; P (4) = 4 ; P (5) = 5 and P (6) = 6 then find the value of P (7).

Level-2

SECTION - A

Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

- 1. If $x^2 + (a-b) x + 1 a b = 0$, where a and b are real numbers, has distinct real roots for all values of b, then
 - (A) a > 1 (B) a < 1
 - (C) a < 0 (D) 0 < a < 1
- 2. If α and β are the roots of the equation $x^2 6x + 7 = 0$ and $a_n = \alpha^n + \beta^n$, $n \ge 1$ then the value of

$\frac{a_{12} + 7a_{10}}{a_{10}}$	S
6a ₁₁	0

- (A) 1 (B) 2 (C) 3 (D) 4
- 3. The equation

$\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x-1}$	$\sqrt{x+8-6\sqrt{x-1}} = 1$, has
-------------------------------------	------------------------------------

- (A) No solution (B) One solution
- (C) Two solutions (D) Infinite solutions
- 4. If $|x^2-5x+6| = \lambda(x-7)$ has 3 solutions, then λ is equal to
 - (A) $\sqrt{23} 7$ (B) $4\sqrt{5} 9$ (C) $-7 - \sqrt{23}$ (D) 0
- 5. If the roots of the equation $x^4 + x^2 + 5x + 100 = 0$ are α , β , γ , δ , then the biquadratic equation, whose roots are $\alpha + \beta + \gamma$, $\alpha + \beta + \delta$, $\beta + \gamma + \delta$, $\alpha + \gamma + \delta$ is
 - (A) $2x^4 + 3x^2 + 6x + 100 = 0$
 - (B) $x^4 + x^2 + 5x 100 = 0$
 - (C) $x^4 + x^2 + 5x + 100 = 0$
 - (D) $x^4 + x^2 5x + 100 = 0$

6. The set of real values of a for which the equation

$$\frac{2a^2 + x^2}{a^3 - x^3} - \frac{2x}{ax + a^2 + x^2} + \frac{1}{x - a} = 0$$
 has a unique solution is
(A) (-∞, 1) (B) (-1, ∞)

- (C) (-1, 1) (D) $R \{0\}$
- 7. Find the values of 'a' for which the equation

 $(x^{2} + x + 2)^{2} - (a - 3)(x^{2} + x + 2)$

 $(x^{2} + x + 1) + (a - 4)(x^{2} + x + 1)^{2} = 0$ has at least one real root.

(A)
$$(0, 5)$$
 (B) $(5, \frac{19}{3}]$
(C) $(\frac{19}{3}, 7)$ (D) $(0, 4)$

8. If the roots of $2x^3 - 3x^2 - 12x + 12 = 0$

are α , β , γ , then $[\alpha] + [\beta] + [\gamma]$ (where [.] denote greatest integer function) equals to

- (A) 0
- (B) 1
- (C) -1
- (D) 2
- 9. Consider the equation

 $x^3-nx+1=0,\quad n\in N,\quad n\geq 3. \ Then$

- (A) Equation has atleast one rational root.
- (B) Equation has exactly one rational root.
- (C) Equation has all real roots belonging to (0, 1).
- (D) Equation has no rational root.
- 10. If $a_1, a_2, a_3(a_1 > 0)$ are in G.P. with common ratio r, then the value of r, for which the inequality $9a_1 + 5a_3 > 14a_2$ holds, can not lie in the interval

(A) [1, ∞)	(B) [1, 9/5]		
(C) [4/5, 1]	(D) [5/9, 1]		

(4)

- 11. Let p (x) = 0 be a polynomial equation of least possible degree, with rational coefficients, having $\sqrt[3]{7} + \sqrt[3]{49}$ as one of its roots. Then the product of all the roots of p (x) = 0 is
 - (A) 7 (B) 49
 - (C) 56 (D) 63
- 12. If α , β , γ are the roots of the cubic equation

$$x^3 - 2x + 3 = 0$$
 then the value of

$$\frac{1}{\alpha^{3}+\beta^{3}+6} + \frac{1}{\beta^{3}+\gamma^{3}+6} + \frac{1}{\gamma^{3}+\alpha^{3}+6}$$
 equals

(A)
$$\frac{1}{3}$$
 (B) $\frac{-1}{3}$

- (C) $\frac{1}{2}$ (D) $\frac{-1}{2}$
- 13. A quadratic binomial P(x) is such that P(x) = 0 and P(P(P(x))) = 0 have a common root, then
 - (A) $P(0) \cdot P(1) > 0$
 - (B) $P(0) \cdot P(1) < 0$
 - (C) $P(0) \cdot P(1) = 0$
 - (D) Nothing can be said in general
- 14. If $x_1, x_2, x_3, \dots, x_{n-1}, x_n$ be 'n' zeroes of the polynomial P(x)= $x^n + \alpha x + \beta$ where, $x_i \neq x_j$, i and j = 1,2, 3,....,(n). Then the value of Q = $(x_1 - x_2)(x_1 - x_3)(x_1 - x_4), \dots, (x_1 - x_{n-1})(x_1 - x_n)$
 - (A) $n(n-1)x_1^{n-2}$
 - (B) ${}^{n}c_{2}.x_{1}^{n-2}$
 - (C) $nx_{1}^{n-1} + \alpha$
 - (D) Zero
- 15. P(x) is a polynomial such that

$$P(x) + P(2x) = 5x^2 - 18$$
, then $\lim_{x \to 3} \frac{P(x)}{x - 3}$ is

- (A) 6 (B) 9
- (C) 18 (D) Zero

16. Let $y = f(x) = x^3 + x^2 + 100x + 7 \sin x$.

Then the equation $\frac{1}{y-f(1)} + \frac{2}{y-f(2)} + \frac{3}{y-f(3)} = 0$

has

(A) exactly one root lying in (f(1), f(2))

(B) both roots lying in (f(1), f(2))

- (C) exactly one root lying in $(-\infty, f(1))$
- (C) exactly one root lying in (f(2), ∞)

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

17. If α is a real root of the equation

 $ax^2 + bx + c = 0$ and β is a real root of equation $-ax^2 + bx + c = 0$, then the equation

$$\frac{a}{2}x^2+bx+c=0$$
 has

- (A) Real roots
- (B) Non-real roots
- (C) Has a root lying between α and β
- (D) No root between α and β
- 18. Consider the equation $x^4 3x^3 2x^2 3x + 1 = 0$; which of the following(s) is/are true?
 - (A) The given equation has four real roots
 - (B) The given equation has two imaginary roots
 - (C) The given equation has two rational roots
 - (D) The given equation has two irrational roots
- 19. Consider the equation $x^3 12x = K$, then which of the following(s) is/are true?
 - (A) If $K \in (-16, 16)$, then the given equation has three distinct real roots
 - (B) If $K \in (16, \infty)$, then the given equation has exactly one real root which is positive
 - (C) If $K \in (-\infty, -16)$, then the given equation has exactly one negative real root
 - (D) There are exactly two values of *K* for which the given equation has exactly two repeated roots.

20. $x^8 - x^5 - \frac{1}{x} + \frac{1}{x^4} > 0$ is satisfied for (A) positive value of x (B) negative value of x (C) all real numbers except zero (D) only for x > 121. Equation $\frac{\pi^{e}}{x-e} + \frac{e^{\pi}}{x-\pi} + \frac{e^{\pi}}{x-\pi} + \frac{\pi^{\pi}+e^{e}}{x-\pi-e} = 0$ has (A) one real root in (e, π) and other in (π – e, e) (B) one real root in (e, π) and other in (π , π + e) (C) two real roots $(\pi - e, \pi + e)$ (D) no real root 22. The interval for which $x^{12} - x^9 + x^4 - x + 1 > 0$ is: (A) - 4 < x < 0(B) 0 < x < 1 (C) - 100 < x < 100(D) $-\infty < x < \infty$ 23. If $\sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7$ and $\sin 2x = a - b\sqrt{7}$,

(A) a = 22 (B) a = 8(C) b = 8 (D) b = 4

SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, some multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE OR MORE** is/are correct.

Paragraph for Question Nos. 24 to 25

Let $f(x) = ax^2 + bx + c$. If $x_i \in R$, i = 1, 2, 3 and are distinct values such that $f(x_i) = 0$, then $f(x) \equiv 0$ *i.e.* $f(x) = 0 \forall x \in R$.

- 24. If *f* and x_i , *i* = 1, 2, 3 are same as given in above paragraph, then
 - (A) $a \neq 0, b \neq 0, c = 0$ (B) $a = b \neq 0, c = 0$
 - (C) a = 0, and b=c=0 (D) a \neq 0, b = c = 0

25. Let
$$g(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} + \frac{(x-x_3)(x-x_1)}{(x_2-x_3)(x_2-x_1)}$$

 $+\frac{(x-x_{1})(x-x_{2})}{(x_{3}-x_{1})(x_{3}-x_{2})}, \text{ then } g(x) \text{ is identically equal} to$ (A) 0(B) 1 $(C) <math>(x-x_{1})(x-x_{2})(x-x_{3})$ (D) $(x_{1}-x_{2})(x_{2}-x_{3})(x_{3}-x_{1})$ Paragraph for Question Nos. 26 to 27

Let a_0 , a_1 , a_2 , ..., a_n be real numbers, then $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ is called polynomial in variable *x*. If all *n* roots of any polynomial equation of *n* degree satisfy an other polynomial of *n* degree then both

26. Equations $a_1x^2 + b_1x + c_1 = 0$ and

equations are called identical.

 $a_2x^2 + b_2x + c_2 = 0$, where $(a_1, a_2, b_1, b_2, c_1, c_2) \in R$ are identical equations if and only if

(A)
$$\left(\frac{a_1}{a_2}\right)^{2n} = \left(\frac{b_1}{b_2}\right)^{2n} = \left(\frac{c_1}{c_2}\right)^{2n}$$
, where $n \in I$

(B)
$$a_1 = ka_2$$
; $b_1 = kb_2$, $c_1 = kc_2$ for any $k \in R - \{0\}$
(C) $a_1 = ka_2$; $b_1 = kb_2$, $c_1 = kc_2$ for any $k \in C$

(D)
$$\left(\frac{a_1}{a_2}\right)^{2n+1} = \left(\frac{b_1}{b_2}\right)^{2n+2} = \left(\frac{c_1}{c_2}\right)^{2n+3}$$

27. If *a*, *b*, *c* are the sides of a triangle, then what is the value of $(c^2 + a^2 - b^2)$ if following two equations are identical?

$$(b-c) x2 - (c-a) x + (a-b) = 0$$
$$ax2 + (a+b+c) x + (b+c) = 0$$

- (A) 2ca (B) 2ab
- (C) 2*bc* (D) a*b*

Paragraph for question nos. 28 and 29

Consider a quadratic expression

$$f(x) = tx^2 - (2t-1)x + (5t-1)$$

 If f(x) can take both positive and negative values then t must lie in the interval

(A)
$$\left(\frac{-1}{4}, \frac{1}{4}\right)$$
 (B) $\left(-\infty, \frac{-1}{4}\right) \cup \left(\frac{1}{4}, \infty\right)$
(C) $\left(\frac{-1}{4}, \frac{1}{4}\right) - \{0\}$ (D) $(-4, 4)$

29. If f(x) is non-negative $\forall x \ge 0$ then t lies in the interval

Paragraph for question nos. 30 to 31

For a, $b \in R - \{0\}$, let f (x) = ax² + bx + a satisfies

$$f\left(x+\frac{7}{4}
ight)=f\left(\frac{7}{4}-x
ight)\forall x \in R$$

Also the equation f(x) = 7x + a has only one real and distinct solution.

30. The value of (a + b) is equal to

(A) 4	(B) 5
(C) 6	(D) 7

31. The minimum value of f (x) in $\begin{bmatrix} 0, \frac{3}{2} \end{bmatrix}$ is equal to

(A)
$$\frac{-33}{8}$$
 (B) 0

Paragraph for question no. 32 and 33

The graph of $y = px^2 + qx + r$, $x \in R$ is plotted in adjacent diagram. Given AM = 2 and CM = 1.

- 32. Which of the following statements (s) is (are) correct?
 - (A) The value of (4p r) is equal to 7.
 - (B) The value of (4p r) is equal to 5.
 - (C) The sum of roots of equation $px^2 + qx + r = 0$ is equal to 10.
 - (D) The sum of roots of equation $px^2 + qx + r = 0$ is equal to 12.
- 33. Which of the following statement (s) is (are) incorrect?
 - (A) The value of $\lim_{x\to 8} (px^2 + qx + r)$ is not equal to zero.
 - (B) The inequality $px^2 + qx + r < 0$ is true for all $x \in (6, \infty)$
 - (C) Harmonic mean of roots of the equation

$$px^2 + qx + r = 0$$
 is $\frac{32}{3}$.

(D) The value of q is equal to 3.

SECTION-D Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in **Column I** are labelled 1, 2, 3 and 4, while the statements in **Column II** are labelled p, q, r, s and t. Four options 1,2,3 and 4 are given below. Out of which, only one shows the right matching

34. If $x^4 - 6x^3 + 8x^2 + 4ax - 4a^2 = 0$, $a \in R$, then match the following :

	Column I	Colu	ımn II
(A)	Equation will have 4	(P)	(0, 1)
	real and distinct roots		
	for a belongs to		
(B)	Equation will have	(Q)	(3, 4)
	2 distinct real roots		
	for a belongs to		
(C)	Equation will have at	(R)	(–2, –1)
	least one negative root		
	for a belongs to		
(D)	Equation will have 2	(S)	{2}
	equal and 2 distinct		

real roots for a belongs to

35. Match the following Column - I with Column - II :

Column I

(A) If
$$x^4 - ax^3 - ax^2$$
 (P) $\left(\frac{2\sqrt{2}-1}{1+2\sqrt{2}}, \frac{1+2\sqrt{2}}{2\sqrt{2}-1}\right)$

Column II

(Q) $\left(-\infty, \frac{3}{2}\right)$

+ax+1=0 has two

distinct positive real roots then exhaustive

set of values of a is

(B) If
$$x^4 - ax^3 - ax^2$$

+ax+1=0 has two

distinct positive real roots and two distinct

negative real roots

then exhaustive set

of values of a is

(C) If
$$x^4 + ax^3 + x^2$$
 (R) $(3,\infty)$
+ $ax + 1 = 0$ has
atleast two distinct

negative real roots then exhaustive values of a is

(D) If $(x^2 + x + 2)^2$ (S) $\left(-\infty, \frac{3}{2}\right) \cup (3, \infty)$

has two distinct real roots then exhaustive

 $-a(x^4 + 3x^2 + 4) = 0$

set of a is

(T) $(-\infty, -2 - 2\sqrt{3})$ $\cup (-2 + 2\sqrt{3}, \infty)$

SECTION-E Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :

Х	Y	Ζ
$\bigcirc \bigcirc $		0

- 36. The number of real roots of $x^{100} 2x^{99} + 3x^{98} \dots 100 x + 101 = 0$ is ____.
- 37. If x > 0, then minimum value of

$$\frac{\left(x+\frac{1}{x}\right)^{6} - \left(x^{6}+\frac{1}{x^{6}}\right) - 2}{\left(x+\frac{1}{x}\right)^{3} + \left(x^{3}+\frac{1}{x^{3}}\right)} \text{ is } \underline{\qquad}.$$

- 38. If $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$ are the roots of $ax^2+bx+c = 0$ and the discriminant is 11, then the value of $(a+b+c)^2-11$ is _____
- 39. If α is a common root of the equations $x^3 + 2x^2 5x + 2 = 0$ and $x^3 + x^2 8x + 4 = 0$, then

$$\left|\frac{2\alpha}{\sqrt{17}-3}\right|$$
 is equal to

40. Let f(x) be a polynomial of degree 8 such that F(r) =

$$\frac{1}{r}$$
, r=1,2,3,.....,8, 9 then $\frac{1}{F(10)}$ is

- 41. The number of real root(s) of the equation $ae^x = 1 + x + \frac{x^2}{2}$; where a is positive constant less than unity.
- 42. Let $f(x) = x^2 + \lambda x + \mu \cos x$, λ being an integer and μ is a real number. The number of ordered pairs (λ, μ) for which the equation f(x) = 0 and f(f(x)) = 0 have the same (non empty)set of real roots is
- 43. If the biquadratic $x^4 + ax^3 + bx^2 + cx + d = 0$ (a, b, c, $d \in R$) has 4 non real roots, two with sum 3 + 4i and the other two with product 13 + i. Then the value of 'b' is

CPP-03 FS JEE(M) & ADVANCED

ANSWERS

LEVEL-1

1. (D)	2. (C)	3. (A)	4. (D) 5. (A,C,D)	6. (A,B,C,D)
7. (A,B,C,D)	8. (B,C,D)	9. (B,C)	10. (A,C,D) 11. (A,B,C)	12. (A,B,C)
13. (B)	14. (A,D)	15. (B)	16. (A-Q B-S,C-R) 17. (6)	18. (2)
19. (1)	20. (3)	21. (727)		

LEVEL-2

1. (A)	2. (A)	3. (D)	4. (B)	5. (D)	6. (D)
7. (B)	8. (C)	9. (A)	10. (B)	11. (C)	12. (B)
13. (C)	14. (C)	15. (A)	16. (A)	17. (A, C)	18. (B,D)
19. (A,B,C,D)	20. (A,B,C)	21. (B,C)	22. (A,B,C,D)	23. (A,C)	24. (C)
25. (B)	26. (B)	27. (D)	28. (C)	29. (D)	30. (B)
31. (D)	32. (A,D)	33. (A,B,D)	34. (A-P B-Q,R,C-	-P,Q,R,SD-S)	
35. (A-TB-T,C-QD-P)	36. (0)	37. (6)	38. (0)	39. (1)	40. (5)
41. (1)	42. (3)	43. (51)			

(10)