Mathematical Induction

KEY FACTS

- **1.** A statement T(n) is true for all $n \in N$, where N is the set of natural numbers, provided: (i) T(1) is true (ii) T(k) is true $\Rightarrow T(k+1)$ is true.
- **2.** The proof of a proposition T(n) by the method of mathematical induction consists of the following steps:
 - (a) Step I: (Basic Step): Actual verification of the proposition [T(1)], [T(2)], etc., for particular positive integralvalues of n say $n = 1, 2, \dots$.
 - (b) Step II: (Induction Step): Assuming the proposition to be true for some positive integral value k of n*i.e.*, T(k) and then proving that it is true for the value (k + 1) which is the next higher integer, *i.e.*, proving T(k+1) true whenever T(k) holds.

SOLVED EXAMPLES

Type I: Summation of Series

_

5

Ex. 1. Using the method of induction, show that $1 + 2 + 3 + ... + n = \frac{1}{2} n (n + 1)$, for all $n \in N$.

Sol. Let $T(n) = 1 + 2 + 3 + ... + n = \frac{1}{2} n(n+1)$ *Basic Step*: For *n* = 1, LHS = T(1) = 1, RHS = $\frac{1}{2} \times 1 \times 2 = 1 \Rightarrow$ LHS = RHS $\Rightarrow T(1)$ is true.

Induction Step: Assume that *T*(*k*) is true, *i.e.*,

$$1 + 2 + 3 + \dots + k = \frac{1}{2}k(k+1)$$

To obtain $T(k+1)$, we add $(k+1)$ th term = $(k+1)$ to both the sides, *i.e.*,
 $1 + 2 + 3 + \dots + k + (k+1) = \frac{1}{2}k(k+1) + (k+1)$
 $\Rightarrow 1 + 2 + 3 + \dots + k + (k+1) = (k+1)\left(\frac{k}{2} + 1\right)$
 $\Rightarrow 1 + 2 + 3 + \dots + k + (k+1) = \frac{1}{2}(k+1)(k+2)$

 \Rightarrow Thus the statement T(n) is true for n = k + 1 under the assumption that T(k) is true. Therefore, by the principle of mathematical induction, the statement is true for every +ve integer n.

Ex. 2. Prove that for all +ve integral values of n, $1 + 3 + 5 + \dots + (2n - 1) = n^2$.

Sol. Let T(n) be the statement: $1 + 3 + 5 + ... + (2n - 1) = n^2$ Basic Step: For n = 1, LHS = 1, RHS = $1^2 \Rightarrow$ LHS = RHS $\Rightarrow T(1)$ is true Induction Step: Assume that T(k) is true, *i.e.*, $1 + 3 + 5 + ... + (2k - 1) = k^2$ To obtain T(k + 1), add the (k + 1)th term = 2(k + 1) - 1 = 2k + 2 - 1 = 2k + 1 to both the sides. Then, $1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = k^2 + 2k + 1 \Rightarrow 1 + 3 + 5 + ...$ to (k + 1) terms = $(k + 1)^2$ Thus the statement is true for n = k + 1 under the assumption that statement is true for n = kTherefore, the statement 1 + 3 + 5 + ... to n terms = n^2 for every positive integer n.

Ex. 3. Prove that for every natural number *n*.

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

Sol. Let T(n) be the statement,

$$1^{3} + 2^{3} + 3^{3} + ... + n^{3} = \frac{n^{2} (n+1)^{2}}{4}$$

Basic Step: For $n = 1, 1^{3} = \frac{1^{2} (1+1)^{2}}{4} = 1 \Rightarrow T(1)$ is true

Induction Step: Let T(k) hold for a natural number k, that is

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \frac{k^{2} (k+1)^{2}}{4}$$

Now, to obtain T(k + 1), add the (k + 1)th term = $(k + 1)^3$ to both the sides of T(k), *i.e.*,

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{2} (k+1)^{2}}{4} + (k+1)^{3} = \frac{(k+1)^{2}}{4} [k^{2} + 4 (k+1)] = \frac{(k+1)^{2} (k+2)^{2}}{4}$$
$$= \left[\frac{(k+1)(k+2)}{2}\right]^{2}$$

Hence T(k + 1) is true, whenever T(k) is true.

Ex. 4. Use the principal of mathematical induction to prove the following statement true for all $n \in N$.

$$x + 4x + 7x + \dots + (3n-2)x = \frac{1}{2}n(3n-1)x.$$

Sol. Let T(n) be the statement:

$$x + 4x + 7x + ... + (3n - 2)x = \frac{1}{2}n(3n - 1)x$$

Basic Step: For *n* = 1,

$$x = \frac{1}{2} \times 1 \times (3 \times 1 - 1) \times x \Longrightarrow x = x \Longrightarrow T(1) \text{ is true.}$$

Induction Step: Assume *T*(*k*) holds for a natural number *k*, *i.e.*,

$$x + 4x + 7x + \dots + (3k-2)x = \frac{1}{2}k(3k-1)x$$

Now to show that T(k+1) holds, add the (k+1)th term = [3(k+1)-2]x = (3k+1)x to both the sides of T(k), *i.e.*,

$$x + 4x + 7x + \dots + (3k - 2) x + (3k + 1) x = \frac{1}{2} k (3k - 1) x + (3k + 1) x$$

$$= \frac{1}{2} [k (3k-1) x + 2 (3k+1) x] = \frac{1}{2} [(3k^2 + 5k + 2) x] = \frac{1}{2} (k+1) (3k+2) x$$
$$= \frac{1}{2} (k+1) [3 (k+1) - 1] x$$
$$\Rightarrow T (k+1) \text{ is true, whenever } T(k) \text{ is true.}$$

Ex. 5. Prove by the method of mathematical induction that a + (a + d) + (a + 2d) + ... + (a + (n - 1) d) $= \frac{n}{2} \{2a + (n-1) d\} \text{ for all } n \in N, \text{ where } a, d \in R.$

Sol. Let T(n) be the statement

$$a + (a + d) + (a + 2d) + \dots + (a + (n - 1) d) = \frac{n}{2} [2a + (n - 1) d]$$

Basic Step: For n = 1, LHS = a, RHS = $\frac{1}{2}$ [2a] = a

 \Rightarrow LHS = RHS \Rightarrow T(1) is true.

Induction Step: Let *T*(*k*) hold true, *i.e.*,

$$a + (a + d) + (a + 2d) + \dots + (a + (k - 1) d) = \frac{k}{2} [2a + (k - 1) d]$$

Now to show that T(k+1) holds true, we add the (k+1)th term, *i.e.*, $a + \{(k+1)-1\} d = a + kd$ to both the sides of T(k), *i.e.*,

$$a + (a + d) + (a + 2d) + \dots + (a + (k - 1) d) + (a + kd)$$

= $\frac{k}{2} [2a + (k - 1) d] + (a + kd) = ak + \frac{k (k - 1) d}{2} + a + kd$
= $a (k + 1) + \frac{1}{2} \{k (k - 1) d + 2kd\} = (k + 1) a + \frac{1}{2} \{k^2d + kd\}$
= $(k + 1) a + \frac{1}{2}k (k + 1) d = \frac{(k + 1)}{2} [2a + \{(k + 1) - 1\} d].$

Thus, T(k + 1) is true, whenever T(k) is true.

Ex. 6. Using the method of mathematical induction, show that for all $n \in N$, $a + ar + ar^2 + ... + ar^{n-1} = \frac{a(1-r^n)}{(1-r)}$, $r \neq 1$.

Sol. Let T(n) be the statement:

$$a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(1 - r^{n})}{(1 - r)}, r \neq 1$$

Basic Step: For $n = 1$, \Rightarrow LHS = a , RHS = $\frac{a(1 - r^{1})}{1 - r} = a$.
 \Rightarrow LHS = RHS \Rightarrow $T(1)$ is true.

Induction Step: Let the statement hold true for n = k, *i.e.*, let T(k) be true, *i.e.*, $a + ar + ar^2 + ... + ar^{k-1} = \frac{a(1 - r^k)}{1 - r}$ on to show T(k + 1) holds add the (k + 1)th term = $ar^{(k+1)-1} = ar^k$ to both the sides of T(k), *i.e.*,

Then to show
$$T(k+1)$$
 holds, add the $(k+1)$ th term = $ar^{k_k+1} = ar^k$ to both the sides of $T(k)$

$$a + ar + ar^{2} + \dots + ar^{k-1} + ar^{k} = \frac{a(1-r^{k})}{(1-r)} + ar^{k}$$

$$=\frac{a-ar^{k}+ar^{k}(1-r)}{(1-r)}=\frac{a-ar^{k}+ar^{k}-ar^{k+1}}{(1-r)}=\frac{a-ar^{k+1}}{(1-r)}=\frac{a(1-r^{k+1})}{(1-r)}$$

Thus, T(k + 1) is true, whenever T(k) holds true.

Ex. 7. Prove that for all +ve integral values of
$$n$$
, $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$

Sol. Let
$$T(n)$$
 be the statement: $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$
Basic Step: For $n = 1$, $\frac{1}{1 \cdot 2} = \frac{1}{1+1} \implies T(1)$ is ture.

Induction Step: Assume T(k) is true, *i.e.*, $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$

To obtain T(k + 1), add the (k + 1)th term, *i.e.*, $\frac{1}{(k+1)(k+2)}$ to both sides of T(k). Then,

$$\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
$$= \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2 + 2k + 1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{(k+1)}{(k+2)}$$

Thus T(k + 1) is true with the assumption that T(k) is true. Hence the statement T(n) holds for all positive integral values of n.

Ex. 8. Prove by the principle of induction that

1. 4. 7 + 2. 5. 8 + 3. 6. 9 + ... +
$$n(n+3)(n+6) = \frac{n}{4}(n+1)(n+6)(n+7)$$
.

Sol. Let T(n) denote the given statement

1. 4. 7 + 2. 5. 8 + 3. 6. 9 + ... +
$$n(n+3)(n+6) = \frac{n}{4}(n+1)(n+6)(n+7)$$

Basic Step: For n = 1, LHS = 1. 4. 7 = 28

RHS =
$$\frac{1}{4}$$
 (1 + 1) (1 + 6) (1 + 7) = 28

 \Rightarrow LHS = RHS \Rightarrow T(1) is true.

Induction Step: Assume T(k) is true for all $k \in N$, *i.e.*,

1. 4. 7 + 2. 5. 8 + 3. 6. 9 + ... +
$$k(k+3)(k+6) = \frac{k}{4}(k+1)(k+6)(k+7)$$

Now we shall show that T(k+1) is also true.

To obtain T(k + 1) add the (k + 1)th term, *i.e.*, (k + 1) (k + 1 + 3) (k + 1 + 6) = (k + 1) (k + 4) (k + 7) to both the sides of T(k). Then,

$$1.4.7+2.5.8+3.6.9+...+k(k+3)(k+6)+(k+1)(k+4)(k+7) = \frac{k}{4}(k+1)(k+6)(k+7)+(k+1)(k+4)(k+7) = \frac{k}{4}(k+1)(k+7)\left[\frac{k}{4}(k+6)+(k+4)\right] = \frac{(k+1)(k+7)}{4}[k^2+6k+4k+16] = \frac{(k+1)}{4}(k+7)(k^2+10k+16) = \frac{(k+1)}{4}(k+7)(k+2)(k+8) = \frac{1}{4}(k+1)(k+2)(k+7)(k+8)$$

$$\Rightarrow$$
 T (k + 1) is true, assuming T (k) is true.

 \Rightarrow *T*(*n*) is true for all *n* \in *N*.

Ex. 9. Prove by the principle of mathematical induction that $n < 2^n$ for all $n \in N$.

Sol. Let the statement $T(n) = n < 2^n$. Basic Step: For $n = 1, 1 < 2^1 \Rightarrow T(1)$ is true. Induction Step: Let T(k) be true $\Rightarrow k < 2^k$ for all $k \in N$. $k < 2^k \Rightarrow 2k < 2.2^k$ $\Rightarrow 2k < 2^{k+1} \Rightarrow (k+k) < 2^{k+1}$ $\Rightarrow (k+1) \le (k+k) < 2^{k+1}$ $\Rightarrow (k+1) < 2^{k+1}$ $\Rightarrow T(k+1)$ is true, whenever T(k) is true. $\therefore T(n)$ is true $\forall n \in N$.

Ex. 10. Prove by the principle of mathematical induction that $1 + 2 + 3 + \dots + n < \frac{(2n+1)^2}{8}$.

Sol. Let T(n) be the statement

$$1 + 2 + 3 + \dots + n < \frac{(2n+1)^2}{8}$$

Basic Step: For
$$n = 1$$
, we have $\frac{(2n+1)^2}{8} \frac{(2 \times 1 + 1)^2}{8} = \frac{9}{8} > 1 \Rightarrow T(1)$ is true.

Induction Step: Let T(k) be true. Then,

$$1+2+\ldots+k < \frac{(2k+1)^2}{8}$$

Now we need to prove T(k + 1) to be true. To obtain T(k + 1) add the (k + 1)th term = (k + 1) to both the sides of T(k). Then,

$$1 + 2 + 3 + \dots + k + (k + 1) < \frac{(2k + 1)}{8} + (k + 1)$$

$$\Rightarrow 1 + 2 + 3 + \dots + k + (k + 1) < \frac{4k^2 + 12k + 9}{8} = \frac{(2k + 3)^2}{8}$$

$$\Rightarrow 1 + 2 + 3 + \dots + k + (k + 1) < \frac{[2(k + 1) + 1]^2}{8}$$

. \ 2

Hence T(k+1) is true, whenever T(k) is true $\Rightarrow T(n)$ is true for all $n \in N$.

Ex. 11. Using the principle of mathematical induction prove that $1|\underline{1} + 2|\underline{2} + 3|\underline{3} + \dots + n|\underline{n} = |\underline{n+1} - 1$ for all $n \in N$.

Sol. Let the statement T(n) be

 $1|1 + 2|2 + 3|3 + \dots + n|n = |n + 1 - 1|$

Basic Step: For n = 1,LHS = $1 | 1 = 1 \times 1 = 1$

$$RHS = |1+1-1| = |2-1| = 2-1 = 1 \implies LHS = RHS \implies T(1) \text{ is true}$$

Induction Step: Assume the statement T(k) to be true for $n = k, k \in N$. Then,

1|1 + 2|2 + 3|3 + ... + k|k = |k + 1 - 1|

Now we need to prove T(k + 1) to be true.

To obtain T(k+1), add the (k+1)th term = $(k+1) \lfloor k+1$ to both sides of T(k), *i.e.*, $\Rightarrow 1 \lfloor 1+2 \lfloor 2+3 \rfloor + ... + k \lfloor k + (k+1) \rfloor + 1 = \lfloor k+1-1+(k+1) \rfloor + 1$

$$= |k+1| + (k+1) |k+1| - 1$$

= |k+1| (1+k+1) - 1
= |k+1| (k+2) - 1
= |k+2| - 1 = |(k+1)+1| - 1

- \Rightarrow The result is true for n = k + 1
- \Rightarrow T (k + 1) is true on the assumption that T(k) is true.
- \Rightarrow *T*(*n*) holds for all *n* \in *N*.

Ex. 12. If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then prove that $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$. (WBJEE 2008)

Sol. Let the statement
$$T(n)$$
 be: If $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, then $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$
Basic Step: For $n = 1, A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$
 $A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1 \\ 1 & 1-2\times 1 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} \Rightarrow T(1)$ is true

Induction Step: Assume *T*(*k*) to be true, *i.e.*,

If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then $A^k = \begin{bmatrix} 1+2k & -4k \\ k & 1-2k \end{bmatrix}$
Now we need to show $T(k+1)$ is true. $A^k = \begin{bmatrix} 1+2k \\ -k \end{bmatrix}$

$$\therefore A^{k+1} = A^k \cdot A = \begin{bmatrix} 1+2k & -4k \\ k & 1-2k \end{bmatrix} \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3+6k-4k & -4-8k+4k \\ 3k+1-2k & -4k+2k-1 \end{bmatrix} = \begin{bmatrix} 3+2k & -4-4k \\ k+1 & -1-2k \end{bmatrix}$$
$$= \begin{bmatrix} 1+2(k+1) & -4(k+1) \\ k+1 & 1-2(k+1) \end{bmatrix} \Rightarrow T(k+1) \text{ is true, whenever } T(k) \text{ is true.}$$

-4k

PRACTICE SHEET-1

1. Let $S(k) = 1 + 3 + 5 + \dots + (2k - 1) = 3 + k^2$. Then, which of the following is true?

- (a) S(1) is correct
- (b) $S(k) \Rightarrow S(k+1)$
- $(c) S(k) \not\Rightarrow S(k+1)$
- (*d*) Principle of mathematical induction can be used to prove the above formula. (*AIEEE 2004*)
- **2.** If 'n' be any positive integer, then n(n+1)(2n+1) is
 - (a) an odd integer(b) an integral multiple of 6(c) a perfect square(d) None of these

(EAMCET 2005)

3. For all natural number n, $2 + 4 + 6 + \dots + 2n$ equals (a) 2(n + 1) (b) $\frac{1}{2}n(n + 2)$

(a)
$$\frac{n}{3}(n+1)(2n+1)$$
 (b) $\frac{n}{6}(n+1)(n+3)$

(c)
$$\frac{n}{3}(2n-1)(n+2)$$
 (d) $\frac{n}{6}(n+1)(2n+1)$

5. For all $n \in N$, the sum $1.3 + 3.5 + 5.7 + \dots + (2n - 1)(2n + 1)$ equals

(a)
$$\frac{n(2n^2+3n+1)}{6}$$
 (b) $\frac{n(4n^2+6n-1)}{3}$
(c) $\frac{1}{6}n(n^2+4)$ (d) $\frac{1}{3}n^2(4n^2+5)$

1. (b) **2.** (b) **3.** (c) **4.** (d) **5.** (b)

HINTS AND SOLUTIONS

1. $S(k) = 1 + 3 + 5 + \dots + (2k - 1) = 3 + k^2$ Putting k = 1 on both the sides, we get LHS = 1, RHS = $3 + 1 = 4 \implies$ LHS \neq RHS \implies S(1) is not true. Assume $S(k) = 1 + 3 + 5 + \dots + (2k - 1) = 3 + k^2$ is true. Then. To find S(k + 1), add the (k + 1)th term = (2(k + 1) - 1) =2k+1 on both the sides of S(k). \therefore S(k + 1) = 1 + 3 + 5 + + (2k - 1) + (2k + 1) = 3 + k^2 + 2k + 1 $\Rightarrow 1 + 3 + 5 + \dots + (2k - 1) + (2k + 1) = 3 + (k + 1)^2$ \Rightarrow *S*(*k* + 1) is also true. \therefore $S(k) \Rightarrow S(k+1)$ is true. **2.** When n = 1, n(n + 1)(2n + 1) = (1)(2)(3) = 6, which is an integral multiple of 6. It is neither an odd integer nor a perfect square. Using the principle of mathematical induction, we shall now show that the expression n(n + 1)(2n + 1) is an integral multiple of $6 \forall n \in N$. Assume T(n) = n (n + 1) (2n + 1) = 6x where $x \in N$. **Basic Step:** T(1) is true as shown above. *Induction Step*: Let T(k) be true for all $k \in N$. $\Rightarrow k(k+1)(2k+1) = 6x$, where $x \in N$(*i*) For T(k+1), we replace k by (k+1) in the given expression, i.e., T(k+1) = (k+1)(k+2)(2(k+1)+1)= (k + 1) (k + 2) ((2k + 1) + 2)= (k + 1) (k + 2) (2k + 1) + 2 (k + 1) (k + 2)= k (k + 1) (2k + 1) + 2 (k + 1) (2k + 1)+2(k+1)(k+2)= k (k + 1) (2k + 1) + 2 (k + 1) [(2k + 1) + (k + 2)] $= 6x + 2(k + 1)(3k + 3) = 6x + 6(k + 1)^{2}$ $= 6 (x + (k + 1)^2)$ $= 6 \times a$ positive integer \therefore T(k) is true \Rightarrow T(k + 1) is true.

 \therefore *T*(*n*) is true for all $n \in N$.

3. Let $S_n = 2 + 4 + 6 + + 2n$ When n = 1, $S_n = 2$ Now from the options given, when n = 1, 2(n+1) = 4, $\frac{1}{2}n(n+2) = \frac{3}{2}$, n(n+1) = 2, (n+2)(n+4) = 15∴ $S_n \neq 2(n+1)$, $S_n \neq \frac{1}{2}n(n+2)$, $S_n \neq (n+2)(n+4)$ for n = 1∴ We need to prove $2 + 4 + 6 + + 2n = n(n+1) \forall n \in N$. Let T(n) = 2 + 4 + 6 + + 2n = n(n+1)Basic Step: For n = 1, LHS $= 2 \times 1 = 2$, RHS $= 1 \times (1+1) = 2$ \Rightarrow LHS = RHS $\Rightarrow T(1)$ is true. **UTIONS** *Induction Step:* Assume *T*(*k*) is true, *i.e.*,

 $2 + 4 + 6 + \dots + 2k = k(k + 1)$ To obtain T(k+1), we add the (k+1)th term, *i.e.*, 2 (k+1)to both the sides of T(k), *i.e.*, $2 + 4 + 6 + \dots + 2k + 2(k + 1)$ = k (k+1) + 2 (k+1)= (k + 1) (k + 2) = (k + 1) ((k + 1) + 1)Thus the statement T(n) is true for n = k + 1, whenever it is true for n = k. Therefore by the principle of mathematical induction it is true for all $n \in N$. 4. Let $S_n = 1^2 + 2^2 + 3^2 + \dots + n^2$. When n = 1, $S_n = 1^2 = 1$. Now from the options given, when n = 1, $\frac{n}{3}(n+1)(2n+1) = \frac{1}{3} \times 2 \times 3 = 2$ $\frac{n}{6}(n+1)(n+3) = \frac{1}{6} \times 2 \times 4 = \frac{4}{3}$ $\frac{n}{2}(2n-1)(n+2) = \frac{1}{2} \times 1 \times 3 = 1$ $\frac{n}{6}(n+1)(2n+1) = \frac{1}{6} \times 2 \times 3 = 1$: $S_n \neq \frac{n}{3}$ $(n+1)(2n+1), S_n \neq \frac{n}{6}(n+1)(n+3)$ for n = 1 $S_n = \frac{n}{2} (2n-1)(n+2)$ and $S_n = \frac{n}{6} (n+1)(2n+1)$ for n = 1When n = 2, $S_n = 1^2 + 2^2 = 5$ $\frac{n}{3} (2n-1) (n+2) = \frac{2}{3} \times 3 \times 4 = 8 \neq S_n$ $\frac{n}{6}(n+1)(2n+1) = \frac{2}{6} \times 3 \times 5 = 5$: $S_n = \frac{n}{6} (n+1) (2n+1)$ when n = 2. Clearly $S_n = \frac{n}{6} (n+1) (2n+1)$ for n = 1, and n = 2. : We shall show by mathematical induction that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n}{6} (n+1) (2n+1)$ for all $n \in N$.

Let $T(n) = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n}{6} (n+1) (2n+1)$ **Basic Step:** For n = 1, LHS = $1^2 = 1$ RHS = $\frac{1}{6} \times 2 \times 3 = 1$

 $\Rightarrow LHS = RHS \Rightarrow T(1) \text{ is true.}$ Induction Step: Let T(k) be true for all $k \in N$. $\Rightarrow 1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k}{6} (k+1) (2k+1)$

To obtain T(k + 1), add the *k*th term = $(k + 1)^2$ to both the sides of T(k) *i.e.*,

$$1^{2}+2^{2}+3^{2}+...+k^{2}+(k+1)^{2}$$

$$=\frac{k}{6}(k+1)(2k+1)+(k+1)^{2}$$

$$=\frac{1}{6}(k+1)[k(2k+1)+6(k+1)]$$

$$=\frac{1}{6}(k+1)[2k^{2}+k+6k+6]$$

$$=\frac{1}{6}(k+1)(2k^{2}+7k+6)$$

$$=\frac{1}{6}(k+1)(k+2)(2k+3)$$

$$=\frac{1}{6}(k+1)(k+2)[2(k+1)+1]$$

$$\Rightarrow T(k+1) \text{ is true, whenever } T(k) \text{ is true, } k \in N$$

$$\Rightarrow T(n) \text{ is true for all } n \in N.$$
5. Let $S_{n} = 1.3 + 3.5 + 5.7 + ... + (2n-1)(2n+1)$
When $n = 1, S_{n} = 1.3 = 3$
From the given options, when $n = 1$,
$$\frac{n(2n^{2}+3n+1)}{6} = \frac{1 \times (2+3+1)}{6} = 1 \neq S_{n}$$

$$\frac{n(n^{2}+4)}{6} = \frac{1 \times 5}{6} = \frac{5}{6} \neq S_{n}$$

$$\frac{n^{2}(4n^{2}+5)}{3} = \frac{1 \times (4+5)}{3} = \frac{9}{3} = 3 = S_{n}$$
When $n = 2$, $S_{n} = 1.3 + 3.5 = 3 + 15 = 18$

$$\frac{n(4n^{2}+6n-1)}{3} = \frac{2(4 \times 4+12-1)}{3} = 18 = S_{n}$$

$$\frac{n^{2}(4n^{2}+5)}{3} = \frac{4 \times (4 \times 4+5)}{3} = \frac{4 \times 21}{3} = 28 \neq S_{n}$$

$$\therefore S_{n} = \frac{n}{3}(4n^{2}+6n-1) \text{ for } n = 1 \text{ and } n = 2$$

Now we shall show that
$$S_n = \frac{n}{3} (4n^2 + 6n - 1)$$
 for all $n \in N$.
Using the principle of mathematical induction.
Let $T(n) = 1.3 + 3.5 + 5.7 + \dots + (2n - 1)(2n + 1)$
 $= \frac{n}{3} (4n^2 + 6n - 1)$
Basic Step: For $n = 1$, LHS = $1.3 = 3$
RHS = $\frac{1 \times (4 + 6 - 1)}{3} = \frac{9}{3} = 3$.
 \therefore LHS = RHS $\Rightarrow T(1)$ is true.
Induction Step: Assume $T(n)$ to be true for $n = k, k \in N$
 $\Rightarrow 1.3 + 3.5 + 5.7 + \dots + (2k - 1)(2k + 1) = \frac{k}{3}(4k^2 + 6k - 1)$
To obtain $T(k + 1)$,
add the $(k + 1)$ th term = $[(2 (k + 1) - 1)(2 (k + 1) + 1)]$
 $= (2k + 1)(2k + 3)$ to both the sides of $T(k)$, *i.e.*,
 $1.3 + 3.5 + 5.7 + \dots + (2k - 1)(2k + 1) + (2 (k + 1) - 1)(2 (k + 1) + 1)$
 $= (2k + 1)(2k + 3)$ to both the sides of $T(k)$, *i.e.*,
 $1.3 + 3.5 + 5.7 + \dots + (2k - 1)(2k + 1) + (2 (k + 1) - 1)(2 (k + 1) + 1)$
 $= \frac{1}{3} k (4k^2 + 6k - 1) + (2k + 1)(2k + 3)$
 $= \frac{1}{3} (4k^3 + 6k^2 - k + 12k^2 + 24k + 9)$
 $= \frac{1}{3} (4k^3 + 18k^2 + 23k + 9)$
 $= \frac{1}{3} (k + 1) (4k^2 + 14k + 9)$
 $= \frac{1}{3} (k + 1) (4(k + 1)^2 + 6 (k + 1) - 1)$
 $\therefore T (k + 1)$ is true, whenever $T(k)$ is true.
Hence, by the principle of mathematical induction, $T(n)$ is
true for all $n \in N$.

$$\Rightarrow 1.3 + 3.5 + 5.7 + \dots + (2n-1)(2n+1) \\= \frac{1}{3}n (4n^2 + 6n - 1) \text{ is true } \forall n \in N.$$

Type II: Proving Divisibility

Ex. 1. Prove that $x^n - y^n$ is divisible by x - y, when *n* is a + ve integer.

Sol. Let T(n) be the statement: $x^n - y^n$ is divisible by x - y. *Basic Step*: For n = 1, $x^1 - y^1 = x - y$ is divisible by $(x - y) \Rightarrow T(1)$ is true *Induction Step*: Assume that T(k) is true, *i.e.*, for $k \in N$ $x^k - y^k$ is divisible by (x - y)

Now, we prove T(k+1) is true.

$$x^{k+1} - y^{k+1} = x^k \cdot x - y^k \cdot y = x^k \cdot x - x^k \cdot y + x^k \cdot y - y^k \cdot y \text{ (Adding and subtracting } x^k \cdot y)$$

= $x^k (x - y) + y (x^k - y^k)$

Since $x^k (x - y)$ is divisible by (x - y) and $(x^k - y^k)$ is divisible by (x - y) (By induction step, *i.e.*, assuming T(k) is true), therefore,

 $x^{k+1} - y^{k+1} = x^k (x - y) + y (x^k - y^k)$ is divisible by (x - y)

 $\Rightarrow T(k+1)$ is true, whenever T(k) is true.

 \Rightarrow *T*(*n*) holds for all positive integral values of *n*.

Ex. 2. Prove that $3^{2n+2} - 8n - 9$ is divisible by 64 for any positive integer *n*.

Sol. Let T(n) be the statement: $3^{2n+2} - 8n - 9$ is divisible by 64. **Basic Step:** For $n = 1, 3^{2 \times 1+2} - 8 \times 1 - 9 = 81 - 17 = 64$ which is divisible by 64. \Rightarrow *T*(1) holds. *Induction Step:* Let T(k), $k \in N$ hold, *i.e.*, $3^{2k+2} - 8k - 9$ is divisible by 64. Then, $T(k+1) = 3^{2(k+1)+2} - 8(k+1) - 9 = 3^2 \cdot 3^{2k+2} - 8k - 17$ $= 9 (3^{2k+2} - 8k - 9) + 64k + 64 = 9$. T(k) + 64 (k + 1) \Rightarrow T(k + 1) is divisible by 64, whenever T(k) is divisible by 64. \Rightarrow T(n) is true for every natural number n. Ex. 3. Use the principle of mathematical induction to prove, for all $n \in N$, $10^{2n-1} + 1$ is divisible by 11.

Sol. Let the given statement $T(n) = 10^{2n-1} + 1$ be a multiple of 11 $10^{2n-1} + 1 = M(11)$ \Rightarrow **Basic Step:** For n = 1, $10^{2 \times 1 - 1} + 1 = 10 + 1 = 11$ which is divisible by 11. **Induction Step:** Assume that $T(k) = 10^{2k-1} + 1$ is divisible by 11. $10^{2k-1} + 1 = M(11) \forall n \in N$ \Rightarrow(*i*) Then, we now show that T(k + 1) is true. $T(k+1) = 10^{2(k+1)-1} + 1 = 10^{2k-1+2} + 1 = 10^2 \cdot 10^{2k-1} + 1$ = 100 (M(11) - 1) + 1(From (i))

$$= 100 . M(11) - 100 + 1 = 100 . M(11) - 99$$

 \Rightarrow *T*(*k* + 1) is divisible by 11, when *T*(*k*) is divisible by 11.

 \Rightarrow *T*(*n*) holds true for all *n* \in *N*.

Ex. 4. If *n* is an integer, $n \ge 1$, then show that $3^{2^n} - 1$ is divisible by 2^{n+2} . (IIT)

Sol. Let T(n) be the statement: $3^{2^n} - 1$ is divisible by 2^{n+2}

Basic Step: For *n* = 1,

$$3^{2^{n}} - 1 = 8$$
 and $2^{n+2} = 8 \implies T(1)$ is true

Induction Step: Assume *T*(*k*) to be true, *i.e.*,

$$T(k) = 3^{2^{k}} - 1 \text{ is divisible by } 2^{k+2}$$

= $3^{2^{k}} - 1 = m \cdot 2^{k+2} \text{ when } m \in N$...(i)
= $3^{2^{k}} = m \cdot 2^{k+2} + 1$

Now we need to prove that T(k + 1) holds true.

$$\therefore 3^{2^{k+1}} - 1 = 3^{2^{k} \cdot 2} - 1 = (m \cdot 2^{k+2} + 1)^2 - 1 \quad (\text{using } (i))$$
$$= m^2 (2^{k+2})^2 + 2m \cdot 2^{k+2} + 1 - 1 = 2^{k+2} (m^2 \cdot 2^{k+2} + 2m)$$
$$\Rightarrow T(k+1) = 3^{2^{k+1}} - 1 \text{ is divisible by } 2^{k+2}, \text{ whenever } T(k) \text{ holds.}$$

Thus $3^{2^n} - 1$ is divisible by 2^{n+2} for all integers n > 1.

IIT FOUNDATION MATHEMATICS CLASS – X

Ch 5-10

 $(k+1)^3 + 2(k+1)$ is divisible by 3.

 $(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$

PRACTICE SHEET-2 1. For all $n \in N$, $(2^{3n} - 1)$ will be divisible by (b) $10^{n} + 1$ (a) $8^n + 1$ (a) 25(b) 8(c) 7(d) 3 (c) $4^n - 3n + 1$ (d) $3^{2n} + 3n + 1$ (WBJEE 2010) (EAMCET 2006) **2.** If *n* is a positive integer, then $n^3 + 2n$ is divisible by 6. For all $n \in N$, $2^{3n} - 7n - 1$ is divisible by *(b)* 6 (a) 2(*c*) 15 (d) 3 (a) 64(*b*) 36 (c) 49(d) 25(Karnataka CET 2009) (AIEEE 2006) **3.** For each $n \in N$, $49^n + 16n - 1$ is divisible by 7. $10^{n} + 3(4^{n+2}) + 5$ is divisible by (for all $n \in N$) (*a*) 3 (*b*) 29 (c) 19 (d) 64(*a*) 5 (b) 7 (c) 9(d) 13(BCECE 2009) (Kerala PET 2005) **4.** If *n* is a positive integer, then $5^{2n+2} - 24n - 25$ is divisible by 8. For all natural numbers *n*, the expression $2.7^n + 3.5^n - 5$ is (a) 574 (*b*) 576 (*c*) 675 (d) 575divisible by (Kerala CEE 2009) (*a*) 16 (*b*) 24 (c) 20(d) 21**5.** For all integers $n \ge 1$, which of the following is divisible by (IIT 1985) ANSWERS **1.** (*c*) **2.** (*d*) **3.** (*d*) **4.** (*b*) 7. (c) **8.** (b) **5.** (*c*) **6.** (*c*) HINTS AND SOLUTIONS $=(k^{3}+2k)+(3k^{2}+3k+3)$ 1. For n = 1, $2^{3n} - 1 = 2^3 - 1 = 8 - 1 = 7$, which is divisible by 7, and not divisible by any other alternative given. $= 3m + 3(k^2 + k + 1)$ (From (i)) \therefore We shall prove $2^{3n} - 1$ divisible by 7 for all $n \in N$. \Rightarrow T(k+1) = (k+1)³ + 2 (k+1) is divisible by 3, whenever Let $T(n) = 2^{3n} - 1$ is divisible by 7. $T(k) = k^3 + 2k$ is divisible by 3. **Basic Step:** For n = 1, $T(1) = 2^3 - 1 = 8 - 1 = 7$ is divisible \Rightarrow $n^3 + 2n$ is divisible by $3 \neq n \in N$. by 7 is true. **3.** For n = 1, $49^1 + 16 \times 1 - 1 = 49 + 15 = 64$ *Induction Step:* Assume *T*(*k*) to be true, *i.e.*, \therefore For n = 1, $49^n + 16n - 1$ is divisible by 64 and not by any $T(k) = 2^{3k} - 1$ is divisible by 7 of the other given alternatives. $\Rightarrow 2^{3k} - 1 = 7m, m \in N$ \therefore We shall prove using mathematical induction, that $\Rightarrow 2^{3k} = 7m + 1$...(*i*) $49^n + 16n - 1$ is divisible by $64 \forall n \in N$. Now $2^{3(k+1)} - 1 = 2^{3k+3} - 1 = 2^3 \cdot 2^{3k} - 1 = 8 \cdot 2^{3k} - 1$ Let T(n) be the statement: $49^n + 16n - 1$ is divisible by 64 ...(From (*i*)) **Basic Step:** For n = 1, T(1) is divisible by 64 as proved above. = 8.(7m + 1) - 1 = 56m + 7 = 7(8m + 1)*Induction Step:* Assume *T*(*k*) to be true *i.e.*, $\Rightarrow 2^{3(k+1)} - 1$ is divisible by 7 $T(k) = 49^k + 16k - 1$ is divisible by 64, *i.e.*, \therefore T(k+1) is true whenever T(k) is true. $49^k + 16k - 1 = 64m, m \in N.$ $\Rightarrow 2^{3n} - 1$ is divisible by 7 for all $n \in N$(*i*) $T(k+1) = 49^{k+1} + 16(k+1) - 1$ *.*.. **2.** For n = 1, $n^3 + 2n = 1 + 2 = 3$ which is divisible by 3 and $=49.49^{k}+16k+16-1$ none of the other given alternatives. $=49.49^{k}+16k+15$ \therefore We shall prove $n^3 + 2n$ divisible by 3 for all $n \in N$. Let $T(n) = n^3 + 2n$ is divisible by 3. $=49(49^{k}+16k-1)-48(16k)+64$ **Basic Step:** For n = 1, $T(1) = n^3 + 2n = 1 + 2 = 3$ is divisible =49(64m)-12(64k)+64by 3 is true. = 64 (49m - 12k + 1)*Induction Step:* Assume *T*(*k*) to be true, *i.e.*, $\Rightarrow 49^{k+1} + 16(k+1) - 1$ is divisible by 64. $T(k) = k^3 + 2k$ is divisible by 3 \Rightarrow *T*(*k* + 1) is true whenever *T*(*k*) is true. $= k^3 + 2k = 3m$, where $m \in N$(*i*) \Rightarrow 49^{*n*} + 16*n* – 1 is divisible by 64 \forall *n* \in *N*. Now we need to prove that T(k + 1) holds true, *i.e.*,

4. For n = 1, $5^{2n+2} - 24n - 25 = 5^4 - 24 - 25 = 625 - 49$ = 576 which is divisible by 576 and none of the other given alternative.

 \therefore To prove: $5^{2n+2} - 24n - 25$ is divisible by 576 using mathematical induction. Let T(n) be the statement: $5^{2n+2} - 24n - 25$ is divisible by $576 \forall n \in N$. **Basic Step:** For n = 1, $T(1) = 5^4 - 24 - 25 = 576$ which is divisible by 576. \Rightarrow T(1) is true. *Induction Step:* Assume T(k) where $n = k, k \in N$ to be true i.e., $T(k) = 5^{2k+2} - 24k - 25$ is divisible by 576 is true, *i.e.*, $5^{2k+2} - 24k - 25 = 576m, \ m \in N$(*i*) \therefore $T(k+1) = 5^{2(k+1)+2} - 24(k+1) - 25$ $=5^{2k+2}$, 25-24k-24-25 $=5^{2k+2} \cdot 25 - 24k - 49$ $= 25 (5^{2k+2} - 24k - 25) + 24 (24k) + 576$ = 25.(576m) + 576k + 576(From (i))= 576 (25m + k + 1) $\Rightarrow 2^{2(k+1)+2} - 24(k+1) - 25$ is divisible by 576 \Rightarrow *T*(*k* + 1) is true, whenever *T*(*k*) is true. \Rightarrow 5²ⁿ⁺² – 24k – 25 is divisible by 576 \forall n \in N. **5.** For n = 1, $8^{n} + 1 = 8^{1} + 1 = 9$ divisible by 9 $10^{n} + 1 = 10^{1} + 1 = 11$ not divisible by 9 $4^n - 3n - 1 = 4 - 3 - 1 = 0$ divisible by 9 $3^{2n} + 3n + 1 = 13$ **not** divisible by 9 For n = 2 $8^{n} + 1 = 8^{2} + 1 = 65$ not divisible by 9 $4^n - 3n - 1 = 4^2 - 3 \times 2 - 1 = 16 - 6 - 1 = 9$ divisible by 9 \therefore We need to prove $4^n - 3n - 1$ to be divisible by $9 \forall n \in N$. using mathematical induction. Let T(n): $4^n - 3n - 1$ is divisible by 9, **Basic Step:** T(1) = 0 which is divisible by $9 \Rightarrow T(1)$ is true. *Induction Step:* Assume *T*(*k*) to be true, *i.e.*, $4^k - 3k - 1$ is divisible by $9 k \in N$ $\Rightarrow 4^k - 3k - 1 = 9m, m \in N$...(*i*) $\therefore 4^{k+1} - 3(k+1) - 1 = 4 \cdot 4^k - 3k - 3 - 1 = 4 \cdot 4^k - 3k - 4$ $= 4(4^{k} - 3k - 1) + 9k = 4.9m + 9k = 9(4m + k)$ $\Rightarrow 4^{k+1} - 3(k+1) - 1$ is divisible by 9 \Rightarrow T (k + 1) is true whenever T(k) is true, $k \in N$ $\Rightarrow 4^n + 3n - 1$ is divisible by $9 \neq n \in N$. 6. For n = 1, $2^{3n} - 7n - 1 = 2^3 - 7 - 1 = 8 - 8 = 0$ which is divisible by all the given alternatives. For n = 2, $2^{3n} - 7n - 1 = 2^6 - 7 \times 2 - 1 = 64 - 14 - 1 = 49$, which is divisible by only 49 out of the given alternatives. \therefore We need to prove $2^{3n} - 7n - 1$ is divisible by $49 \forall n \in N$. Let T(n) be the statement: $2^{3n} - 7n - 1$ is divisible by 49 **Basic Step:** For $n = 1, 2^{3n} - 7n - 1 = 0$, divisible by 49 \Rightarrow T(1) is true. *Induction Step:* Assume T(k) is true $\forall k \in N$, *i.e.*, $2^{3k} - 7k - 1$ is divisible by 49, *i.e.*,

 $2^{3k} - 7k - 1 = 49m, m \in N$ Now $2^{3(k+1)} - 7(k+1) - 1 = 2^{3k} \cdot 2^3 - 7k - 7 - 1$ $= 8.2^{3k} - 7k - 8 = 8 (.2^{3k} - 7k - 1) + 49k$ = 8.49m + 49k = 49(8m + k) $\Rightarrow 2^{3(k+1)} - 7(k+1) - 1$ is divisible by 49 \Rightarrow *T*(*k* + 1) is true whenever *T*(*k*) is true $\Rightarrow 2^{3n} - 7n - 1$ is divisible by $49 \forall n \in N$. 7. For n = 1, $10^n + 3(4^{n+2}) + 5 = 10 + 3 \times 4^3 + 5$ = 10 + 192 + 5 = 207which is divisible by only 9 and none of the other given alternatives. \therefore We need to prove $10^n + 3(4^{n+2}) + 5$ is divisible by $9 \forall n \in N$. Let T(n) be the statement $10^n + 3(4^{n+2}) + 5$ is divisible by 9. **Basic Step:** For n = 1, T(1) holds true as prove above. *Induction Step:* Assume T(k) to be true, $k \in N$ *i.e.*, $10^{k} + 3 (4^{k+2}) + 5$ is divisible by 9, *i.e.*, $10^{k} + 3 (4^{k+2}) + 5 = 9m, m \in N$(*i*) Now, $10^{k+1} + 3(4^{k+1+2}) + 5$ $= 10^{k+1} + 3(4^{k+3}) + 5$ $= 10, 10^{k} + 12, 4^{k+2} + 5$ $=4(10^{k}+3(4^{k+2})+5)+6.10^{k}-15$ $= 4. (9m) + 6 (10^{k} - 1) - 9$ = 4. (9m) + 6. (9x) - 9 (: $10^{k} - 1$ is always divisible by 9) = 9 (4m + 6x - 1) $\Rightarrow 10^{k+1} + 3 (4^{(k+1)+2}) + 5$ is divisible by 9. \Rightarrow T(k + 1) is true whenever T(k) is true, $\forall k \in N$ \Rightarrow 10^{*n*} - 3(4^{*n*+2}) + 5 is divisible by 9 $\forall k \in N$. 8. When $n = 1, 2.7^n + 3.5^n - 5 = 2.7 + 3.5 - 5 = 24$ which is divisible by 24 and none of the other given alternatives. \therefore We need to prove $2.7^n + 3.5^n - 5$ is divisible by 24 ₩ $n \in N$. Let T(n) be the statement $2.7^n + 3.5^n - 5$ is divisible by 24. T(1) holds true as shown above. Assume T(k) to be true, *i.e.*, $2.7^k + 3.5^k - 5$ is divisible by 24, *i.e.*, $2.7^k + 3.5^k - 5 = 24m, m \in N$(*i*) Now $2.7^{k+1} + 3.5^{k+1} - 5 = 2.7.7^k + 3.5.5^k - 5$ $= (2.7^{k} + 3.5^{k} - 5) + 12(7^{k}) + 12(5^{k})$ $= 24m + 12(7^k + 5^k)$ Now 7^k and 5^k , $k \in N$ being both odd, their sum is even. Let $7^k + 5^k = 2x, x \in N$ $= 24m + 12(2x); m, x \in N = 24(m + x)$ $\Rightarrow 2.7^{k+1} + 3.5^{k+1} - 5$ is divisible by 24 \Rightarrow T (k + 1) is true whenever T(k) is true, $k \in N$. \Rightarrow 2.7^{*n*} + 3.5^{*n*} - 5 is divisible by 24 for all $n \in N$.