MOVING CHARGE MAGNETISM

DPP - 5 CLASS - 12th

TOPIC - Magnetic Dipole and Moving Coil Galvanometre

- Q.1 A galvanometer has a resistance of 100 ohm. A difference of potential of 50 millivolt between its terminals gives a full scale deflection. Calculate shunt resistance, which will enable the instrument to read upto 5 ampere.
- Q.2 An ammeter of resistance 100 Ω can measure a maximum current of 5 mA. What will you do to measure maximum current of 5 A with it?
- Q.3 A galvanometer has a resistance of 60 Ω and a full scale deflection is produced by 1.0 mA. How will yo convert it into (a) an ammeter to read 1 A (full scale) and (b) voltmeter to read 3 V (full scale)?
- Q.4 A moving coil galvanometer of resistance 10 ohm produces full scale deflection, when a current of 25 mA is passed through it. Describe showing full calculations, how will you convert the galvanometer into (a) a voltmeter reading upto 120 V (b) an ammeter reading upto 20 A.
- **Q.5** Estimate the torque on a closed current loop placed in the magnetic field B. What is the main function of soft iron used in a moving coil galvanometer?
- **Q.6** State the principle of moving filed in a moving coil galvanometer?
- Q.7 Give two factors by which the current sensitivity of a moving coil galvanometer can be increased.
- **Q.8** How can a galvanometer be converted into an ammeter?

Or

How will you convert a moving coil galvanometer into an ammeter?

Q.9 It is desired to pass only 5% of the current through a galvanometer of resistance 95 Ω . What shunt resistance should be connected across it?

MOVING CHARGE MAGNETISM

- **Q.10** A galvanometer has a resistance of 50 ohm. A resistance of 5 ohm is connected across its terminals. What part of total current will flow through the galvanometer?
- Q.11 A galvanometer coil has a resistance of 15 Ω and the meter shows full scale deflection for a current of 4 mA. How will you convert the meter into an ammeter of range 0 to 6 A?

SOLUTION

MOVING CHARGE MAGNETISM

TOPIC - Magnetic Dipole and Moving Coil Galvanometre

Sol.1. Here, $V = 50 \text{ m } V = 50 \times 10^{-3} \text{ V}$; $G = 100 \Omega$

$$I_g = \frac{V}{G} = \frac{50 \times 10^{-3} \text{ V}}{100 \Omega} = 5 \times 10^{-4} \text{ A}$$

$$S = \frac{I_g G}{I - I_o} = \frac{5 \times 10^{-4} \times 100}{5 - 5 \times 10^{-4}} = 0.01 \Omega$$

Sol.2. The given ammeter may be considered as a galvanometer of resistance 100 2, which can measure a maximum current of 5 mA. Thus,

$$G=100\Omega$$
 ; $I_g=5\ mA=5\times 10^{-3}\ A$ and $I=5\ A$

For this, a suitable small resistance S has to be connected in parallel to the coil of the given galvanometer. It is given by

$$S = \frac{I_g \times G}{I - I_g} = \frac{5 \times 10^{-3} \times 100}{5 - 5 \times 10^{-3}} = \mathbf{0.1} \ \Omega$$

- **Sol.3**. Here, $G = 60\Omega$; $I_g = 1.0 \text{m A} = 10^{-3} \text{ A}$
 - (a) To enable galvanometer resistance,

$$S = \frac{I_g \times G}{I - I_g} = \frac{10^{-3} \times 60}{1 - 10^{-3}} = 0.06 \Omega$$

= 0.06 \Omega (in parallel)

(b) To enable galvanometer to read 3 V:

Here, V = 1.5 V

The required resistance,

$$R = \frac{V}{I_g} - G = \frac{3}{10^{-3}} - 60$$
= 2,940 \Omega (in series)

- **Sol.4**. Here, $G = 10\Omega$; $I_g = 25 \text{ mA} = 25 \cdot 10^{-3} \text{A}$
 - (a) To convert the galvanometer into voltmeter reading upto 120 V. To convert a galvanometer into voltmeter of range V, a large resistance R has to be connected in series to it. The value of R is given by

$$R = \frac{V}{I_g} - G$$
Here, $V = 120 \text{ volt}$

$$R = \frac{120}{25 \times 10^{-3}} - 10 = 4,790 \Omega$$

- (b) To convert galvanometer into ammeter reading upto 20 A. To convert a galvanometer into ammeter of range I, a small resistance S has to be connected in parallel to it. The value of S is given by
- **Sol.5**. When a closed current loop is suspended in magnetic field, torque on the coil is given by

$$\begin{vmatrix} \rightarrow \\ \tau \end{vmatrix} = \begin{vmatrix} \rightarrow \\ M \times B \end{vmatrix} = n B I A \sin \theta,$$

where the letters have their usual meanings.

The use of the soft iron core strengthens the magnetic flux linked with the coil.

- **Sol.6**. It is based on the principle that when a current carrying conductor is placed in magnetic field, it experiences a torque
- **Sol.7**. current sensitivity $=\frac{n B A}{k}$,

where the letters have their usual meanings. Since n and A cannot be increased beyond a limit, the current sensitivity may be increased by (i) increasing B and (ii) decreasing k.

- **Sol.8**. A galvanometer can be converted into an ammeter by connecting a suitable small resistance (called shunt) in parallel to it
- **Sol.9**. Here, $G = 95\Omega$

$$I_g = \frac{5}{100}I$$
 or $I = 20 I_g$
Now, $S = \frac{I_g G}{I - I_g} = \frac{I_g \times 95}{20 I_g - I_g} = 5 \Omega$

Sol.10. We know,
$$S = \frac{I_g G}{I - I_g}$$

or
$$\frac{I_g}{I} = \frac{S}{G+S}$$
Here,
$$G = 50 \Omega \text{ and } S = 5 \Omega$$

$$\therefore \frac{I_g}{I} = \frac{5}{50+5} = \frac{1}{11}$$

Sol.11. Here, , $G = 15 \Omega$; $I_g = 4 \text{ mA} = 4 \times 10^{-3} \text{ A}$; I = 6 A

To convert a galvanometer into an ammeter, a small resistance S has to be connected in parallel to the coil of the galvanometer. Then,

$$S = \frac{I_g G}{I - I_g} = \frac{4 \times 10^{-3} \times 15}{6 - 4 \times 10^{-3}} = \mathbf{0.01} \Omega$$