OBJECTIVE QUESTIONS

1. The vapor pressure of an aqueous solution of sucrose at 373 K is found to be

750 mm Hg. The molality of the solution at the same temperature will be:

	(a) 0.26	(b)	0.73	(c)	0.74	(d)	0.039	
2.	Estimate the lowering	ng of	vapor pressure	due	to the solute (gluc	ose) in a 1.0 M	
	aqueous solution at	100°	C:					
100	(a) 10 torr	(b)	18 torr	(c)	13.45 torr	(d)	24 torr	
3.	Calculate the weigh	t of n	on-volatile solu	ite h	aving molecul	ar.w	eight 40, which	
	should be dissolved	in 5'	g octane to rea	duce	its vapor pres	sure	to 80%:	
	(a) 47.2 g	(b)	5 g	(c)	106.2 g	(d)	None of these	
4.	An ideal solution ha							
	$P_A^{\circ} > P_B^{\circ}$ and also P_A	$_{A}^{\circ} > P_{t}$	$_{\text{otal}}$. If X_A and Y	A ar	e more fraction	ns of	components A	
	in liquid and vapor	ohase	es, then:			*5		
	(a) $X_A = Y_A$				$X_A > Y_A$			
	(c) $X_A < Y_A$				Data insuffici			
5.	Two liquids A and I							
	temperature. Assum		#5 2298 ES					
	fractions of A to B in			: 3.	Then the mole	frac	tion of B in the	
	solution at the same	-	2		4		,	
	(a) $\frac{1}{5}$	(b)	$\frac{2}{3}$	(c)	4 5	(d)	1/4	
6.	The total vapor pres	sure	3		3		7.	
	100 mm Hg) and 3 i							
	Hg. For such case:		·		, b		<i>57</i>	
	(a) there is a posit	ive o	leviation from I	Raou	ılt's law			
	(b) boiling point h	as b	een lowered					
	(c) force of attrac	tion l	between A and I	B is s	smaller than th	at be	tween A and A	
	or between B	and E	3					
	(d) all the above s	taten	nents are correc	t				
7.	Water and chlorober							
	under a reduced pre-				and the contract of the contract of the con-			
	89° C is 7×10^4 Pa.	Weig	ht percent of ch	loro	benzene in the	dist	illate is:	
	(a) 50	(b)	60	(c)	78.3	(d)	38.46	
8.	Which of the follow	ing a	queous solutio	ns h	aving the indi	cated	l mole fraction	
	of solute should have the highest vapor pressure?							
	(a) 0.02 M NaCl a	at 50°	C	(b)	0.03 M sucros	se at	15°C	
	(c) 0.005 M CaCl	2 at 5	.0°C .	(d)	0.005 M CaC	l ₂ at 2	25°C	
9.	The number of mole	s of	Na ₂ SO ₄ to be d	lisso	lved in 12 mo	l wa	ter to lower its	
	vapor pressure by 10		200 - 100 PM PC - 100 PM					
	water is 50 mm is:					-		

(a) 1.5 mol

(b) 2 mol

(d) 3 mol

(c) 1 mol

10. A compound has the empirical formula C₁₀H₈Fe. A solution of 0.26 g of the compound in 11.2 g of benzene (C₆H₆) boils at 80.26°C. The boiling point of benzene is 80.10°C and K_b is 2.53°C/molal. What is the molecular formula of the compound? (a) $C_{30}H_{24}Fe_3$ (b) $C_{10}H_8Fe$ (c) C_5H_4Fe (d) $C_{20}H_{16}Fe_2$ 11. What will be the minimum freezing point for 1 molal solution of each compound, assuming complete ionization in each case? (b) $[Fe(H_2O)5Cl]Cl_2 \cdot H_2O$ (a) $[Fe(H_2O)_6]Cl_3$ (c) $[Fe(H_2O)_4Cl_2]Cl \cdot 2H_2O$ (d) $[Fe(H_2O)_3Cl_3] \cdot 3H_2O$ 12. Which of the following aqueous solutions should have the highest boiling point? (a) 1.0 M NaOH

(b) 1.0 M Na₂SO₄

(c) 1.0 M NH₄NO₃

(d) 1.0 M KNO₃

- 13. A complex is represented as CoCl₃·xNH₃. Its 0.1 molal solution in water shows $\Delta T_f = 0.558 \text{ K}$. K_f for H₂O is 1.86 K per molality. Assuming 100% ionization of complex and coordination number of Co is six, calculate formula of the complex:
 - (a) [Co(NH₃)₆]Cl₃

(b) [Co(NH₃)₅Cl]Cl₂

(c) $[Co(NH_3)_4Cl_2]Cl$

(d) None of these

- 14. When mercuric iodide is added to the aqueous solution of KI, then the:
 - (a) freezing point is raised
- (b) freezing point is lowered
- (c) freezing point does not change
- (d) boiling point does not change
- 15. Phenol associates in benzene to a certain extent to form a dimer. A solution containing 0.02 kg of phenol in 1.0 kg of benzene has its freezing point depressed to 0.69 K. Hence, the degree of association of phenol dimerized will be $[K_1(C_6H_6) = 5.12 \text{ (K kg)/mol}]$:
 - (a) 0.63
- (b) 0.73
- (c) 0.83
- (d) 0.93
- 16. X_3Y_2 (i = 5) when reacted with A_2B_3 (i = 5) in aqueous solution gives brown color. These are separated by a semipermeable membrane AB as shown in the adjacent figure. Due to osmosis, there is:

- (a) brown color formation in side X
- (b) brown color formation in side Y
- (c) brown color formation in both of the sides X and Y
- (d) no brown color formation

17.	17. At 48°C, the vapor pressure of pure CS ₂ is 850 torr. A solution of 2.0 g of sulphur in 100 g of CS ₂ has a vapor pressure 844.9 torr. Determine the atomicity of sulphur molecule:						
9. 3	(a) 1	(b) 2	(c) 4	1	(d) 8		
18.	What is the molarity	of 4.9% H ₃ PO ₄ sol	ution by	mass (d of H	$_{3}PO_{4} = 1.22 \text{ g/mL}$?		
	(a) 0.61 M	(b) 4.9 M	(c) 1	1.22 M	(d) 1 M ¹		
19.	9. Among the following, the solution which shows highest osmotic pressure						
	(a) 0.05 M NaCl	20	(b) (0.10 M BaCl ₂			
	(c) 0.05 M FeCl ₃		(d) (0.05 M Na ₂ SO	04		
20.	20. The molality of 1 M NaNO ₃ solution is $(d = 1.25 \text{ g/mL})$:						
	(a) 0.8 m	(b) 0.858 m	(c) l	l.6 m	(d) 1 m		
21.	The vapor pressure	of pure liquid A is	70 torr	at 27°C. It for	orms an ideal solu-		
51	tion with another liquid B. The mole fraction of B is 0.2, and the total vapor pressure of the solution is 84 torr at 27°C. The vapor pressure of pure liquid B at 27°C is:						
	(a) 140 torr	(b) 50 torr	(c) 1	4 torr	(d) 70 torr		
22.	If relative decrease	in vapor pressure	is 0.4	for a solution	containing 1 mol		
18	NaCl in 3 mol of H	O, then NaCl ioniz	zed is:				
	(a) 60%	(b) 80%	(c) 4	10%	(d) 100%		
0.000.000.00	m 1 0 1		Section 1.	Man on the same of the same			
23.	aqueous solution. T may be:				s 132.5 g/mol in an ate in this solution		
23.	aqueous solution. T	he degree of disso	ciation		ate in this solution		
(25)	aqueous solution. T may be:	(b) 32% of a solvent decreas ution, the mole fra	(c) 2 es by 5. ction of	of silver nitr 28% 4 torr when a f solute is 0.2	(d) 44% non-volatile solute 2. What will be the		
(25)	aqueous solution. To may be: (a) 79% The vapor pressure of is added. In this solution.	(b) 32% of a solvent decreas ution, the mole fra	(c) 2 es by 5. ction of	of silver nitr 28% 4 torr when a f solute is 0.2 or pressure is	(d) 44% non-volatile solute 2. What will be the		
24.	aqueous solution. To may be: (a) 79% The vapor pressure of is added. In this solution of the	(b) 32% of a solvent decrease ution, the mole fra solvent if decrease (b) 0.4 e glycol is dissolved maintain a tempera	(c) 2 es by 5. ction of in vapo (c) 0 d in 500 ature of	of silver nitres. 28% 4 torr when a f solute is 0.2 or pressure is 0.2 2 g water. The 1-263.7 K. W	(d) 44% non-volatile solute 2. What will be the 16.2 torr? (d) 0.8 e solution is placed What amount of ice		
24.	aqueous solution. To may be: (a) 79% The vapor pressure of is added. In this solution of the (a) 0.6 About 75 g ethylened in a refrigerator to the content of the conten	(b) 32% of a solvent decrease ution, the mole fra solvent if decrease (b) 0.4 e glycol is dissolved maintain a tempera	(c) 2 es by 5. ction of in vapo (c) 0 d in 500 ature of vater = 1	of silver nitres. 28% 4 torr when a f solute is 0.2 or pressure is 0.2 2 g water. The 1.263.7 K. W. 1.86 K/molali	(d) 44% non-volatile solute 2. What will be the 16.2 torr? (d) 0.8 e solution is placed what amount of ice (ty)		
24.	aqueous solution. To may be: (a) 79% The vapor pressure of is added. In this solution of the (a) 0.6 About 75 g ethylened in a refrigerator to swill separate at this	(b) 32% of a solvent decrease ution, the mole fraction solvent if decrease (b) 0.4 e glycol is dissolved maintain a temperature? (K _f we (b) 200 g	(c) 2 es by 5. ction of in vapo (c) 0 d in 500 ature of vater = 1 (c) 1	of silver nitres. 28% 4 torr when a f solute is 0.2 or pressure is 0.2 9 g water. The 2-263.7 K. W. 1.86 K/molality 78 g	ate in this solution (d) 44% non-volatile solute 2. What will be the 16.2 torr? (d) 0.8 e solution is placed That amount of ice (ty) (d) 258 g		
24.	aqueous solution. To may be: (a) 79% The vapor pressure of is added. In this solution of the (a) 0.6 About 75 g ethylenes in a refrigerator to will separate at this (a) 300 g Which of the follow suming $m = M$?	(b) 32% of a solvent decrease ution, the mole fraction solvent if decrease (b) 0.4 e glycol is dissolved maintain a temperature? (K _f we (b) 200 g	(c) 2 es by 5. ction of in vapor (c) 0 d in 500 ature of vater = 1 (c) 1 ion has	of silver nitres. 28% 4 torr when a f solute is 0.2 or pressure is 2.2 9 g water. The 2-263.7 K. W. 1.86 K/molalis 78 g the highest	ate in this solution (d) 44% non-volatile solute 2. What will be the 16.2 torr? (d) 0.8 e solution is placed what amount of ice ty) (d) 258 g freezing point (as-		
24.	aqueous solution. To may be: (a) 79% The vapor pressure of is added. In this solution of the (a) 0.6 About 75 g ethylened in a refrigerator to will separate at this (a) 300 g Which of the follow suming $m = M$? (a) 0.1 M KNO ₃	(b) 32% of a solvent decrease ution, the mole fraction solvent if decrease (b) 0.4 e glycol is dissolved maintain a temperature? (K _f we (b) 200 g	(c) 2 es by 5. ction of in vapo (c) 0 d in 500 ature of vater = 1 (c) 1 ion has	of silver nitronal 28% 4 torr when a f solute is 0.2 or pressure is 0.2 or gwater. The 1-263.7 K. Will 1.86 K/molali 78 g the highest 1.2 M Na ₃ PO ₄	(d) 44% non-volatile solute 2. What will be the 16.2 torr? (d) 0.8 e solution is placed what amount of ice ity) (d) 258 g freezing point (as-		
24.	aqueous solution. To may be: (a) 79% The vapor pressure of is added. In this solution of the (a) 0.6 About 75 g ethylenes in a refrigerator to will separate at this (a) 300 g Which of the follow suming $m = M$?	(b) 32% of a solvent decrease ution, the mole fraction solvent if decrease (b) 0.4 e glycol is dissolved maintain a temperature? (K _f we (b) 200 g	(c) 2 es by 5. ction of in vapo (c) 0 d in 500 ature of vater = 1 (c) 1 ion has	of silver nitres. 28% 4 torr when a f solute is 0.2 or pressure is 2.2 9 g water. The 2-263.7 K. W. 1.86 K/molalis 78 g the highest	(d) 44% non-volatile solute 2. What will be the 16.2 torr? (d) 0.8 e solution is placed what amount of ice ity) (d) 258 g freezing point (as-		
24.	aqueous solution. To may be: (a) 79% The vapor pressure of its added. In this solution of the (a) 0.6 About 75 g ethylened in a refrigerator to will separate at this (a) 300 g Which of the follow suming $m = M$? (a) 0.1 M KNO ₃ (b) 0.25 M FeCl ₃	(b) 32% of a solvent decrease ution, the mole fraction if decrease (b) 0.4 e glycol is dissolved maintain a temperature? (K _f w) (b) 200 g wing aqueous solution	(c) 2 es by 5. ction of in vapo (c) 0 d in 500 ature of vater = 1 (c) 1 ion has (b) 0 (d) 0	of silver nitronal silver nitr	ate in this solution (d) 44% non-volatile solute 2. What will be the 16.2 torr? (d) 0.8 e solution is placed what amount of ice (ty) (d) 258 g freezing point (as-		
24. 25.	aqueous solution. To may be: (a) 79% The vapor pressure of is added. In this solution of the (a) 0.6 About 75 g ethylened in a refrigerator to will separate at this (a) 300 g Which of the follow suming $m = M$? (a) 0.1 M KNO ₃ (b) 0.25 M FeCl ₃	(b) 32% of a solvent decrease ution, the mole fraction solvent if decrease (b) 0.4 e glycol is dissolved maintain a temperature? (K _f we (b) 200 g wing aqueous soluted decrease soluted and added to an additional soluted decrease temperature.	(c) 2 es by 5. ction of in vapo (c) 0 d in 500 ature of vater = 1 (c) 1 ion has (b) 0 (d) 0 queous	of silver nitronal silver nitr	(d) 44% non-volatile solute 2. What will be the 16.2 torr? (d) 0.8 e solution is placed what amount of ice ity) (d) 258 g freezing point (as-		

28.	On adding solute to a solvent having vapor pressure 0.80 atm, vapor pressure							
8	reduces to 0.60 atm. The mole fraction of solute is:							
e	(a) 0.25 (b) 0.75 (c) 0.50 (d) 0.33							
	Vapor pressure of a solution of 5 g of non-electrolyte in 100 g of water at a particular temperature is 2985 N/m ² . The vapor pressure of pure water is 3000 N/m ² . The molecular weight of the solute is:							
	(a) 60 (b) 120 (c) 180 (d) 380							
30.	Azeotropic mixture of HCl and water has:							
	(a) 84% HCl (b) 22.2% HCl (c) 63% HCl (d) 20.2% HCl							
31.	The osmotic pressure at 17°C of an aqueous solution containing 1.75 g of sucrose per 150 mL solution is:							
	(a) 0.8 atm (b) 0.08 atm (c) 8.1 atm (d) 9.1 atm							
32.	A 1.2 of solution of NaCl is isotonic with 7.2 of solution of glucose. Calculate							
· .	the Van't Hoff's factor of NaCl solution:							
	(a) 2.36 (b) 1.50 (c) 1.95 (d) 1.00							
33.	About 0.6 g of a solute is dissolved in 0.1 L of a solvent which develops an							
	osmotic pressure of 1.23 atm at 27°C. The molecular mass of the substance is:							
	(a) 149.5 g/mol (b) 120 g/mol (c) 430 g/mol (d) None of these							
34.	The boiling point of a solution of 0.1050 g of a substance in 15.84 g of ether was found to be 100° C higher than that of pure ether. What is the molecular weight of the substance [molecular elevation constant of ether per 100 g = 21.6]?							
	(a) 144.50 (b) 143.18 (c) 140.28 (d) 146.66							
35.	Boiling point of chloroform was raised by 0.323 K, when 0.5143 g of anthra-							
	cene was dissolved in 35 g of chloroform. Molecular mass of anthracene is:							
	$(K_b \text{ for CHCl}_3 = 3.9 \text{ kg/mol})$							
	(a) 79.42 g/mol (b) 132.32 g/mol (c) 177.42 g/mol (d) 242.32 g/mol							
36.	Normal boiling point of water is 373 K (at 760 mm). Vapor pressure of water at 298 K is 23 mm. If the enthalpy of evaporation is 40.656 kJ/mol, the boiling point of water at 23 mm pressure will be:							
	(a) 250 K (b) 294 K (c) 51.6 K (d) 12.5 K							
37.	. A 0.2 molal aqueous solution of a weak acid (HX) is 20% ionized. The freez-							
	ing point of this solution is (given $K_f = 1.86^{\circ}$ C/m for water):							
	(a) -0.31° C (b) -0.45° C (c) -0.53° C (d) -0.90° C							
38.	. A 0.001 molal solution of [Pt(NH ₃) ₄ Cl ₄] in water had a freezing point							
	depression of 0.0054° C. If K_f for water is 1.80, the correct formulation for the above molecule is:							
	() [D ₁ ()][[]) (1) [O] (1) (1) (1) (1) (1) (1)							
	(a) $[Pt(NH_3)_4Cl_3]Cl$ (b) $[Pt(NH_3)_4Cl]Cl_2$							

39.	water freezes at 27		e of K_f for water is	ing 0.1 g in 21.7 g of 1.86 K/m, what is the
40.				(d) 60 g/mol n in freezing point for
	(a) 0.0049	(b) 4.9 + 0.001	(c) 4.9	(d) 0.49
41.	How many liters of reacts with excess	(524)	e formed when 10	0 mL of 0.1 MH ₂ SO ₄

- (b) 2.24 (a) 22.4 (c) 0.224 (d) 5.6
- 42. A solution is obtained by dissolving 12 g of urea (molecular weight 60) in a liter of water. Another solution is obtained by dissolving 68.4 g of cane sugar (molecular weight 342) in a liter of water at the same temperature. The lowering of vapor pressure in the first solution is:
 - (a) same as that of the second solution
 - (b) nearly one-fifth of the second solution
 - (c) double that of the second solution
 - (d) nearly five times that of the second solution
- 43. The values of observed and calculated molecular weights of silver nitrate are 92.64 and 170, respectively. The degree of dissociation of silver nitrate is:
 - (a) 60%
- (b) 83.5%
- (c) 47.7%
- (d) 60.23%
- 44. If a solute undergoes dimerization and trimerization, the minimum values of the Van't Hoff factors are respectively:
 - (a) 0.5 and 1.50 (b) 1.5 and 1.33 (c) 0.5 and 0.33 (d) 0.25 and 0.67

HINTS AND SOLUTIONS

(c) Given $P_A = 750 \text{ mm Hg}$ 373 K is boiling point of water Thus, $P_A^{\circ} = 760 \text{ mm Hg}$ $m = \left(\frac{P^{\circ} - P}{P}\right) \times \frac{1000}{M_{\text{solvent}}}$ $\Rightarrow \frac{10}{750} \times \frac{1000}{18} = 0.74$

(c) Normal boiling point of water is 100°C, hence

$$P^{\circ}(H_2O) = 760 \text{ torr}; M(H_2O) = 18 \text{ g/mol}$$

$$m = \left(\frac{P^{\circ} - P}{P}\right) \times \frac{1000}{M_{\rm H_2O}}$$

$$\Rightarrow P = 746.5$$
; $\Delta P = 13.45$ torr

3. (b)
$$P_s = \left(\frac{80}{100}\right) P^{\circ}, w = ?$$
 $M_{\text{solute}} = 40, w = 114 \text{ g}, M_{\text{solvent}} = 114$
 $\frac{P^{\circ} - P_s}{P_s} = \frac{w \times M_{\text{solute}}}{M_{\text{solute}} \times W}$

or $\frac{P^{\circ} - (80/100) P^{\circ}}{(80/100) P^{\circ}} = \frac{w \times 114}{40 \times 57}$
 $\therefore w = 5 \text{ g}$

4. (c) We know that

$$Y_A = \frac{P_A^{\circ} X_A}{P_{\text{total}}} \text{ or } \frac{Y_A}{X_A} = \frac{P_A^{\circ}}{P_{\text{total}}}$$

$$P_A^{\circ} > P_{\text{total}} \text{ or } \frac{Y_A}{X_A} > 1 \text{ or } Y_A > X_A$$

5. (a)
$$y_A = \frac{p_A}{p} \Rightarrow \frac{p_A^\circ x_A}{p}$$
 and $y_B = \frac{p_B^\circ x_B}{p}$

$$\frac{y_A}{y_B} = \frac{p_A^\circ}{P_B^\circ} \times \frac{x_A}{x_B} \Rightarrow \frac{4}{3} = \frac{1}{3} \times \frac{x_A}{(1 - x_A)}$$

$$x_A = \frac{4}{5} \text{ or } x_B = \frac{1}{5}$$

6. (d)
$$p_{\text{ideal}} = p_A^{\circ} x_A + p_B^{\circ} x_B$$

= $100 \times \frac{1}{4} + 80 \times \frac{3}{4} = 85 \text{ mm Hg}$

 $p_{\text{actual}} = 90 \text{ mm Hg}$

Actual vapor pressure is greater than the vapor pressure of ideal solution. Hence, a positive deviation from Raoult's law.

7. (d)
$$\frac{W_A}{W_B} = \frac{P_A^{\circ}}{P_B^{\circ}} \times \frac{M_A}{M_B} \Rightarrow \frac{0.7}{7} \times \frac{112.5}{18} = 0.625$$

 $\frac{W_A}{W_A + W_B} \times 100 = \frac{0.625}{1.625} \times 100 = 38.46$

- (c) For high vapor pressure, concentration of solute should be low and temperature should be high.
- 9. (c)

10. (d)
$$\Delta T_b = 80.26$$

$$0.16 = 2.53 \times \frac{0.26/M}{11.20} \times 1000; M \approx 367$$

This is almost equal to molar mass of C₂₀H₁₆Fe₂.

11. (a)

13. (b)
$$\Delta T_f = K_f \times \text{Molality} \times i$$

 $0.558 = 1.86 \times 0.1 \times i \text{ or } i = 3$

Thus, complex is $[CoCl \cdot x \cdot NH_3] \cdot Cl_2$. Since coordination number of CO is six. Thus, complex is $[CO(NH_3)_5Cl]Cl_2$.

14. (a) The reaction when KI is added in HgI₂

$$HgI_2 + 2KI \rightarrow K_2HgI_4 \rightleftharpoons 2K^+ + HgI_4^{2-}$$

Since, the number of ions decreases, so freezing point increases.

15. (b)
$$\Delta T_f = K_f \cdot M \cdot i$$

 $\Rightarrow i = 0.633;$
 $i = 1 - \alpha + \frac{\alpha}{2} \Rightarrow \alpha = 0.73$

 (d) Only solvent molecules can passed through semipermeable membrane, so only dilution is possible.

17. (d)
$$\frac{p^{\circ} - p}{p} = \frac{n}{N} \Rightarrow \frac{W}{W \times N}$$
$$\Rightarrow \frac{850 - 84.9}{844.9} = \frac{2 \times 76}{M \times 100}$$
$$M = 252; \ n = \frac{252}{32} \approx 8$$

Therefore, atomicity of sulphur is 8.

28. (a)
$$\frac{P^{\circ} - P_s}{P^{\circ}} = \frac{n}{n+N}$$
; $P^{\circ} = 0.80$, $P_s = 0.60$

$$\therefore \frac{n}{n+N} = \frac{0.2}{0.8} = 0.25$$

29. (c)
$$\frac{P^{\circ} - P_s}{P^{\circ}} = \frac{(W_2/M_2)}{(W_1/M_1)} = \frac{3000 - 2985}{3000} = \frac{(5/M_2)}{(100/18)}$$
 or $M_2 = 180$

30. (d) It is known that azeotropic mixture of HCl and water has 20.2% HCl.

31. (a)
$$\pi = CRT = \frac{n}{V}RT = \frac{(1.75/342)}{(150/1000)} \times 0.0821 \times 290$$

= 0.8095 \approx 0.81 atm

 (c) Van't Hoff factor of NaCl is 1.95, because it will be ionized into two ions.

33. (b)
$$m = \frac{wRT}{PV} = \frac{0.6 \times 0.082 \times 300}{1.23 \times 0.1} = 120$$

34. (b)
$$m = \frac{K_b \times w \times 1000}{\Delta T_b \times W} = 143.18$$

35. (c) Here: $\Delta T_b = 0.323 \text{ K}$

w = weight of Anthracene.

W = weight of chloroform

 K_b = Molal elevation constant (3.9 K-kg/mol)

$$m = \frac{K_b \times w \times 1000}{W \times \Delta T_b} = \frac{3.9 \times 0.5143 \times 1000}{0.323 \times 35} = 177.42 \text{ g/mol}$$

36. (b) Applying Clausius-Clapeyron equation, we get

$$\log \frac{P_2}{P_1} = \frac{\Delta H_V}{2.303R} \left[\frac{T_2 - T_1}{T_1 \times T_2} \right]$$

$$\log \frac{760}{23} = \frac{40656}{2.303 \times 8.314} \left[\frac{373 - T_1}{373T} \right]$$

This gives $T_1 = 294.4 \,\mathrm{K}$.

37. (b)
$$\Delta T_f = \text{Molality} \times K_f \times (1 + \alpha)$$

 $\alpha = 0.2$, $Molality = 0.2$, $K_f = 1.86$
 $\Delta T_f = 0.2 \times 1.2 \times 1.86 = 0.4464^\circ$
Freezing point = -0.45° C.

38. (b)
$$\Delta T_f = imK_f$$
; $0.0054 = i \times 1.8 \times 0.001$
 $i = 3$. So it is $[Pt(NH_3)_4Cl]Cl_2$.

39. (d)
$$m = \frac{K_f \times w \times 1000}{\Delta T_f \times W} = 60 \text{ g/mol}$$

40. (a)
$$\Delta T = K_f \times \text{Molality} = 4.9 \times 0.001 = 0.0049 \text{ K}$$

41. (c)
$$Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2HO_{1mol}$$

 $98g(2mol) \qquad 1mol \qquad 1mol$
 $0.02 = \frac{0.02 \times 22.4}{2} = 0.224$

42. (a) We know that in the first solution,

Number of the moles of urea

$$= \frac{\text{Mass of urea}}{\text{Molecular weight of urea}} \times \frac{1}{V} = \frac{12}{60} \times \frac{1}{1} = 0.2$$

In second solution,

Number of moles of cane sugar

$$= \frac{\text{Mass of cane sugar}}{\text{Molecular weight of cane sugar}} = \frac{68.4}{342} \times \frac{1}{1} = 0.2.$$

- 43. (b)
- 44. (c)